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Abstract

The development of video quality metrics requires methods for measuring perceived video quality.
Most such metrics are designed and tested using databases of images degraded by compression
and scored using opinion ratings. We studied video quality preferences for enhanced images of
normally-sighted participants using the method of paired comparisons with a thorough statistical
analysis. Participants (n=40) made pair-wise comparisons of high definition (HD) video clips
enhanced at four different levels using a commercially available enhancement device. Perceptual
scales were computed with binary logistic regression to estimate preferences for each level and to
provide statistical inference of the differences among levels and the impact of other variables.
While moderate preference for enhanced videos was found, two unexpected effects were also
uncovered: (1) Participants could be broadly classified into two groups: those who preferred
enhancement ("Sharp") and those who disliked enhancement ("Smooth™). (2) Enhancement
preferences depended on video content, particularly for human faces to be enhanced less. The
results suggest that algorithms to evaluate image quality (at least for enhancement) may need to be
adjusted or applied differentially based on video content and viewer preferences. The possible
impact of similar effects on image quality of compressed video needs to be evaluated.
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1. Introduction

Measuring image quality preferences (i.e., perceived image quality), and proper statistical
analyses of such preferences, are essential for developing devices and techniques for image
acquisition, image processing, image display and for setting broadcast, storage, and display
standards. Computational image quality metrics that attempt to predict the perceived image
quality perception are desirable, because direct measurement of perceived image quality
tends to be laborious [1, 2] and expensive [3]. Besides using such computational image
quality metrics to develop new display systems [4—6], such metrics can also be integrated
within a system to adjust image appearance in real time (e.g., by controlling compression,
bandwidth or adjusting the amount of enhancement applied).

Most widely used image quality metrics and their associated image databases along with
human-subject preference measures are centered on images degraded by compression
(though earlier metrics addressed low pass filtering and random noise as the degradations of
interest). One inherent assumption of current computational image quality metrics is that all
human observers respond in a similar manner, and that differences between responses to the
same stimulus reflect measurement noise, both within- and between-subjects. In this paper,
we present data that shows substantial between-subject differences in the preference
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responses to a video enhancement. This suggests that there may not be a (single) standard
observer, at least for image enhancement.

A second assumption implied in current computations of human-subject image-quality
responses is that responses are independent of image or video content. While some effects of
image content have been acknowledged within the image-quality-assessment community,
we are not aware of any published reports specifically addressing this issue. Small
differences in favored video enhancement between content categories [7], and reductions in
the impact of image compression with content desirability [8—10] have been noted. In our
study, we found significant content-dependent effects. If this is the case in general, image
enhancement and image quality algorithms may need to accommaodate such content
differences.

Progress in computational image quality metrics requires a solid understanding and accurate
measurement of perceived image quality [11]. Sensory scaling measures can be used to
determine the preferences of human observers [12-17]. Use of such grading or rating scales
is included in the ITU-R BT.500-13 standard recommendation for assessment of perceived
television picture quality [18] and have been applied in measuring (mean) opinion scores for
various image quality databases. Such ratings can be analyzed to create estimates similar to
Thurstone scales [19-21] using custom software [22, 23]. Pair-wise comparisons is an
alternative measure that generates reliable and informative data about perceived image
quality [24-27]. Pair-wise comparisons are widely used in applied psychology, marketing,
food tasting, and advertising research [28-31]. Recently, two statistical methods have been
described that produce an outcome very similar to Thurstone scaling while also providing
inferential statistics [32, 33]. We [34] compared these two approaches, binary logistic
regression [32] and linear regression [33], and found very similar outcomes.

The Bradley-Terry-Luce model [35, 36], an alternative to Thurstone scaling, also has been
used for paired comparisons [26, 37, 38]. We prefer the binary logistic regression approach
[32], as the statistical significance can be obtained with commonly-used statistical software
without the need for additional calculations or custom software. In addition, since logistic
regression is a widely used statistical method it is well understood and it facilitates the
development and testing of models that account for experimental variables and uncontrolled
or confounding variables (as illustrated in the Appendix), a capability that is not currently
available with the Bradley-Terry-Luce analyses [26, 37, 38]. In our study, we analyzed the
pair-wise comparisons of four video enhancement levels using logistic regression models
that included potential confounding factors as covariates. The consequences of these
findings for video processing (enhancement and compression) and for computational video
quality metrics are discussed.

The original purpose of this project was to measure the effect of image enhancement on
perceived video quality. However, we found the results, regarding between-observer
variability and image content effects to be of general importance and, therefore, we present
these as the main emphasis of this paper.

2. Methods

2.1. Procedure

Participants viewed two versions of a 30s video clip on two side-by-side HDTVs each
connected to a commercially-available video enhancement device that was set to one of four
ordinal enhancement levels (Off, Low, Medium or High). Participants indicated their
preference for one side over the other (left or right display; two alternative forced choice)
using a computer mouse. Participants watched each video clip for the entire duration or
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stopped the clip as soon as they decided which one they preferred. If a participant had no
preference s/he was asked to select left or right at random. Participants practiced the
preference task until they understood the procedure. Every subsequent trial proceeded
automatically after the participant indicated his or her preference on the previous trial. All
40 participants made 64 comparisons of 64 video clips, which took about an hour (more
information available in section 2.5).

Participants were told that the two video clips on the two displays may or may not look
different. We did not use the word “enhancement” in our instructions to avoid biasing the
participants, as this word has a positive connotation. The participants were unaware that
video quality was being assessed; they were told that they were control participants in a
study of a rehabilitation device for vision impairment. This created an application-
independent environment that is considered desirable for image quality evaluation [39].

During pilot testing, debriefing of participants made us realize that there may be substantial
differences in individual preferences. Some participants claimed to like a more “natural” or
“smoother” appearance to video (i.e., enhancement Low or Off). We named this group
“Smooth”. Other participants preferred “brighter” or “sharper” (typically, more enhanced)
video. We named this group “Sharp”. Individual differences in preferences are potentially
important, so combining data from all participants may mask such variability in
enhancement preferences, possibly misrepresenting some or all participants. To account for
such individual differences in enhancement preferences, upon completion of the 64 video
clip comparisons, participants in the main study were debriefed by asking them to describe
(in their own words) how they made their preference decisions. Using those descriptions, we
classified participants into the two groups identified in the pilot testing. In addition, contrary
to our expectations, many participants made comments during the debriefing that indicated
that their preferences were affected by video content, so a post-hoc analysis was performed,
as described in section 2.4.

2.2. Hardware components

Two 42” HDTVs (VIZIO VO42L FHDTV10A, 16:9 aspect ratio) that were manufactured in
the same month, had consecutive serial numbers, and were essentially identical in all
important respects were used for pair-wise comparisons. There were no appreciable
differences in the measured luminance and color properties of these two displays. A video
clip was shown on these two HDTVs simultaneously. The source video was duplicated
using a HDMI splitter (HSP12 HDM I Splitter-1-in 2-out, ConnectGear, Inc., Fremont, CA)
and the video clips were processed independently by two video enhancement devices
(PureAV RazorVision, Belkin International, Inc., Los Angeles, CA) that were each
connected to one of the HDTVs (Figure 1). Measured luminance variability for the grayscale
range 16-235 was within 5% between the two HDTVs with all hardware connected (i.e.,
PureAV Razor Vision device and HDMI splitter). The Rec.709 specification for digital
image data [40] recommends using the range 16 to 235 for HDTVs, rather than 0 — 255. This
places “pure black” at code 16 and “pure white” at code 235. Interface codes 0 and 255 are
prohibited from video data. 8-bit codes between 1 and 15 provide “footroom” and 236-254
provide “headroom” to accommaodate filter undershoots and overshoots. Although the
HDTVs were connected to a computer, which would normally use the full 0-255 range,
when video clips were displayed by the computer, the appropriate transformations were
made to conform to Rec 709. The video signal came from a Windows computer (EVGA
Nforce680i Sli motherboard, Intel® Core™ 2 Quad, 2.5GHz, video card: EVGA NVIDIA
GeForce 9800 GX2).

To allow examination of potential display differences, the two HDTVs were physically
swapped after testing the first 20 of the 40 participants. Also, to minimize the influence of
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side biases on the final outcome measure, the presentation side and the level of enhancement
were counterbalanced for each participant (i.e. each participant saw each of the 16 possible
permutations of enhancement level pairs crossed with presentation side an equal number of
times).

2.3. Viewing distance

2.4. Stimuli

Viewing distance recommendations for a 42” monitor from various sources that we located
range from 5.3' to 10.5' and may not have any scientific basis. The scan-line pitch subtends
an angle of about one minute of arc for these 42” HDTVs from about 5.3°. In a small pilot
study, it was determined that a viewing distance of about 7° was more comfortable and this
distance was used for the main study. The two HDTVs were angled towards each other
(148°) so that the center of each display was perpendicular to the participant (Figure 1).

High definition 1080p (scaled to 1920 x 1080) movie trailers and documentary videos were
downloaded (dates: October 2008 to February 2009) from http://www.apple.com/trailers/
and http://www.apple.com/quicktime/guide/hd/. The calculated video compression was
estimated to be about 100 to 1. The downloaded videos were edited using QuickTime 7 Pro
(Apple Inc., Cupertino, CA) into 30-s video clips. Seventy six video clips were selected for
use in the main study. Additional video clips were used for the practice trials.

Fullerton et al. [7] found only small differences in desired enhancement level between some
of their four video categories (low motion, high motion, cartoon and dark). Therefore, we
did not select the 76 video clips based on content. The movie trailers tended to have
substantial human face content and the documentaries mainly had nature scenes. Despite our
expectation that video content would not affect the responses to video enhancement, during
the debriefing some of our participants reported making preference decisions based on
content, especially when the video clips had human faces. Therefore, we conducted a post-
hoc rating of video content for four categories: presence of human faces, human figures,
nature, and man-made objects (“human figures” indicated that a person was present, but his
or her face was not visible or not important). Four naive participants who did not participate
in the main study of video preferences were asked to rate the presence based on the
importance of each category, as though they would have to describe the video clip to another
person who had not seen it. Each rating scale ranged from 0-5, with 0 being absent and 5
being always present. The responses of the four participants were averaged for each rating
category and for each video clip. To include video content in the binary logistic regression
analysis, video clips were considered to have high content (e.g. presence of faces) if the
average rating was 3 or greater, and to have low content if the average rating was 2 or less.
The number of video clips that were found to have high and low ratings for each video-
content category is shown in Table 1.

The remaining video clips (e.g. the 13 in the Face video content category) were not included
in the video content analysis on preference (but were used in all other analyses). The Face
scale was negatively related to the Nature (Fisher exact test, p<0.001) and Man-made
Objects (p=0.004) scales. For example, few video clips had both high Face and high Nature
content (n=1) or both low Face and low Nature content (n=7). The Human-figure and Man-
made Objects categories were slightly positively related (p=0.06) with 29 video clips having
a low rating on both, 9 clips having high rating on both, and 14 clips that were rated
differently on the two scales. There were no significant relationships between other video-
content category pairs. Because we had not planned an analysis of video content, video
content was not balanced between participants and with respect to enhancement comparison
pairs (e.g. low-content with Low versus High). There were some participants who did not
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experience particular enhancement level combinations (e.g. low Man-made Objects with
High versus Medium). However, mixed-effects regression analyses are robust to such
“missing data”, particularly since, across all participants, there were many comparisons of
each enhancement comparison pair for each video content category (the least was 67 for
comparisons for high-Man-made, Original versus Medium).

2.5. Image enhancement

Video clips were enhanced in real time using the commercially available PureAV
RazorVision device (Belkin International, Inc., Los Angeles, CA) that performed an
adaptive local contrast enhancement [41, 42]. Briefly, the enhancement algorithm calculated
the mean local luminance, which is then subtracted from the original image to produce a
high-pass filtered version. The high-pass filtered version is amplified by an enhancement
gain control that may be determined by multiple variables, including local mean luminance.
To avoid image distortions (e.g., saturation), higher enhancement gain is adaptively applied
to pixels in areas with moderate local mean luminance more than to pixels that have extreme
luminance (bright or dark). The size of the Gaussian kernel used for local averaging was
9.1% of the screen width and thus spatial frequencies above 0.5 cycles/degree were
enhanced in our viewing distance. To illustrate the available enhancement levels, an
example still image photographed from one of the video clips at the four enhancement levels
is shown in Figure 2.

Each HDTV was connected to a separate PureAV RazorVision device to process the video
clip independently (Figure 1). RazorVision can be set to one of four enhancement levels
(Off, Low, Medium or High). All 16 (4x4) possible combinations of enhancement levels
were compared (Table 2). Four of these 16 comparisons were between identical
enhancement levels (shaded cells in Table 2), which were included to test for response (side)
and display biases. Each of the 16 comparisons was made 4 times for a total of 64
comparisons per participant. A MATLAB program controlled the presentation order of the
64 comparisons, randomly selecting 64 video clips from the pool of 76 video clips. No video
clip was seen twice by any participant. Control of the PureAV RazorVision device was
automated to present the desired enhancement level using a Visual C++ program, triggered
by the MATLAB program. We used VLC media player (0.9.6) (www.videolan.org) to play
the video clips.

2.6. Data analysis

Thurstone perceptual scales derived from pair-wise comparisons represent the relative
preference for one stimulus (e.g. enhancement level) over each other [19, 20, 31, 34]. By
convention, the lowest relative preference score is set to zero, and the remaining relative
preference scores are scaled accordingly to preserve the relative distances among the rated
items. Thus, this perceptual scale orders the items from least to most preferred. Binary
logistic regression has been used to obtain a Thurstone-like perceptual scale along with the
statistical significance for the differences between stimuli [32, 34]. Since logistic regression
does not account for the correlation between responses (i.e. assumes independence of data),
we used crossed-random, mixed-effects logistic regression, as described in detail in the
Appendix. In steps described in the Appendix, the final model was constructed:

a;j=(B1+Bg1+B8c1) Xij1+(Ba+Bga+Be2) Xijot+ (834 Bg3+8e3) Xija+ B Xsi+BaXai+oi+0;+ei5, (1)

where a;; was the exponent of the logistic function (Eq. A3), Bk were coefficients for each
stimulus, Xijk, at enhancement level k, Bqx were coefficients of indicator variables for the
reported-preference Group (Sharp or Smooth) at each enhancement level, B were
coefficients of indicator variables for the video-Content (low or high), Bswas a coefficient
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for the Side (left or right), Bg, was a coefficient for the Display (a or b), ¢; were coefficients
for each participant, i, and 6; were coefficients for each video, j.

To construct a Thurstone-like perceptual scale, coefficients for each of the enhancement
levels obtained were normalized to have a range of 1 unit. Unlike the traditional approach of
setting the least preferred level to zero, we anchored this perceptual scale by fixing the
preference level for the original video clips (Off condition) to zero, while maintaining the
range of 1. Thus, an enhancement level that was preferred less than the original video clip
received a negative value. The corresponding significance levels (p-values) of the relative
preferences were calculated for the Wald x2 statistic! for the coefficients, providing
comparisons between enhancement levels.

2.7. Participants

3. Results

Forty normally-sighted participants (ages: 20-83y, median age: 32y) consented to
participate. The study was approved by the Institutional Review Board of the Schepens Eye
Research Institute. Preliminary screening of the participants included self-report of ocular
health, measures of their visual acuity and contrast sensitivity for a 2.5 degree-high letter
target and evaluation of central retinal health using retinal photography (Nidek MP-1, Nidek
Technologies, Vigonza, Italy). All the participants had visual acuity of 20/25 or better, letter
contrast sensitivity of 1.675 log units or better and steady central fixation with no evidence
of retinal defects.

3.1. Overall preference results

All 40 participants completed the 64 planned trials. Crossed-random, mixed-effects binary
logistic regression for all participants’ preferences combined (Equation A52, 2=26.7, df=3,
p<0.001) was performed with all 2560 trials from the 40 participants. When including
Display and Side (Equation A63, ¥2=31.0, df=5, p<0.001), no bias was found for Display
(HDTVa or HDTVb; p=0.46), that is, both Displays were equally preferred, but there was a
preference for the right side (p=0.04). The side bias was mainly associated with the
condition in which the two stimuli had equal levels of enhancement (n=640 trials, p=0.06),
and not when the stimuli had different enhancement levels (n=1920 trials, p=0.18). The
same-stimulus comparisons were included to evaluate side bias and were not used to analyze
the overall preference data. Our results support prior reports that participants (or at least
some of them) were poor in equally dispersing their ‘guess’ responses in a two alternate
forced choice task [44, 45]. Overall, Low and Medium were preferred over Off and High
(p=<0.024), and Low and Medium (p=0.35) and Off and High (p=0.14) were not significantly
different from one another (Equation A6). Figure 3 shows that, overall, there was a non-
monotonic response (inverted U-shape) to the video enhancement. As discussed below, such
non-monotonic behavior is not expected when compression level is increased. The inverted
U-shape obtained here is comparable to studies involving quality judgment for brightness
[46], color [47] and stereoscopic depth [48].

3.2. Two types of preferences

Participants described their preference criteria for video quality in their own words at a
debriefing following the completion of the 64 trials. After reviewing these criteria 39 of the
40, participants could be assigned to two groups. One group of participants (n=12) preferred

caution needs to be applied when proportions approach 100% or 0% as it can result in the Hauck-Donner effect [34, 43].
2Equivalent to equation A8 with Bgj = Bcj =Bs=Pd =0.
3Equivalent to equation A8 with Bgj = Bcj = 0.
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more clarity and scrutinized the clarity of small details in the image (“Sharp” Group). The
other group of participants (n=27) preferred smoother human faces yet they too preferred
more clarity for nature scenes (“Smooth” Group). One participant preferred enhancement for
neither human faces nor for nature scenes. This participant was not assigned to either group
but was retained for the overall data analysis (section 3.1). Binary logistic regression was
performed with the participant group (Sharp or Smooth) included (Equation A74, x2=83.3,
df=8, p<0.001) and provided an improvement (y2=61.3, df=3, p<0.001) over the all-
participants model (Equation AB).

Figure 4 shows that the Sharp group most preferred Medium enhancement, which was
significantly preferred to Low (p=0.008) and Off (p<0.001) but was not significantly
different from High (p=0.51). Off was least preferred, significantly less than Low (p<0.001).
The Smooth group most preferred Low enhancement, but it was not significantly different
from Medium (p=0.64) or Off (p=0.15). High was significantly least preferred (p<0.025)
when compared with the other 3 levels (analysis applied for all images).

3.3. Preferences depend on video content

Many of the Smooth participants reported preferring enhancement of nature scenes but not
of faces. If so, relative preferences should differ based on the video content rating levels
(high or low) for the face and nature categories. For example, more enhancement should be
preferred for Non-Face (low face content) video clips than for Face (high face content)
video clips. Conversely, more enhancement may be preferred for Nature (high nature
content) than for Non-Nature (low Nature content) video clips. Post-hoc analyses for each
video classification were performed (Equation A8): Face (x2=135.0, df=11, p<0.001);
Nature (y2=127.9, df=11, p<0.001); Human-figure (y2=86.8, df=11, p<0.001); and Man-
made-Objects (x2=83.4, df=11, p<0.001) categories. Compared to Equation A7, the
inclusion of both Face and Nature video categories (Equation A8) substantially improved
the model (x2>53, df=3, p<0.001), while the inclusion of the Human-figure (x2=15.2, df=3,
p=0.002) and Man-made (x2=10.1, df=3, p=0.02) categories made smaller improvements in
the fit.

Both the Smooth and Sharp groups had a lower preference for enhancement of Face than
Non-Face video clips (p<0.001; Figure 5a). Conversely, both groups had a higher preference
for enhancement of Nature than Non-Nature video clips (p<0.001; Figure 5b). Similarly, for
both the Human-figure (p < 0.02; Figure 5c) and the Man-made-Objects (p < 0.08; Figure
5d) categories, there was a higher preference for enhancement of video clips with a higher
rating than for those with a low rating (“Non”). That all the other three video-content
categories had a different enhancement preference pattern to the Face video content category
supports the conclusion that human face content was a major factor in the enhancement
preferences of participants in our study.

3.4. Multimodal preference distribution of objective scores

Since the two groups, Sharp and Smooth, were determined based on the responses to
questions about preference decisions, we sought additional evidence of discrete preference
patterns using an objective method. A scalar was calculated for each participant to represent
his or her overall enhancement preferences. The three enhancement levels, Low, Medium
and High, were arbitrarily assigned ranks of 1, 2 and 3, respectively (Off was normalized to
zero on the relative preference scale). The normalized coefficients obtained for each
participant were weighted by the ranks and then summed. Examples for the two participants
from Table 2 are shown in Figure 6. The resulting weighted sum was the participant’s

4Equivalent to equation A8 with B¢j = 0.
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Enhancement Preference (EP) score. A higher EP score indicated a preference for higher
enhancement levels (e.g. Participant 1 in Figure 6). The possible range for the EP scores was
from —6 to +6, the obtained EP scores ranged from —5.29 to +6 (mean +1.23). Figure 7
shows the distribution of EP scores for all participants.

The Smooth group had a wider range of EP scores than the Sharp group (Figure 7), as
expected since their preference greatly varied with image type. The Sharp group had
significantly higher EP scores than the Smooth group (t = 5.21, p<0.001). This is consistent
with the logistic regression analysis (Figure 4).

The EP score distribution appeared to be tri-modal (Figure 7). Mixture modeling using
Mixmod 2.1.1 [49] indicated a significantly improved fit (x2 = 16.75, df=3, p<0.001) if the
data were modeled with three Gaussian distributions rather than two Gaussian distributions
[50], and two Gaussian distributions were significantly better than one (p=0.05). No
significant improvement was observed if more than three Gaussian distributions were used.
The adjusted Bayesian information criterion (BIC) improved from two to three Gaussian
distributions (p<0.001), with no improvement noted for models using more than three
Gaussian distributions (p=0.26 for four Gaussian distributions). There was fair agreement
between the subjectively-defined groups and the groups identified by the mixture model
(Kendall’s Tau-b = 0.465, p=0.002). It seems that the Smooth group included the
participants identified as having EP scores in the low EP score and middle EP score
distributions, while the Sharp group were all within the high-EP score distribution.

3.5. Effect of incomplete comparisons

We applied a complete testing design comparing all enhancement levels to each other. The
preference analysis method used here also enables determination of the relative preference
(i.e., the coefficients) and statistical significance with an incomplete set of comparisons.
Reducing the number of comparisons made can reduce the burden and cost of such studies
and in some situations comparisons may be limited by other factors. For example, Fullerton
and Peli [51] used a very similar device that implemented the same adaptive enhancement
algorithm, but only one enhancement level could be displayed at a time. Therefore, only
partial comparisons were conducted; Off (no enhancement) was compared to each of the
other three enhancement levels but no comparisons were made amongst the three
enhancement levels. To determine the effect of using partial comparisons like those used by
Fullerton and Peli [51], a subset of data from the present study, that only included the
comparisons made between the Off level to the other three levels, was analyzed for all the
participants. The logistic-regression results obtained from this partial comparison [34] were
different from the results obtained when all comparisons were made (Figure 8) and were
similar to the results obtained by Fullerton and Peli [51] with the same constrained
comparisons, particularly at the High level of enhancement. Also, the results for this subset
of data obtained with logistic regression were different from those obtained using Thurstone
scaling, but were consistent with the raw proportion of responses [34].

3.6. Other individual differences

We found no evidence that image quality preferences are related to conventional vision
measures; there was no significant correlation between EP scores and either visual acuity
(Spearman p3g=0.15, p=0.37) or letter contrast sensitivity (p3g=—0.13, p=0.42). In a
normally-sighted population the range of visual acuities and contrast sensitivities are not
large, thus reducing the probability of finding a significant correlation. Even so, with
increasing age, visual acuity (p3g=0.37, p=0.02) and letter contrast sensitivity (p3g=—0.45,
p=0.004) became worse, while EP score did not change (p39=0.07, p=0.69). Participants in
the Sharp group tended to be older than those in the Smooth group (z=1.87, p=0.06) and

|EEE Trans Image Process. Author manuscript; available in PMC 2014 December 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Satgunam et al.

Page 9

were more likely to be male (z=1.88, p=0.06), but age and gender were confounded. So,
when corrected for age there was no gender difference (z=0.21, p=0.83), and when corrected
for gender, there was no relationship between age and group (z=0.80, p=0.42). There were
no differences between the groups in visual acuity (z=0.40, p=0.69) or letter contrast
sensitivity (z=0.41, p=0.68). We thought that video enhancement preferences might relate to
personality, however, a personality questionnaire related to tolerance of blur [52] did not
reveal any relations with preferences in a subset of 25 participants to whom the
questionnaire was administered.

4. Discussion

Our study was designed to measure the subjective preference of normally-sighted observers
to motion videos enhanced by a commercially-available device. That objective was
achieved. In general, the two lower enhancement levels were preferred, but the highest
available level was not liked (Figure 3). Such a non-monotonic response to increasing
enhancement is common and expected with image enhancements. However, we also
uncovered two important effects: one related to the observers, and the other related to the
video content.

We found that observers could be divided into at least two groups; one that liked
enhancement over all (Sharp) and one that did not (Smooth) (Figure 4). That grouping of
participants based on a debriefing interview was confirmed by an objective analysis (EP
Score), which suggested a possible third group with weaker or intermediate preferences
(Figure 7). That third group seemed to have been included in the Smooth group by the
debriefing classification. As it is possible that the Smooth-Sharp group differences were an
artifact or were peculiar to our sample, we reanalyzed the data from two published studies
[51,53] that measured preferences from pair-wise comparisons. In the Fullerton and Peli
study [51] that investigated a very similar video-enhancement device, the EP scores ranged
from —6 to 6 for their 11 normally-sighted participants and from -3 to 6 for their 20 low-
vision participants. The distribution of EP scores was slightly, but not significantly, better fit
with two Gaussian distributions than with a single Gaussian (Mixmod 2.1.1: ¥2=6.57, df=3,
p=0.17). In the Satgunam et al. study [53] that investigated static-image enhancement with a
different enhancement algorithm, the EP scores ranged from -5 to 4.3 for their 24 low-
vision participants, and it was best fit with a bi-modal distribution (3= 12.12, df=3,
p=0.014, over uni-modal, and tri-modal). Thus, our finding that observers can vary widely in
their preferences for enhancement was confirmed; the between-observer effect was found to
occur with two image enhancement algorithms and in different populations. Whether there
are two or three separate groups of preference types is not certain.

It has been suggested that differences between laboratories in video quality measures can be
attributed to differences in the experience (with image quality) of the observers in those
study samples [18]. All observers were naive in our study and the other two studies [51, 53].
Our finding that enhanced video quality preferences were not uniform across observers (i.e.
that between-observer variance reflects real differences in response) may have important
consequences for the evaluation of computational image (video) quality metrics, particularly
if there are similar between-observer differences in preference responses to image
degradation (e.g. due to compression). Most image degradation studies differ from our
image enhancement studies in two important ways: the observer’s task (rating versus paired
comparison) and the effect of the intervention on perceived image quality (monotonic versus
non-monotonic). The non-monotonic preference that we found for the enhancement (Figures
3to 6 and 8) is not expected for image compression or other degrading effects. Most such
studies and metrics presume that perceived image quality data is normally distributed (e.g.
[12-17]), effectively that the between-participant variance is due to measurement noise. To
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evaluate this, we examined data from three studies of image compression in which the
observers reported perceived image quality (“opinion score™). For two studies by one group
[13-17] the distributions of relative (difference) opinion scores of the study participants
(N=13 to 29) were uni-modal Gaussian distributions, and for a third study [12], between-
observer differences were apparent, but there was no obvious shape to the distribution in the
responses of the 16 participants.

In a study where noise was added to natural images of tree bark, two participant preference
patterns were noted [54]. One group found the noise-added image to be sharp while another
found it blurred. The authors attributed this difference to the observers’ specific attention to
different image details, as noted in the observers’ introspection. Using synthetic simple
images they found that added noise sharpened low spatial frequency content and blurred
high spatial frequency content. Two preference patterns were also found in another study
[55] where one group of observers found rough textures to be pleasant while another group
did not. The authors in that study however were unsure of the presence of two groups, and
raised concern about their experimental paradigm.

Future video- and image-quality observer studies may have to consider that there may be at
least two different groups of observers. To classify an individual (to Sharp or Smooth),
representative sample videos, enhanced by at least two levels, could be shown to observers
who indicate their preferences over the original videos. Such a method should easily identify
their preference pattern. Alternately, the enhancement could be provided with two settings,
one expected to be preferred by each group, and the user can determine their preference by
switching between the two settings while watching a sample of videos. If such differences
are found with compressed images, the computational metrics will have to be able to address
such a dichotomy in the population.

The second effect that we found was that video content affected preferences for video
enhancement. When human faces were an important aspect of the content, our participants,
independent of their overall preference group (smooth or sharp), preferred less enhancement
than when face content was not important (Figure 5). For the other three video-content
categories, Nature, Human Figures and Man-made Objects, video enhancement preference
patterns were the opposite of that for Faces (Figure 5). This could not be explained by the
categorizations for Faces being the inverse of these three categories (it was for Nature, but
not for the other two). The reason for this video-content effect is not clear. Discussions with
our study participants suggest that the enhancement increased the visibility of facial features
(e.g. skin blemishes) in a way that was not “natural” and thus not preferred. This is in
agreement with an earlier study [56] that noted the appearance of human skin to be a critical
component in the judgment of ‘naturalness’ of color reproduction. A similar preference
pattern was reported in a study that examined enhancement of static images for mobile
displays [27]. The authors in that study recommended using one preset image enhancement
parameter for images human figures (defined by detection of human skin coloration).
However, our results indicate different responses between faces and human figures (Figure
5) suggesting that a face detection algorithm would be more appropriate. To further examine
whether such content effects were found in image degradation studies, we analyzed the data
from such studies [13-15]. There were no images with face content in one image-
degradation database [12] and the videos were not available for another [16, 17]. In the
LIVE image database [13-15], participants gave higher ratings to images with face content
independent of bitrate (p<0.001) and images with man-made-object content received lower
ratings when the bitrate was lower (p<0.001). Thus, it seems that image content can affect
subjective ratings of image quality when quality is degraded.
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In a similar setting, studies of image compression, the “desirability” (how much the
participant liked the content of the video) had an impact on video quality responses, with a
more desirable (liked) video clip being given a higher rating [8-10]. Kortum and Sullivan
[10] suggested that the desirability effect may be related to engagement with the content, in
which case attention may be directed to regions such as faces. We did not measure the
desirability of our video clips. We do not know how desirability can be determined
computationally.

This video-content effect suggests that preferences could be predicted from current
computational image quality metrics with some video contents, but not with others. For
example, the visibility of minor facial skin blemishes may indicate superior image quality
from computational measurements but may not be preferred by human observers, while the
increased visibility of details of room furnishings by the same algorithm may be both
superior for the computational metric and be preferred by observers. For assessment of
video quality, it may be possible to include face detection within a computational metric,
then using separate algorithms or parameters for video content with and without
predominantly human faces. When using image enhancement, to overcome this preference
difference, it may be necessary to apply less enhancement when faces are present or to
regions that contain faces. Computational measurements to evaluate enhanced video quality
should capture the non-monotonic preferences of human observers.

Most current computational image quality metrics are likely to find an enhanced image to be
of lower quality than the original, even though our participants found the low and medium
levels of enhancement to be preferred (Figure 3). Image quality metrics should be able to
capture such effects as image enhancement could be used to reduce bandwidth or improve
quality when bandwidth reduces image quality.

5. Conclusion

Video image quality can be effectively tested using side-by-side pair-wise comparisons and
scored using logistic regression that enables examination of possibly confounding factors.
While an incomplete test design that reduces the test burden may be used and analyzed, care
should be taken in such a design, as incomplete comparison sets may adversely affect the
results. To avoid the effect of bias it may be important to permit a “no difference” or equal
quality response [44, 45]. When choosing videos for image quality studies and analyzing
video quality, video content should be considered, especially the presence or absence of
human faces. Videos used in observer study or computational study should match the
anticipated images to be used in an application. Between-participant differences may reflect
real individual differences in perceived image quality. If between-observer effects or content
effects are found they need to be addressed in computational image quality metrics. While
we studied preference for video enhancement, similar considerations and tools may need to
be applied to image quality evaluation in the field of image compression. It is possible that
not all our findings will be replicated in studies of perceived quality or preference for
compressed imagery.
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For the binary logistic regression analysis, each paired comparison was entered in a logistic
regression matrix (Table Al), where for each participant, i, for each video, j, of stimuli k=r
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and k=s, the preferred stimulus (column), X;;,, was allocated +1 and the non-preferred
stimulus, Xjjs, was allocated -1:

lel]T > XijsthenXijT:+1andXijs: — 1, (A1)

where > is a left preferred indicator. All other row entries are allocated zeros. As described
by Lipovetsky and Conklin [32], an identity vector (dependent variable column), g, was
randomly assigned to a value of 0 or 1. When g = 0 (“false™), the signs of the responses for
that comparison are reversed, such that:

iinjT - XijsthenXijT: — 1andXijs:—9—1, (A2)

The outcome of the analysis is independent of the proportion of ;=0 comparisons, so long
as 0 < p(g;j=0) <1, where p(g;=0) is the proportion of comparisons with ;=0. The binary
logistic regression involved fitting the equation:

e%ij

v+l lte o

pij=f(aij)= ;(A)

where pjj was the probability of the response (for each combination of participant and video,
there was only one comparison of two enhancement levels, i.e. each participant only saw
one video once). For the model, the responses to one stimulus (e.g., Low enhancement) were
fixed by not including it, and the model was forced through the origin (no intercept term).
Thus, to compare four stimuli, the term g;; in equation A3 was defined as:

a;;=P1Xij1+ 02 Xijo+ B3 Xij3t€ij, (A4)

where By, were the coefficients for each enhancement level (stimulus), Xjjk, and &j; was the
residual error. Those unknown parameters 3 were estimated by a maximum likelihood
procedure, common to generalized linear models, with SPSS 11.5.0 (SPSS, Chicago, IL) and
Stata/IC 12.1 for Mac (StataCorp, College Station, TX). The computed coefficients thus
represented the relative preferences of the included stimuli with the excluded stimulus
having a relative preference of zero. The statistical significance for stimulus k reported in
each analysis was for the difference between the excluded stimulus and stimulus k. When n
stimuli were compared, to obtain statistical significance for all n(n-1)/2 comparisons, the
analysis was performed n-1 times, with a different stimulus kept constant (excluded) from
each analysis. In our case of four stimuli the analysis was conducted three times.

Logistic regression presumes independence between data. However, our data includes
repeated measures from each participant and for each video. No participant saw all videos,
and the comparison pair of enhancements applied to each video varied between participants.
This is known as a crossed-random experimental design. Therefore, we fit a crossed-
random, mixed-effects logistic regression:

a;j=P1Xij1+Be Xijo+083 Xij3+¢i+0+ei5, (A5)

Where ¢; were coefficients for each participant and 6; were coefficients for each video. The
side on which enhancement was presented could influence responses, as some participants
may have an inherent response bias [44, 45] to choose the display on the left or right side
and the two HDTVs, while perceived to be virtually identical, cannot be guaranteed to be
completely identical in every respect and so could have influenced participants’ responses.
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To measure these effects, Sde and Display were included as covariate factors in the model.
With the responses, Xg;, for Side and, Xg;, for Display, term &; became:

a;;=01 Xij1+ 02 Xijo+03Xij3+0s Xsi+BaXai+@i+0;+€i5, (A6)

When the preferred stimulus was on the right monitor, X5 = 1, and when on the left, X4 =0,
except for g = 0 (“false”) when the assigned value of Xg was reversed. Similarly, when the
preferred stimulus was on HDTVa, Xg = 1, and when on HDTVb, X4 = 0, except for g =0
(“false™) when the assigned value of Xg was reversed.

To examine between-group differences (between participants in the Sharp and Smooth
groups), an indicator variable, g, was used, and the term &; became:

a;;=P1 Xij1+02Xijo+B3Xij3+ L1 Xij1+Bg2 Xijo+By3Xijs+8:s Xsit+BaXait+¢i+0;+€ij, (A7)

In this model, for simplicity of interpretation, the original video clip (Off condition) was
excluded. For participants in the Smooth group, g = 0 and for the Sharp group, g = 1. Thus,
for the Smooth group, gX;; = 0, and the perceptual scale was defined by the first three terms
in Equation A7 only (i.e. those that did not include g). The statistical significance of
differences between the two groups in responses to stimulus j was then found using the
coefficient Bg;.

Equation A7 can also be written as:

ayj= (B1+Bg1) Xiji+ (Bo+PBy2) Xijot (83+8¢3) Xijz+0s Xsit+BaXait+di+0j+eij, (ATa)

To also examine the effects of video content, video-content category (as described in section
2.4) an indicator variable, ¢, was used, and the term a;; became:

a;j= (B1+Bg1+Bc1) Xiji+ (Bo+Bg2+Pe2) Xijo+ (B3+8g3+Les) Xija+0s Xsi+FaXai+oi+0j+€ij,

For each of the four video categories, when the video clip had a high rating on that scale
(e.g., Face =3) video clips were coded with ¢ = 1 and when the video clip had a low rating
(e.g., Face <2), the video clip was coded with ¢ =0. Statistical significance for the
differences between the high and low content levels in responses to stimulus j were obtained
from the coefficient ;. A more complex model that included an interaction between
subjective group and video content was also investigated, but it was found to provide no
improvement in the model (Wald x2<5.7, df=3, p=0.13).

Table A1

Illustration of the logistic regression matrix for all 64 trials for all 40 participants and used
for the binary logistic regression analyses. Stimuli (enhancement levels) not presented
during the trial are indicated by 0. Presented stimuli were allocated 1 or —1 depending on the
reported preference and the identity vector (€), as described in the text. The preferred
stimulus in each trial is shown in bold in each row.

Participant | Trial | Off | Low | Medium | High | Side | Display | Group | e
1D

1 1 1 0 -1 0 1 -1 0 0
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Participant | Trial | Off | Low | Medium | High | Side | Display | Group | e
ID

1 2 -1 0 1 0 0 1 0 1

1 64 0 0 1 -1 0 -1 0 1

2 1 0 1 0 -1 1 -1 1 0

40 63 -1 1 0 0 1 -1 1 1

40 64 1 -1 0 0 1 1 1 0
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Figure 1.

Hardware components and their connections used in the experimental setup
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Figure 2.
Illustration of the Original image (upper left) and the three enhancement levels: Low (upper
right), Medium (lower left) and High (lower right).
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Figure 3.

Video-enhancement preferences, for all 40 participants, were non-monotonic. Error bars are
95% confidence intervals of the relative preferences derived from the standard errors of the
logistic regression coefficients.
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Figure 4.

Enhancement preferences of the Sharp (n=12 triangles) and Smooth (n=27, circles) groups.
Error bars show 95% confidence intervals derived from the standard errors of the logistic
regression coefficients.
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Figure 5.
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Relative preferences by group (Sharp and Smooth) for high and low ratings of video-content
categories (a) Faces, (b) Human figures, (c) Nature, and (d) Man-made Objects. The Face
video-content category showed a response pattern that differed from the other three video-
content categories, with enhancement being less preferred for high-rating (Face) video clips
than for low rating (Non-Face) video clips (note the reversal of order of filled and open
symbols from top to bottom). Error bars show 95% confidence intervals. To improve clarity,

the group symbols are plotted with small offsets.
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Figure 6.

Relative preferences of Participant 1 (triangles) and Participant 2 (circles) reported in Table
2. The calculated EP scores for Participant 1 (Sharp) was +5.49 and that of Participant 2
(Smooth) was -5.21.
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Figure 7.

The box plots for enhancement preference (EP) score for the two subjectively-defined
preference groups shows that the Sharp group had higher EP scores. The median EP score is
marked by the line within each box. The horizontal extent of each box represents the
interquartile range (IQR) and the whiskers represent values within 1.5 times the IQR. The
EP score distribution was tri-modal as shown in the frequency plot. The three shades
correspond to the three groups identified by the multimodal fit. One column has members of
two different groups due to overlap of the fitted distributions.
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Figure 8.

Enhancement preferences shown for full data (same as Figure 3) and when analyzed using
only a partial set of the available comparisons in the current study, those that included the
Off level. The results of that comparison are more similar to an earlier study [51] in which
the 3 enhancement levels were compared to Off. Error bars are 95% confidence intervals. To
improve clarity, the group symbols are plotted with small offsets.
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The number of video clips (out of 76) that were rated as having high and low levels of that category of video
content. The numbers of video clips for each video category do not sum to 76 because some videos had an
average rating between 2 and 3.

Video-Content High Content Low
Category (rating =3) Content
(rating <2)
Faces 36 27
Nature 23 49
Human Figures 25 36
Man-made Objects 18 49
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