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Abstract
Accurate preclinical predictions of the clinical efficacy of experimental cancer drugs are highly
desired but often haphazard. Such predictions might be improved by incorporating elements of the
tumor microenvironment in preclinical models by providing a more physiological setting. In
generating improved xenograft models, it is generally accepted that the use of primary tumors
from patients are preferable to clonal tumor cell lines. Here we describe an interdisciplinary
platform to study drug response in multiple myeloma (MM), an incurable cancer of the bone
marrow. This platform uses microfluidic technology to minimize the number of cells per
experiment, while incorporating 3D extracellular matrix and mesenchymal cells derived from the
tumor microenvironment. We used sequential imaging and a novel digital imaging analysis
algorithm to quantify changes in cell viability. Computational models were used convert
experimental data into dose-exposure-response "surfaces" which offered predictive utility. Using
this platform, we predicted chemosensitivity to bortezomib and melphalan, two clinical MM
treatments, in 3 MM cell lines and 7 patient-derived primary MM cell populations. We also
demonstrated how this system could be used to investigate environment-mediated drug resistance
and drug combinations that target it. This interdisciplinary preclinical assay is capable of
generating quantitative data that can be used in computational models of clinical response,
demonstrating its utility as a tool to contribute to personalized oncology.

Major Findings—By designing an experimental platform with the specific intent of generating
experimental parameters for a computational clinical model of personalized therapy in multiple
myeloma, while taking in consideration the limitations of working with patient primary cells, and
the need to incorporate elements of the tumor microenvironment, we have generated patient-
individualized estimations of initial response and time to relapse to chemotherapeutic agents.
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Quick Guide to Equations and Assumptions
Analysis of experimental data

The default function of dose response was written as Equation 1, and the data points were
the normalized viability in each ROI at a given time point and drug concentration:

(Equation 1)

The goodness of the fit was calculated from a linear regression of the points of the fit
equation with the actual observed experimental points using Prism 5 (GraphPad) and
quantifying the slope and R2 of the regression. The complete Matlab code is available in the
Supplementary Material. For each example, two hypotheses were tested: either the sample
was composed of one or two sub-populations. When no significant differences were
observed in R2, the simplest model was used (one population).

Equation 1 is the simplest expression that describes how a homogenous population of MM
cells responds to chemotherapy as a function of concentration and exposure time. A growth
term was included in the numerator of Equation 1, where Τ is the doubling time, and ΔΤ is
the variable representing drug exposure time. Rx represents the drug concentration to which
cells are exposed, while IC50Rx, IC50ΔΤ, expRx, and expT are constants that determine the
drug concentration and exposure time that causes death of 50% of the MM cells, and the
steepness of the slope of the viability curve, respectively.

The alkylating agent melphalan has a short half-life in media and in vivo of approximately
2h, mainly due to hydrolysis (1). We have observed, however, that in long-term
experiments, cells continue to die a week after melphalan exposure (see Results). For this
class of drugs, we have created a mathematical expression that encompasses drug half-life,
DNA-damage, and DNA-damage-induced cell death (Equation 2).

(Equation 2)

“Death” and “Growth” are the two functions that determine the changes in number of viable
cells in a given drug concentration, at a certain time point. “Death” represents the
probability that any given cell from a population will die as a function of accumulated DNA
damage (“CumulDamage”), which in turn is proportional to the area under the curve (AUC)
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of drug concentration “Rx” and exposure time “dt”. “expDMG” is an empirical exponent.
“Growth” quantifies cell replication, which depends on the drug-free doubling time Τ, the
amount of DNA damage “CumulDamage”, and an empirical proportional constant KT. In
other words, DNA damage slows replication(2). The last expression means that the
concentration of active melphalan in media, Rx, decays with a half-life ΤMel of 2h.

Equation 2 is an empirical expression, with the goal of interpolating the data points across
time and concentration dimensions, while recapitulating known mechanisms of melphalan
toxicity and degradation. It is not, however, the only possible expression possible, and it
may not properly compute the viability in concentrations or exposure times significantly
higher than the experimental conditions.

Computational modeling of therapy
In this computational model, one or more sub-populations are represented, each with a size,
a doubling time, and a level of sensitivity to the chemotherapeutic agent tested. Carrying
capacity, which is the maximum theoretical growth rate of the entire tumor burden, was
estimated from the labeling index commonly observed in MM patients (~1–3%). Intra-
tumoral competition was modeled by an equation that determines that bigger populations
have higher chance of replicating than smaller ones (Equation 3), a dynamic similar to
genetic drift.

(Equation

3)

Equation 3 describes how the size of a sub-population within the tumor burden (Ni) changes
within an interval of time (dt) in response of drug-induced cell death induced by exposure to
a drug at the concentration Rx for the interval of time dt. The surviving cells may replicate
at a rate determined by their labeling index (LI), the duration of their cell cycle (Τ), and the
percentage that the sub-population represents in the total tumor burden.

Bortezomib concentration in blood is characterized by a peak of ~100nM, followed by a
sharp decrease, and a stable concentration of ~1–3nM between 2 and 192h post IV
administration (1.3mg/m2) (3, 4). The in vitro chemosensitivity data from patients 8, 11, 12,
and 13 parameterized the computational models of clinical response for each of these
patients in a hypothetical single-agent bortezomib regimen, in which the bone marrow
concentration would remain constant at 3nM.

As a preliminary validation of the correlation between in vitro and in vivo chemosensitivity,
we have used computational models parameterized by assays with the human MM cell line
NCI-H929 to estimate the response to bortezomib treatment of a sub-cutaneous mouse
model, treated with 1mg/kg bortezomib bi-weekly(5). Pharmacokinetic studies have shown
that such IV injections in mice cause a peak blood concentration of ~0.5nM, and ~0.4nM at
48h. For these simulations, we consider a stable 0.4nM concentration of bortezomib in the
bone marrow of these mice along the treatment. NCI-H929 cells have a cell cycle of
approximately 24h, and in the subcutaneous model the tumors have a doubling time of
approximately 3.5 days, indicating that in this animal model, approximately 20% of H929
cells are actively replicating at a given time, which was used as labeling index in the
simulations.
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Introduction
The purposes of pre-clinical systems range from early identification of compounds with
anti-cancer activity, estimation of patient-specific clinical response, or the discovery of
novel targetable cellular mechanisms(6, 7). All available systems have strengths and
limitations: in vitro assays using cell lines are scalable, reproducible and inexpensive, but
cell lines are significantly different from their originating tumors(8), and the tumor
microenvironment’s effects are often absent in these assays. Animal models include more
realistic elements such as drug pharmacokinetics and influence of the tumor
microenvironment, but they often rely on cell lines, require long-term experiments, and
carry significant financial cost. Irrespective of the pre-clinical model used, the data
generated cannot be directly ported into clinical estimations without the help of an adequate
computational framework.

Computational modeling has long been used to study the dynamics of tumor response to
therapy, as well as emergence of drug resistance(9–11). These theoretical models are
powerful tools for analyzing complex interactions like the tumor-host-therapy system, and
could, in a near future, become decision-support systems for oncologists, making
personalized oncology a possibility(12). The Achilles’ heel of such models, however, is the
reliability of the experimental data used to parameterize them. More often than not, these
computational models are parameterized by data from literature, in many cases from
experiments that have been performed at incompatible conditions.

We propose that pre-clinical assays, specifically designed to generate data to parameterize
such computational models, would significantly advance the field. Such assays, however,
should comply with minimum requirements: (a) compatibility with patient primary cancer
cells; (b) recapitulate the tumor microenvironment, namely extra-cellular matrix and stroma;
(c) be non-destructive, so longitudinal studies can be performed, incorporating the temporal
dimension; (d) require as few cells per experimental condition as possible, so each patient
sample could be tested against a panel of chemotherapeutic agents, in different
environmental conditions; and (e) the data generated should result in testable clinical
predictions, such as the depth of response and/or progression-free survival (PFS).

Four decades ago, Salmon and collaborators(13) proposed an in vitro method for estimation
of clinical response of cancer patients based on the capacity of primary cancer cells to form
colonies at physiologically reachable chemotherapy concentrations. The main limitation of
these early assays, however, was the small number of patient samples that were capable of
forming colonies under control conditions. With a cloning efficiency between 0.001% and
0.1%, the growth of colonies in vitro was a challenge comparable to surviving the
chemotherapeutic insult itself. Consequently, these restrictions limited the number of drugs,
concentrations and time points that could be studied for a single patient(14), even in more
recent models(15). Finally, the outcome of these assays were often dichotomized, in other
words, either a patient was “sensitive” or “resistant” to the drug, but no information was
provided regarding duration of response and time to relapse. Given that in many cancers the
overall survival is more dependent on the duration of the response than on its depth(16, 17),
the application of these early assays as predictive biomarkers was somewhat limited.

Similar to Leonardo Da Vinci’s “aerial screw”, designed in the 15th century, which only
came to fruition as the helicopter five centuries later, we propose that Salmon’s drug
sensitivity assay was hindered by technological limitations of its time, not by an inherent
design fault. Building on this pioneering work, we here describe a novel approach for pre-
clinical assessment of drug efficacy. We apply this method to multiple myeloma (MM), an
incurable plasma cell malignancy in which cancer cells uncontrollably proliferate in the
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bone marrow. Adhesion to bone marrow’s extracellular matrix or stroma has been shown to
confer de novo multi-drug resistance (environment mediated drug resistance, EMDR)(18,
19).

The here described system combines a microfluidic dose-response platform, for in vitro
screening of drugs, and a computational model of clinical response. The in vitro component
consists of a 3D reconstruction of the bone marrow microenvironment, including primary
MM cells, extracellular matrix, and patient-derived stroma and growth factors. Live
microscopy and digital image analysis are used to detect cell death events in different drug
concentrations, which are used to generate dose-response surfaces. The in silico component
is an evolutionary computational model designed to simulate how a heterogeneous
population of cancer cells responds to therapy. From the in vitro data, the model identifies
the size and chemosensitivity of sub-populations within the patient’s tumor burden, and
simulates how the tumor would respond to the drug(s) in physiological conditions in a
clinical regimen.

The main innovations of this platform are: (a) small number of cancer cells required (1,000–
10,000 per experiment); (b) assessment of drug efficacy in different environmental
conditions (collagen+/−patient stroma+/−patient-derived growth factors/cytokines), allowing
quantification of innate and environmental drug resistance; (c) only bright field imaging is
used, thus no toxicity from viability markers; (d) continuous imaging provides drug effect as
a function of concentration and exposure time; and (e) the integration between in vitro and
computational evolutionary models, to estimate clinical outcome: not only the initial
response, but also progression-free survival (PFS), a more relevant clinical endpoint for
assessment of drug efficacy(16).

In this manuscript we describe the experimental and computational platforms, the results
with human myeloma cells lines, and how they compare with literature data. We also
describe preliminary experiments with patient primary cells, and how these results could be
used in the estimation of clinical efficacy of experimental drugs, or personalized medicine
(the right drugs and the right regimen for each patient).

Materials and Methods
Cell lines

The human myeloma cell lines RPMI-8226, HS-5/GFP-labeled, NCI-H929 and 8226/LR-5
were kindly provided by Dr. William Dalton’s laboratory. The 8226/dsRed2 cell line was
stably transfected with the fluorescent protein dsRed2. All cells were maintained in culture
with RPMI 1640 (Gibco) media supplemented with 10% heat inactivated fetal bovine serum
(Life Technologies) and 1% penicillin–streptomycin solution (Invitrogen), in incubators at
5% CO2, 37°C. Melphalan-resistant 8226/LR-5 cells were maintained in 5µM melphalan in
medium, and cultured in drug-free medium for 2 weeks prior to experiments.

Primary cancer cells
We investigated the in vitro response of cancer cells from 7 MM patients in the clinical trial
MCC# 14745 conducted at the H. Lee Moffitt Cancer Center and Research Institute, as
approved by the Institutional Review Board. The medical records were de-identified and
only the following clinical-relevant information was reviewed: (A) treatment administered
(chemotherapeutic agents, doses and schedule) prior to biopsy; (B) cytogenetics; (C) blood
and urine electrophoresis results. Patients in trial MCC# 14745 received standard-of-care
treatment, and consented to provide an extra sample of bone marrow aspirate during a
routine biopsy. These aspirates were used in the in vitro assays further described. After
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informed written consent, bone marrow aspirates were obtained from multiple myeloma
patients either newly diagnosed or with refractory disease. Processing of bone marrow
aspirate and selection of MM cells is described in Supplementary Material. MM cells were
seeded into the Ibidi µ-slide Chemotaxis 3D device under experimental culture conditions
(described below) within 4 hours of each patient biopsy.

In vitro procedures
Drugs—In this work, the following chemotherapeutic agents were tested: bortezomib
(acquired from Selleckchem), melphalan (from Sigma), and FAM-HYD-1 (kindly provided
by Dr. Hazlehurst).

In vitro dose response assays in 3D microfluidic chambers—Commercially
available 3D cell culture slides (µ-slide Chemotaxis 3D Ibitreat from Ibidi, LLC) were gas
and temperature equilibrated at 37°C, 5% CO2 overnight prior to cell seeding. Each slide is
comprised of three separate chambers each with a 1mm wide, 50µm high cell-viewing
chamber that holds a volume of 6µL. It is connected to two 65µL reservoirs along both sides.
Linear chemical gradients form across the cell chamber via passive diffusion. Aliquots
consisting of 6.67µL 10× MEM (Life Technologies), 6.67µL deionized H2O, 3.33µL 7.5%
sodium bicarbonate solution (Life Technologies), and 16.67µL 1× RPMI 1640 (Life
Technologies), were premixed and stored at 4°C prior to experiments, as per manufacturer
(Ibidi) instructions. 50µL of 3.1mg/mL Bovine collagen type I (Advanced BioMatrix) was
added at time of seeding. 16.67µL of cells suspended in RPMI 1640 were mixed into the
collagen/media mix to a final volume of 100µL in 1.5mg/mL bovine collagen I (6-fold
dilution of RPMI 1640 cell suspension). 6µL of this cell/matrix mix were used to load each
viewing chamber. For cell lines in single culture or mixed culture, the final concentration of
cells was 3×106 myeloma cells/mL. For patient primary cells, the densities were 7×106 cells/
mL for MM (CD138+), and 1×106 cells/mL for mesenchymal cells. These cell densities
were optimized to better reflect physiological cell density, and maximize the number of cells
in the observation chamber, while still maintaining enough separation to allow the individual
identification of cells. Cell lines were seeded at lower density to account for their larger size
and faster replication. The interval between mixing collagen with cells and media, and
seeding the chambers was kept below five minutes at ambient temperature to minimize
collagen polymerization. After seeding, an additional 15 minutes at room temperature
allowed adherent cells (HS-5 or patient stroma) to sink to the bottom of the 3D chamber and
keep the same focal plane for subsequent live imaging. Slides were then incubated at 37°C,
5% CO2 for 1 hour. Collagen polymerization was checked by visual inspection of fiber
formation on an inverted phase contrast microscope with a 20× objective lens. After
gelation, reservoirs on each side of the slide were filled with 65µL culture media. 16.25µL of
4× drug in culture media was dropped onto a filling port on the left reservoir and then an
equal volume was immediately drawn out of the other filling port. Slides were then placed
into incubator for live imaging. For each experiment, there was a control with no drug
added, which was used to detect spontaneous cell death. For single culture experiments,
chemotherapy was added 2–4h after cell seeding. For co-culture experiments with adherent
stroma (HS-5 or patient stroma), drugs were added 24h later to ensure stroma adhesion.

Continuous versus pulsed exposure—In experiments with continuous exposure, the
drug was maintained in media for the duration of the experiment. If this duration exceeded
48h, the media on both reservoirs was completely removed, and replaced by fresh media, to
which drug was added as previously described (16.25µL at 4× concentration). In pulsed
exposure experiments, the media on both reservoirs was completely removed, and replaced
by fresh media at the end of the pulsed exposure.
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Imaging
Image acquisition—Two different models of fluorescence microscopes were used for the
experiments here described: the first, JULI (Digital Bio), is a portable fluorescence
microscope with bright field and red fluorescence capacities (ex/em 630nm/660nm), which
was maintained inside a standard incubator for the duration of the experiments. The second
platform was the EVOS FL (AMG), a bench top fluorescence microscope (red channel ex/
em 531nm/593nm), which required the use of a stage-top heating stage/incubator (Ibidi),
which maintained the cells at 37°C, 5% CO2, and 80% humidity. For the experiments here
described, images were acquired every 5-minute intervals. In experiments where the red
fluorescent 8226/dsRed2 cell line was tested, or the cell-death molecular probe ethidium
homodimer-1 (EthD-1) was used, both bright field and red fluorescent channels were
imaged, the first for changes in cell morphology and membrane motion, and the second for
loss of innate fluorescence or activity of EthD-1, respectively.

Quantification of drug concentration over time within microfluidic device—In
order to quantify the shape and stability of the drug gradient in the microfluidic device, we
used a fluorophore-conjugated of the peptide HYD-1 (1.5kDa) within the dose-response
assay, a 3D gel matrix consisting of 1.5mg/ml bovine collagen I with RPMI1640/MEM
media was placed into the culture chamber of the Ibidi microfluidics device. After 45
minutes incubation at 37°C, reservoirs were filled with RPMI1640 media 10% heat
inactivated FBS, 1% penicillin–streptomycin. FAM-HYD1 was diluted into media before
replacing 1/4th of the volume in the left reservoir with fluorescent drug solution (1/10 of
stock). Fluorescence within the culture chamber was imaged in an EVOS FL microscope
using the GFP filter (ex/em 470nm/525nm, 5× objective) with heated stage and gas
incubation (37°C, 5% CO2). Images were acquired at 1-minute intervals for 24 hours.

Digital image analysis—With a stable drug gradient established across the main channel
of the microfluidic slide, we arbitrarily divided the observation channel into five sections, or
regions of interest (ROI), each with an average drug concentration of 100%, 80%, 60%,
40% and 20% of the concentration in the drug reservoir, respectively. Sectioning the channel
into five areas was a compromise between a minimum number of cells in each area, and the
rounding due to the averaging of the drug concentrations across each section. Dose response
was quantified with a macro developed for the software ImageJ (http://rsbweb.nih.gov/ij),
further described. As discussed in the Results section of this manuscript, membrane-
impermeable probes for detection of cell death, such as EthD-1, present a significant
variation in the time for fluorescence acquisition after death in cell lines or patient samples.
To avoid this confounding effect, we have developed a novel approach that identifies cell
death based of motion of the membrane, described below.

Assessment of cell viability through membrane motion detection—We have
observed that, although it was not possible to clearly discern a dead from a live cell based on
the morphology in the bright field of a single image, all live cells suspended within the
collagen matrix had observable membrane motion or shape changes, between two images
taken in a 5-minute interval. These morphological changes abruptly stopped prior to cell
death, indicating that this feature could be exploited as a marker for cell death. We created a
macro for the open source software ImageJ using the plugins TurboReg (20) and
RunningZProjector (http://valelab.ucsf.edu/index.html). The macro quantifies the amount of
cell membrane motion in the different regions of interest, and writes a file with this
information for each frame, or time point. The source code of the macro is provided in the
Supplementary Material. Briefly, the macro loads the stack of bright field images taken at 5-
minute intervals, and aligns them using the plugin TurboReg. This action removes
translational motion, such as sliding of the microfluidic chamber, as well as vibration. Next,
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the native ImageJ “background subtraction” function was used with parameters “rolling ball
radius=1 pixel” and “sliding parabolic” (21). Background subtraction served to normalize
image sequences across different experiments and/or microscopes used to image the
chambers, making cells appear as bright spots against a uniform dark background. Motion
and small variations in cell membranes were detected using the plugin RunningZProjector. It
detects the maximum pixel intensity across a 6-frame/slice interval, corresponding to 30
minutes. The original image was then subtracted from the maximum pixel intensity
projection, resulting in an image where actively moving membranes appear as bright rings.
ImageJ’s “Gaussian blur” filter was used to convert these bright rings into spots that cover
the entire cell, and produce the overlaid images shown in this manuscript.

Validation of motion detection algorithm through fluorescence—Different
fluorescent-labeling agents for cell viability were tested as live-imaging approaches for
response to chemotherapy. However, cytotoxicity, photo bleaching, intercellular variability
of delay between cell death and signal detection, and incomplete representation of viable/
apoptotic/necrotic cell states added noise to the assay. A multiple myeloma cell line was
stably transfected with dsRed2 (8226/dsRed2), and used as a reference to visually detect the
cytotoxic effect of drugs through loss of red fluorescence. RFP expression is an intrinsic
marker for these cells: live cells will quickly loose fluorescence upon cell death due to
membrane burst accompanied by release of cytoplasmic components, including the
fluorescent protein.

Validation of motion detection algorithm through bioluminescence—NCI-H929
cells were seeded in 96-well plates in culture media or in a 3D collagen matrix with culture
media added on top of the cell/collagen layer. In wells without collagen, 1.5×105 cells were
resuspended in 50µL of media for a final density of 3×106 cells/mL. To more closely
resemble microfluidic assay conditions, 1.5×105 cells were suspended in 30µL of 1.5mg/mL
collagen matrix and were left to polymerize at 37°C for 1 hour. 20µL of media was then
added as a separate phase on top of the cell/collagen layer. Melphalan was serially diluted in
2-fold steps to a final concentration range of 100 µM to 1.56 µM in 7 rows. The same
procedure was performed for bortezomib to final concentrations of 20 nM to 0.31 nM. All
conditions and controls were performed in triplicate. After 24 hours of continuous drug
exposure at 37°C and 5% CO2, 50 µL CellTiterGlo was added to each well and the plates
were placed on an orbital shaker at room temperature for 10 minutes. 20 minutes later,
bioluminescence was measured at ambient temperature on a microplate reader. Percent cell
viability was defined as luminescence normalized to controls at 24 hours.

Analysis of experimental data
The quantification of the dose response of the cells in the experiment used Matlab’s
(MathWorks) function lsqcurvefit, which finds the coefficients that minimize the distance
between a function and a set of data points. Details on the fitting procedure and equations
used are presented in the Quick Guide to Equations and Assumptions.

Computational modeling of therapy
As a proof of principle, to exemplify the application of these in vitro chemosensitivity
assays in estimating patient response to therapy, we have used a computational model,
previously described(22), to simulate a hypothetical single-agent bortezomib regimen in an
animal model (s.c. NCI-H929 in SCID mouse), and for four patients whose MM cells’
sensitivity to bortezomib were tested in vitro. Implementation of the computational model of
therapy is presented in the Quick Guide to Equations and Assumptions.

Khin et al. Page 8

Cancer Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
Characterization of shape and duration of drug gradient

The first step of validating the in vitro platform was to determine the stability, and also the
duration of any transients during the formation of the drug gradient across the observation
chamber. For this purpose, we used a conjugate of the fluorescent molecule fluorescein
(FAM) and the 1.5kDa peptide HYD-1, an experimental drug with direct toxicity to MM
cells (23). We used live imaging to quantify the fluorescence in images taken at 1-minute
intervals during 18h (Figure 1). The fluorescent signal gradient was stable for the interval of
the experiment, and the transient time for its formation was shorter than the period between
drug injection in the slide and start of imaging (~5–10’).

Loss of membrane motion is a reliable maker of cell death
A novel algorithm for detection of cell membrane motion was necessary to detect cell death
in patient primary cells, due to the significant variation of the delay between cell death and
membrane permeabilization, and acquisition of fluorescence from molecular probes.
Supplementary Figure 1 depicts the delay between the detection of cell death using the
motion-detection algorithm, and loss of fluorescence in the stably transfected cell line 8226/
dsRed2. Supplementary Figure 2 exemplifies the delay of acquisition of the molecular probe
Ethidium homodimer-1 (EthD-1) red fluorescence in NCI-H929 cells.

Effect of the proteasome inhibitor bortezomib
The cell line NCI-H929 was exposed to a stable gradient of bortezomib (maximum
concentration 10nM) for 24h, and a dose-response surface was created (Figure 2, A).
According to these results, the bortezomib concentration that would lead to a 50% reduction
in the number of live cells after 24h, compared to the initial time point, was ~2.5nM. The
concentration that would lead to a 50% reduction in the number of live cells, compared to
the control at 24h was ~1.9nM. The same cell line was seeded in a 96-well plate, in
suspension or in collagen, and cell viability was measured using the ATP-based assay
CellTiter-Glo (Figure 2, C). The Pearson test produced “r” values of 0.8905 and 0.8704 (P
values 0.003 and 0.0049) for the correlation between the model and suspension, and
collagen results, respectively.

Quantification of melphalan innate resistance in cell lines in single culture
The melphalan sensitive and resistant cell lines NCI-H929 and 8226/LR5 were exposed to
stable gradients of melphalan for 24h (highest concentrations of 50µM and 100µM,
respectively) and chemosensitivity was quantified. The analysis of 8226/LR5 detected a sub-
population of sensitive cells (~30%, Figure 3A), indicating that this cell line is actually
heterogeneous, a possible explanation for the loss of resistance commonly observed when
these cells are maintained in melphalan-free medium for many weeks(24). Melphalan
concentration that induced 50% of death in cells (EC50) for 24h continuous exposure was
~50µM for 8226/LR5, and ~12µM for H929. Long-term exposure to lower, more
physiological doses (10–20µM) of melphalan, however, indicated that, although all
melphalan had been hydrolyzed in the first 24h in media, cell death continued to occur after
6 days of drug exposure (Supplementary Figure 3).

Quantification environment-mediated melphalan resistance
Cell adhesion mediated drug resistance (CAMDR) is believed to be a major cause of
minimal residual disease in multiple myeloma (18). This mechanism is caused by direct
MM-stroma cell adhesion, by paracrine loops of soluble factor secretion, or MM-
extracellular matrix adhesion. In order to quantify the importance of MM-stroma adhesion
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under physiological conditions (high density, in presence of ECM), the MM cell line NCI-
H929 was co-cultured with the bone marrow derived stromal cell line HS-5/GFP. A
significant shift towards resistance was observed at later time points (~24h), and was most
expressive around the concentration of 20–30µM (Figure 4).

Continuous versus pulsed exposure to drugs
To exemplify the study of continuous versus pulsed exposure to drugs, two chambers with
NCI-H929 cells were exposed to bortezomib for 24h. In one the medium was replaced by
drug-free medium, while in the other fresh medium with bortezomib was added. Being a
reversible proteasome inhibitor, the results suggest that bortezomib-induced death stops
upon drug withdrawal (Supplementary Figure 4), unlike melphalan (Supplemental Figure 3).

Melphalan chemosensitivity of primary MM cells in single and co-culture
From the 17 patient samples obtained so far in this protocol, the first 10 were used for
development and optimization of the platform. The results of the 7 others are here described.
We have exposed CD138+ sorted primary MM cells from patient 14, a newly diagnosed
patient, for 48h to a stable gradient of 25µM melphalan in single and co-culture, with
patient-derived stroma. As shown in Figure 5, adhesion to stroma significantly increased the
survival of MM cells, shifting the 48h EC50 from 2µM in single culture to 12µM in co-
culture. This effect could be circumvented by combination of a proteasome inhibitor at sub-
lethal levels(25) (Figure 6 and Supplementary Video 1).

Melphalan and bortezomib chemosensitivity among MM patients
Supplementary Figure 5 depicts the in vitro chemosensitivity of three MM patients to
melphalan in single culture: patient 14, patient 11 (smoldering myeloma), and patient 12
(relapsed after bone marrow transplantation). The EC50s at 24h exposure were 4µM for
patients 14 and 12, and 1µM for patient 11. However, the percentage surviving cells at
20µM, a more physiological concentration of high-dose melphalan treatment, was 30% for
patient 12, 11% for patient 14, and 4% for patient 11. Figure 7 represents bortezomib
chemosensitivity of patients 11, 12, 13 (newly diagnosed) and 17 (smoldering myeloma).
For patients 11 and 12, EC50 after 24h continuous exposure was below 2nM, however, at
higher concentrations, MM cells from patient 11 were significantly more resistant: 30% live
cells at 50nM bortezomib for patient 11, and ~8% for patient 12. 24h EC50 for patient 13
was ~10nM, while EC50 was not reached with the sample from patient 17.

Extrapolation of in vitro data into in vivo and clinical response
By parameterizing Equation 3 with values obtained from fitting Equation 1 to the in vitro
dose response data, it is possible to simulate how a tumor mass would respond to a
therapeutic regimen. As an example, the sub-cutaneous mouse model SCID (severe
combined immunodeficient), when implanted with the cell line NCI-H929, develops a tumor
that grows 45-fold in 20 days (26). When treated with 1mg/kg bortezomib twice a week, the
tumor growth is reduced, and tumors are 20-fold bigger at day 20 than at implantation(27).
From the bortezomib in vitro chemosensitivity assay with the cell line NCI-H929 (Figure 2),
the parameters from Equation 3 were: IC50Rx=10.35nM, IC50ΔT=10.38h, expRX=2.7, and
expT=7.1. Supplementary Figure 6 depicts the computational simulation of the tumor growth
under control conditions, under a bi-weekly treatment with 1mg/kg of bortezomib (which
leads to a stable blood concentration of 0.4nM(28)), and a hypothetical regimen where mice
received a pulsed therapy with the same AUC (area under the curve), with bi-weekly
injections of bortezomib every other week (therapy holidays). The simulated tumor would
have increased 53.4-fold in control conditions (Pearson r=0.9762), 18-fold in standard
bortezomib treatment (Pearson r=0.9869), and 5-fold in the hypothetical pulsed regimen.
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The same approach was used to simulate the response of patients 11, 12, 13, and 17 to a
single agent regimen of bortezomib (1.3mg/m2, Supplementary Figure 7). In this regimen,
plasma concentration stabilizes at ~1nM(4), and according to simulations, would achieve
complete response in patients 11 an 12, relapse in patient 17, and no response in patient 13.

Discussion
In this work we have described an interdisciplinary platform to study pre-clinical drug
activity in primary MM cells. First, MM cells are embedded in a microfluidic chamber that
recapitulates the bone marrow microenvironment, including high cell density, extracellular
matrix and patient-derived stromal cells. A linear and stable drug gradient is established
across the chamber, which is then imaged sequentially in bright field. A digital image
analysis algorithm detects live MM cells by the motion of cell membrane: upon death this
activity ceases. The measurements of viability, at different concentrations and time points,
are fit to mathematical models of chemosensitivity. These models can represent one or
multiple sub-populations, and can be empirical or mechanistic. The data from these
experiments can thus be used to parameterize mathematical models to simulate clinical
outcome.

This platform overcomes some major limitations of pre-clinical assays using primary cancer
cells. It has long been known that extracellular matrix and stroma are major components of
chemoresistance in many tumors. However, the inclusion of these elements significantly
increases the complexity of dose response assays, often requiring the separation between
cancer and stromal cells, by matrix digestion and/or flow sorting(29). Also, viability assays
are often destructive or cytotoxic, if carried for long periods of time, limiting the
information acquired in the temporal dimension. In the here described assay, MM cells,
stroma and matrix are never separated, and no cytotoxic agents are used to determine cell
viability, thus allowing longitudinal studies of drug activity without interfering with the
microenvironment.

In cancers such as MM, where a few million cells are obtainable per patient biopsy, it is
important to minimize the number of cells per experimental condition, which is in the order
of 1,000–10,000 cells in this assay. The poor clonal efficiency of MM cells, as well as their
spontaneous death in vitro(6), suggest that experiments with these samples be performed in
the first few days after the biopsy. By studying the effect of long-term exposure and drug
withdrawal in human MM cell lines, we have created mechanistic theoretical models of the
drug activity(2). Once a model is generated for a particular drug, the data from patient
samples are used to parameterize and extrapolate the response for longer periods of time.

As shown for bortezomib-induced melphalan sensitization in co-culture (Figure 6), this
system can be used to study drug interactions(30). The addition of the time dimension,
instead of fixed time points, would allow the study of time-shifted drug combinations, such
as, for instance, nuclear export agents and doxorubicin(31). Combination indices(30) may be
obtained by adding the two drugs being studied on the same reservoir, which will induce
two superimposed drug gradients.

This assay allows the observation of individual cells. Thus, it is possible to assess the
heterogeneity of drug response by plotting in a histogram the area under the curve (AUC) at
the moment of death of each individual cell. Further improvements in the digital image
analysis algorithm could identify and track individual cells, from their original replication
until their death. By combining this information with the dose response surfaces, it would be
possible to determine if particular drugs and concentrations are capable of maintaining a
tumor burden quiescent, or in a balance between proliferation and death(32, 33).
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These preliminary results describe a framework to better understand the dynamics of
interactions between tumor and stroma in response to therapeutic agents in vitro. These
assays can be performed in a middle- to high-throughput manner, and significantly reduce
the complexity of working with patient primary cells in reconstructions of the tumor
microenvironment. Ultimately this may become a platform for personalized pre-clinical
estimation of drug efficacy in cancer.

Future directions are to standardize methods to extrapolate in vitro predictions into clinical
outcome. We will also explore the application of alternative therapeutic regimens of drug
combinations, proposed by data extrapolated from this in vitro system, and simulated using
evolutionary computational models(34, 35). We hypothesize that, patient-specific
computational models, parameterized by in vitro platforms as the here described, could be
combined with genomic(36) datasets to better understand the dynamics that underlie
evolution of drug resistance in MM patients. Understanding these dynamics would not only
allow accurate predictions of response, but also suggest the best therapeutic strategies for
each patient, and continue adjusting these strategies as needed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic view of microfluidic assay used for in vitro reconstruction of bone marrow
(1) Each microfluidic chip contains three chambers, each of them composed of two side
reservoirs, and one center observation chamber. Myeloma and stromal cells are loaded in the
observation chamber simultaneously, resuspended in collagen. Overnight, the matrix
gellifies, and stromal cells adhere to the bottom of the chamber and stretch. (2) One of the
side reservoirs is filled with medium with a chemotherapeutic agent (left), while the other is
filled with standard growth medium (right). The diffusion of the chemotherapeutic agent
from one reservoir to the other creates a stable gradient across the observation chamber. (3)
The observation channel with the human MM cell line NCI-H929 and adherent bone
marrow derived stromal cell line HS-5 is shown in bright field under a gradient of the
necrosis-inducing peptide HYD-1. Note that MM cells on the left (higher drug
concentration) have died and became dark spots, while cells on the right (lower drug
concentration) are still alive. (4) A gradient of the fluorescent conjugated peptide FAM-
HYD1 was established, and fluorescence quantified across the channel during 18h.
Normalization and re-scaling to the minimum and maximum concentration within the
observation channel confirm the linear stable gradient during the 18h-window of
experiment.
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Figure 2. Quantification of sensitivity of the human myeloma cell line NCI-H929 to the
proteasome inhibitor bortezomib
The microfluidic assay described in this project generates a series of measurements
corresponding to cell viability at combination of exposure time and drug concentration.
These data points in turn are fit to the mathematical expression of dose response, Equation 1.
(A) Sensitivity of the human myeloma cell line to the proteasome inhibitor bortezomib. (B)
Goodness of fit of the mathematical model to the 1,670 data points. (C) Comparison of
viability measurements at 24h between the mathematical model and a standard ATP-based
bioluminescent assay, with NCI-H929 cells in suspension in media or in collagen, using a
standard 96-well plate.

Khin et al. Page 16

Cancer Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Intrinsic chemoresistance to melphalan
The human MM cell lines 8226/LR5, selected by continuous exposure to melphalan, and
NCI-H929 were exposed for a 24h continuous stable of gradient of melphalan in the
microfluidic chamber. While the cell line NCI-H929 was fit to a single population, the 8226/
LR5 cell line was better fit by a two-population curve, with approximately 70% of resistant
cells and 30% of sensitive. This result indicates that the loss of chemoresistance of 8226/
LR5 cells in absence of melphalan might be due to heterogeneity in this population.
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Figure 4. Effect of Cell Adhesion Mediated Drug Resistance in the MM cell line NCI-H929
treated with melphalan
(Top) The co-culture of the NCI-H929 human MM cell line with the human bone marrow
derived stromal cell line HS-5 confers increased resistance to melphalan. Melphalan
concentration and exposure required in order to reduce viability in 50% (kR and kT,
respectively) increase from 28 to 40µM and 12 to 15h, respectively. (Bottom) Linear
regression of fit and actual experimental points for both experiments.
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Figure 5. Primary MM cells in co-culture with patient stroma are significantly more resistant to
melphalan
Patient 14 is a newly diagnosed patient. MM cells were sorted (CD138+) from bone marrow
aspirate, and seeded into microfluidic chamber in single (SCX, 0h) or co-culture with patient
stromal cells (CoCx, 0h). Digital image analysis identifies live cells and pseudo-colors them
as green. A stable linear gradient of melphalan was established across observation channel:
25µM on the left, 0µM on the right, and cells were imaged every 5 minutes for 48h. After
48h, almost all MM cells are dead in single culture (SCX, 48h), while a significant number
of MM cells are still alive in co-culture with stroma (CoCx, 48h). (A) Dose response
surfaces built using measurements of viability in single (SCX) and co-culture (CoCx). (B)
Goodness of fit of dose response surfaces (model) and actual data points for single culture,
and (C) co-culture.
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Figure 6. Quantification of bortezomib-induced EMDR circumvention in primary MM cells
Patient 14 is a newly diagnosed patient. MM cells were sorted (CD138+) from bone marrow
aspirate, and seeded into microfluidic chamber in single and co-culture with adherent
stromal cells (CD138−). (A) In single culture, MM cells are significantly more sensitive than
in co-culture (B). A dose-response assay with bortezomib indicated that 1nM was the
highest concentration that did not cause MM cell death (C) during the 24h-period. By
combining a stable gradient of melphalan, with a uniform concentration of bortezomib, the
chemosensitive phenotype is restored in co-culture (D).
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Figure 7. In vitro response of primary MM cells to bortezomib in single culture 3D collagen
matrix
Patient 11 was a smoldering/standard-risk patient, and thus never previously treated with
bortezomib. Patient 12 was a relapsed/standard-risk patient previously treated with
bortezomib-based regimens, and high-dose melphalan followed by bone marrow
transplantation. Patient 12’s bortezomib-based induction regimen (bortezomib/lenalidomide/
dexamethasone) occurred 3 years prior to the biopsy used for this in vitro assay. Patient 13
was a newly diagnosed/high-risk patient, while patient 17 was a smoldering myeloma
patient.
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