
Research Article
Detection of Earthquake-Induced Damage in a Framed
Structure Using a Finite Element Model Updating Procedure

Eunjong Yu,1 Seung-Nam Kim,1 Taewon Park,2 and Sang-Hyun Lee2

1 Department of Architectural Engineering, Hanyang University 222, Wangsimni-ro, Seongdong-gu, Seoul 133-791,
Republic of Korea

2Department of Architectural Engineering, Dankook University, Jukjeon-dong, Yongin-si 448-701, Republic of Korea

Correspondence should be addressed to Eunjong Yu; eunjongyu@hanyang.ac.kr

Received 31 October 2013; Accepted 17 December 2013; Published 16 January 2014

Academic Editors: A. K. Gupta, R. Su, and Q. W. Yang

Copyright © 2014 Eunjong Yu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Damage of a 5-story framed structure was identified from two types of measured data, which are frequency response functions
(FRF) and natural frequencies, using a finite element (FE) model updating procedure. In this study, a procedure to determine
the appropriate weightings for different groups of observations was proposed. In addition, a modified frame element which
included rotational springs was used to construct the FE model for updating to represent concentrated damage at the member
ends (a formulation for plastic hinges in framed structures subjected to strong earthquakes). The results of the model updating
and subsequent damage detection when the rotational springs (RS model) were used were compared with those obtained using
the conventional frame elements (FS model). Comparisons indicated that the RS model gave more accurate results than the FS
model. That is, the errors in the natural frequencies of the updated models were smaller, and the identified damage showed clearer
distinctions between damaged and undamaged members and was more consistent with observed damage.

1. Introduction

Monitoring integrity of infrastructures without interruption
of its function is the primary motivation in developing vibr-
ation-based damage detection methods. This method relies
on the fact that changes in structural properties, such as dam-
age, affect the overall dynamic properties of the structure.The
general approach to detecting damage in this method is to
establish analytical models which represent the reference
state and damaged state of the structure and then to investig-
ate the change in structural properties between the two ana-
lytical models. Thus, a relevant parameter identification
method yielding the optimal analytical model which repre-
sents the observed behaviors of a structure is essential. Sev-
eral approaches have been explored to solve this inverse pro-
blem and are summarized by Doebling et al. [1, 2], Farrar
et al. [3], Humar et al. [4], and Brownjohn [5].The numerical
optimization procedures that can be used in the field of
damage detection are divided into two categories. One is
based on pattern recognition algorithms such as artificial
neural networks, which find an optimal parameter set

from a relationship previously established using numerous
parameter-response pairs [1, 6].The other is themodel updat-
ing approach which iteratively adjusts parameters (the stiff-
ness, mass, and/or damping parameters) of the FE model to
minimize differences in measured dynamic properties and
those of the FE model [7]. Damage of the structure is eval-
uated by comparing the updatedmodels of the reference state
and damaged state.

In the FE model updating method, structural properties
that represent the stiffness of the members in the analytical
model, such as themodulus of elasticity or sectional property,
are usually selected as the updating parameters. At this point,
to obtain accurate results, it is important to establish a relev-
ant analyticalmodel and choose appropriate updating param-
eters so that the effects of damage on the dynamic properties
can be accurately replicated. For example, if the flexural stiff-
ness values of members were chosen as the updating param-
eters when the analytical model was not sufficiently discre-
tized, it would be impossible to replicate the dynamic prop-
erties of a framed structure that has concentrated damage at
only a few joints or portions of a few beam-columnmembers.
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A typical problem arising from the use of an irrelevant model
is that the identified damage tends to diffuse or spread out
into other members [8], which makes parameter identifica-
tion and subsequent damage identification inaccurate and
difficult.

Another issue for accurate damage detection is improve-
ment of accuracy in parameter identification from measured
data. Generally, including many kinds of data as observation
is advantageous since more information can be supplied and
the ill-posedness of the inverse problem can be mitigated.
The modal data (the natural frequencies and mode shapes
obtained from various system identification methodologies)
are frequently used to represent the dynamic properties of the
structure. Even though parameter identification based on the
model data is simple, replication of behavior in higher modes
is impossible because it is generally difficult to identify the
modal properties of higher modes. Thus, it is beneficial to
include the frequency response function (FRF) to the modal
properties as an observation for parameter identification to
provide more information. When more than two kinds of
measured data are used, the relative contribution of each type
should be properly adjusted because the amounts of data and
noise in each are different. The weighting factors are used for
this purpose. Previous literature indicates that the weighting
factor should be adjusted based on the variance of noise
contained in each type of measured data [9, 10]. However, in
reality, such information is not generally provided; thus, the
weighting factors are determined by engineering judgment
or on a trial-and-error basis. Therefore, results may differ
depending on the choice of weighting factors, which makes
parameter identification uncertain and inaccurate.

In this study, a model-updating-based damage detection
procedure for framed structures subjected to seismic damage

was proposed. For efficient detection of concentrated damage
at the ends of a beam-column member, which is a typical
damage pattern in framed structures subjected to major
earthquakes, a modified frame element which includes the
rotational springs at its ends was used in the analytical
model. Both the FRF and natural frequencies were used as
measured data for the FEmodel updating, and a procedure to
obtain appropriate weighting factors is presented. The pro-
posed procedure was applied to damage detection in a five-
story one-bay reinforced concrete test structure subjected to
earthquake damage. The accuracy of damage detection using
the proposed procedure was compared with that of the con-
ventional approach which uses conventional frame elements
for the FE model and the flexural stiffness of the individual
frame members as the updating parameters.

2. Frame Elements with Rotational Spring

Thebasic premise of seismic design for framed structures is to
ensure ductile behaviors even though some parts of the struc-
turesmay behave nonlinearly. Under large earthquake excita-
tions, typical damage in moment-resisting frames starts with
the plastic hinge formulation (a concentration of flexural
yielding) at the ends of the framemembers. To properly repli-
cate the nonlinear behavior of framed structures subjected
to seismic damage, modified frame elements which include
rotational springs at both ends were adopted in the analytical
model which will be used in the FE model updating proce-
dure.

The stiffness matrix of a frame element with rotational
strings at both ends can be derived (1) through the static con-
densation of the three-element model (a conventional frame
element and two zero-length rotational springs at both ends)
as shown in Figure 1 [11, 12]. Consider
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+12), and 𝛼
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stiffness indices of the rotational springs at the left and right
ends of the frame element, respectively. The stiffness index is
defined as the ratio of the stiffness of the rotational spring to
the flexural stiffness of the frame element. The value of the
stiffness index is zero for a pin connection and infinity for a
rigid connection. If the stiffness indices were directly incor-
porated into the FE model updating procedure as the updat-
ing parameter, their values would have a range of zero to
infinity. Since it is difficult to obtain the infinity in numerical

calculations, the stiffness index is converted into a connection
percentage [12] as

𝑟
𝑖
=

𝛼
𝑖

3 + 𝛼
𝑖

. (2)

In (2), because the range of the connection percentage is
0 ≤ 𝑟

𝑖
≤ 𝑙, the numerical implementation becomes much

easier. The stiffness matrix using the connection percentage
instead of the stiffness index is shown in (3). Thus, for updat-
ing framed structures which have concentrated damage at
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Figure 1: Frame element with rotational springs.

the member ends, the values for 𝑟
1
and 𝑟
2
are sought using

the numerical updating procedure. Consider
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Analytical models for framed structures are generally estab-
lished using conventional frame elements (thus, the stiffness
matrix for a single element does not contain the parentheses
at each coefficient in (3)), and the model updating procedure
may be applied to replicate measured dynamic behavior by
adjusting the flexural stiffness (EI

𝑧
). However, in this case, the

behavior of a frame structure with plastic hinges cannot be
accurately replicated.That is because the stiffnessmatrix with
arbitrary 𝛼

1
and 𝛼

2
in (1) cannot be obtained by adjusting

the flexural stiffness (EI
𝑧
) in the stiffness matrix for conven-

tional frame members. To obtain more accurate results, finer
element discretization will be needed, which requires a large
number of updating parameters and a substantial increase in
computation cost.

3. FE Model Updating Procedure

3.1. Overview of FEModel Updating Procedure. TheFEmodel
updating procedure used in this study is based on a nonlinear
least-squares method which minimizes the difference bet-
ween the measured and analytical frequency response func-
tions and the natural frequencies using the sensitivity matrix
and residual vector appended by the side constraints [13, 14].
Theprocedurewas reorganized for accelerationmeasurement
and base excitation and has been summarized.

The equation of motions of a system with 𝑛 degrees-of-
freedom subjected to base accelerations 𝑢̈

𝑔
is expressed as

Mü (𝑡) + Cu̇ (𝑡) + Ku (𝑡) = −ML𝑢̈
𝑔
(𝑡) , (4)

where M, C, and K are (𝑛 × 𝑛) mass, damping, and stiff-
ness matrices of the system, respectively, and L is the influ-
ence vector indicating the location of the DOFs being excited
by 𝑢̈
𝑔
(𝑡). Equation (4) can be transformed into the frequ-

ency domain using the dynamic stiffness matrix B(𝜔) =
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+𝑖C𝜔+K) and the transfer function vectorH(𝜔) =
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For updating, the transfer functionH(𝜔) is replaced with
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For model updating, the dynamic stiffness matrix B(𝜔) is
replaced by B(p, 𝜔), which is a function of a set of updating
parameter vectors, 𝑝 = [𝑝
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𝑇. Any geometric or
material properties that were used in constructing the struc-
tural matricesM, C, and K can be used as the updating para-
meters. For the present problem, parameters affecting the
stiffness of themember, such as the flexural stiffness EI
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or the

connection percentage, were chosen as the updating param-
eters. An optimal parameter vector is one that minimizes the
Euclidean norm of the error vector in
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In the nonlinear least-squares solution scheme, B(p,𝜔) is
linearized using a Taylor series expansion truncated at the
first order as
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In addition, setting the norm of the error vector in (7) to
zero, we get
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The sensitivity matrix based on the natural frequency can
be obtained in a similar manner.The norm of the error vector
in the analytical natural frequencies 𝜆(𝑝) and measured
frequencies ̃

𝜆 can be expressed as
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Similarly, using a Taylor series expansion truncated at the
first order, the least-squares equation is obtained as
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Similar to (10), the updating equation with respect to the
natural frequency can be written using the sensitivity matrix
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Combining the equations for the FRF and the natural
frequency in (10) and (13) yields
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The solution can be found using an iterative calculation
until the incremental solution Δ𝑝

𝑘
or the residual vector

r
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, 𝜔) diminishes sufficiently (below the convergence cri-
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3.2.Weighting Factor. Equation (14) is a combination of FRF-
based and natural-frequency-based equations. The relative
influence of each type of data on the solution can be con-
trolled using the weighting factor as

S𝑇 (p, 𝜔)WS (p, 𝜔) Δp = S𝑇 (p, 𝜔)Wr (p, 𝜔) , (17)

where W is a diagonal matrix containing the weighting fac-
tors. The subscript 𝑘 was omitted for brevity.

Three aspects must be considered in determining the
weighting factors: (a) even though groups of data may be
measured in different units, weighted quantities should be in
the same units; (b) relatively accurate measurements are
weighted more heavily than inaccurate measurements; and
(c) the numbers of observations in each group should be con-
sidered to ensure the desired contributions.

Typically, the size of the sensitivity matrix based on the
FRF is much larger than one based on natural frequencies.
Thus, a larger weighing factor should be used for the natural
frequencies to ensure an equivalent contribution. Otherwise,

the natural frequencies will have very little impact on the sol-
ution. From statistical theory, it is known that the best weight-
ing matrix for the least-squares problem is the inverse of the
covariance matrix of the measurement uncertainty [9, 10].
However, since this information is not available inmost cases,
the weighting factors are usually chosen by engineering judg-
ment by considering the presumed importance of each mea-
surement and the amount of noise it contains. Therefore,
when different values for theweighting factors are chosen, the
solution differs, which makes the model updating uncertain.

In this study, the weighting factors were determined by
considering the three aspects mentioned above.The objective
function for theweighted least-squares problem in (17) can be
alternatively expressed as
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where 𝑠 and 𝑚 indicate the numbers of observations for the
FRF and the natural frequency, respectively. Thus, the error
norms from each type of measurement were divided by the
number of observations for comparable contributions from
both observation groups.The value𝑤

𝑖
is the reciprocal of the

measured natural frequency vector as in (19) and is applied to
squared error norm of the natural frequency to equalize the
units with
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The value 𝜒 is the scaling factor that controls the relative con-
tribution of the natural frequency group. Since information
regarding the accuracy of the observations (i.e., the covari-
ance matrix of the measurement error) was not provided in
this problem, the values of𝜒 are determined so that the sumof
the average FRF norm and the natural frequency norm can
beminimized.That is, the parameters are estimated by quant-
ifying the fit between the FRF and the natural frequency val-
ues for the value of 𝜒 which minimizes

min (
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The components of the diagonal matrix 𝑊 can be derived
from the factors in (18) and 𝜒 satisfying (20). Figure 2 is an
example showing the variation of the average norms of the
FRF and natural frequency errors, respectively, with variation
of the scaling factor. Since 𝜒 represents the relative contribu-
tion of the natural frequency to the FRF, it is shown that the
average error norm of the natural frequency decreased with
increasing 𝜒.

3.3. Grouping of Parameters. The parameter identification
problem is generally an ill-conditioned problem. Typically, in
the solution of an ill-conditioned problem using the least-
squares equation, a fewparameters exhibit large changes from
their initial values. Ill-conditioning occurs when two ormore
parameters have very similar effects on the response of the
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system and themeasurements are contaminated by noise.The
regularization method [15] and grouping of parameters [16]
are numerical techniques commonly used to alleviate this
phenomenon. In this paper, grouping of the updating param-
eters and appending side constraints were used to limit the
variation of similar parameters based on the cosine angle of
the sensitivity vectors of each parameter [17]
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Equation (21) represents the constraints placed on the
relative variations between any two parameters. If two param-
eters have similar effects on the response (e.g., the angle bet-
ween the two sensitivity vectors is larger than a given limit
𝑐lim), then the difference between the two updated parameters
is restricted to remain within a range that depends on their
degree of similarity. This requirement forces the updating
parameters to change similarly if they have similar effects on
the structural response. This method has the effect of reduc-
ing the actual number of parameters while keeping a large set
of parameters.The value for 𝑐lim should be assigned so that the
number of independent variables in the system is equal to the
number of responses (channels).

4. Test Structure

The proposed FE model and model updating procedure were
applied to identify seismic damage in a test structure using the
acceleration data measured during the shaking table test.

The test structure was a one-bay, five-story, reinforced-con-
crete wall-slab building. Figure 3 shows the test structure and
its dimensions. The dimensions of the members were scaled
down to 1/5 of the typical member size in actual wall-slab-
type buildings. The diameters of deformed bars and the
coarse aggregate in the reinforced concrete were reduced by
the geometric scale factor. In addition, mass blocks were
attached to the walls and the slabs to adjust the natural frequ-
encies to 1/√5 of the prototype structure to maintain an
identical stress and strain relationship between the prototype
structure and the scaled model. The shaking table tests were
performed in the out-of-plane direction from the walls on a
uniaxial earthquake simulator. The test structure was sub-
jected to the El Centro ground history scaled to six different
PGA levels of 0.06 g, 0.12 g, 0.20 g, 0.30 g, 0.40 g, and 0.5 g in
increasing order. Accelerations at the base and on each floor
of the test structure were measured.

After each stage of the test, cracks in the structure were
inspected and recorded. With increased ground acceleration
amplitude, some members of the test structure suffered sig-
nificant damage from concentrated cracks at the ends of the
members. Figure 4 shows the damage of the test structure
observed at selected stages of the test. No noticeable cracks
were observed at 0.06 g and 0.12 g shaking. At 0.20 g shaking,
the first major crack occurred at the right end of the third-
floor slab and minor cracks were observed at the base of the
first-story wall on the right side. After the 0.30 g shaking,
cracks were observed at the left side of the third-floor slab,
both ends of the second-floor slab, and the right end of the
fourth-floor slab. At 0.40 g shaking, no new major cracks
were observed; however, the existing cracks, especially at the
slab ends, were significantly enlarged. Finally, at 0.5 g shaking,
the crack at the base of the first-story wall on the left side was
enlarged.

The natural frequencies and modal damping ratios of the
test structure at each stage of shakingwere identified from the
measured acceleration data using N4SID (subspace state-
space system identification), which is a time domain system
identification method [17]. Table 1 summarizes the identified
natural frequencies and modal damping ratios for each stage
of shaking.

As indicated in the table, modal properties up to the
fourth mode could be identified. With increased vibration
amplitude, the fundamental natural frequency gradually
decreased and finally reached about 30% of that of the 0.06 g
shaking. The damping ratio of the fundamental mode of the
0.50 g shaking was increased by about eight times that of the
initial test, which is believed to be the result of hysteretic
damping due to the nonlinear behavior of the test structure.
The table shows that the decrease in the natural frequency at
the 0.30 g shaking was as large as 40% comparedwith the pre-
vious step, which indicates that the change in the overall stiff-
ness distribution occurred somewhat abruptly during the
0.30 g shaking.

5. Damage Identification of the Test Structure

5.1. Model Updating for Reference (Undamaged) Model. The
initial model used to determine the reference model was
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Figure 4: Crack patterns observed after each stage of the tests: (a) the right end of the third-floor slab after 0.20 g shaking, (b) the third- and
second-floor slabs after 0.30 g shaking, (c) the base of the first-story wall after 0.50 g shaking, and (d) locations of observed cracks.

Table 1: Natural frequencies and damping ratios of the test structure.

Natural frequencies (Hz) Damping ratios (%)
1st 2nd 3rd 4th 1st 2nd 3rd 4th

El Centro 0.06 g 4.01 13.08 25.15 41.60 2.56 2.78 3.87 5.68
El Centro 0.12 g 3.78 12.65 24.85 40.80 3.60 3.42 3.88 6.51
El Centro 0.20 g 3.00 11.06 22.42 39.73 10.43 5.19 7.20 11.16
El Centro 0.30 g 1.90 8.49 19.64 34.67 16.00 7.09 4.89 10.17
El Centro 0.40 g 1.59 8.16 18.55 33.40 15.90 5.72 5.30 10.83
El Centro 0.50 g 1.24 7.57 17.49 32.32 30.99 7.80 5.59 9.65
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Table 2: Updating parameters for reference model.

Parameters Value Parameters Value
Wall 1S 1.30 Slab 2F 1.14
Wall 2S 1.39 Slab 3F 1.31
Wall 3S 1.19 Slab 4F 1.16
Wall 4S 1.34 Slab 5F 1.03
Wall 5S 1.32 Slab RF 1.19

Table 3: Natural frequencies of reference model.

1st 2nd 3rd 4th
Measured (0.06 g shaking) Freq. (Hz) 4.01 13.08 25.15 41.60

Initial model Freq. (Hz) 3.63 11.92 22.76 35.89
Percent error −11% −9% −11% −15%

Updated model Freq. (Hz) 4.01 13.03 25.38 40.92
Percent error 0% 0% 1% −1%

composed based on the information obtained from themate-
rial test results and themeasured dimensions of themembers.
Young’s modulus for concrete was evaluated with the com-
pressive strengths from core sample tests using the equation
in ACI

𝐸
𝑐
= 4700√𝑓

󸀠

𝑐
. (23)

The average Young modulus of concrete was found to be
24.77GPa. The stiffness of the members of the initial model
was determined based on the moment of inertia of a gross
(uncracked) section. The story mass was obtained from the
self-weight of the members and the mass blocks attached to
the test structure having values of 108.87 kg for the roof floor
and 138.08 kg for the other floors.The resulting natural frequ-
encies of the initial FEmodelwere 3.63, 11.92, 22.76, 35.89, and
47.74Hz for the first to fifth modes. The basic assumptions
used in the initialmodel were that (i) themass of the structure
was concentrated at floor level, (ii) the floor was rigid in in-
plane, and (iii) the damping properties of the structure were
those of classical damping.

The dynamic properties (FRF and identified natural fre-
quencies) at 0.06 g shaking were used to determine the refer-
ence FE model. In the model updating for the reference FE
model, the connection percentages of all rotational springs
were assumed to be one, which represents a rigid connection.
These values were not selected as updating parameters. Both
of the flexural stiffness and connection percentage cannot be
used as updating parameters at the same time because select-
ing many parameters, some having similar influences on the
dynamic behavior of the structure, is a source of ill-condition-
ing. For the undamaged state, an assumption of rigid connec-
tions was appropriate because no cracks were observed at this
stage.

The total of ten updating parameters consisted of five for
the columns and five for the slabs and was used as shown in
Figure 5. The stiffness of two walls in a story was grouped
together because the contribution of each wall on the global
behavior of the structure should be almost identical.
Tables 2 and 3 show the updated parameters and natural
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Figure 5: Updating parameters for initial analytical model.

frequencies of the updated FE model. As can be seen in the
tables, the stiffness of the members in the updated model was
higher than the initial guess. This is because the flexural stiff-
ness of the initial model was estimated based on the modulus
of elasticity of concrete which was defined as the secant
modulus of the stress-strain curve for concrete at 40% of the
ultimate concrete strength. However, the maximum stress in-
duced at the 0.06 g shaking was significantly below 0.4𝑓

󸀠

𝑐
.

5.2. Model Updating for Damaged Model and Damage Iden-
tification. After obtaining the reference model, which corre-
sponds to the state of the structure after 0.06 g shaking,model
updating for the rest of the shaking stageswas performed, and
the damage at each stage was evaluated using the updated
parameters. However, the connection percentages of the rot-
ational springs, instead of the effective flexural stiffness EI

𝑧
,

were chosen as the updating parameters for the damaged
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model. The flexural stiffness of the frame members was fixed
to the values obtained from the model updating for the un-
damaged structure. This is to reflect the typical damage pat-
tern of framed structures subjected to earthquake excitations,
in which the damage of the structure is concentrated at the
member ends through the formulation of plastic hinges.Thus,
it was expected that degradation of stiffness due to the plastic
hinge formulation would be captured by the stiffness change
of the rotational springs.

The number of rotational springs used in the damaged
model was 30, which is twice the number of frame members.
The number of parameters was reduced using a similar
grouping scheme. The influence of the spring located at the
bottom of one wall is almost identical to the spring located at
the bottom of the other wall. The two bottom springs of a
story were grouped together. Likewise, the two top springs of
a story and the two springs located at both ends of a beam
were grouped together. Therefore, a total of 15 parameters,
three parameters per story, were used for the damagedmodel.
Figure 6 shows the updating parameters for each story.
In addition, another model updating based on the conven-
tional FEmodel, which uses the flexural stiffness of the frame
members as the updating parameters, was performed sepa-
rately and both sets of results were compared. In the model
updating based on flexural stiffness (FS model), the number
of updating parameters was 10, as in the undamaged model.
In both cases, the updated parameters from the previous stage
were used as the initial values for the current shaking stage.

Table 4 shows the analytical natural frequencies of the
updated models at each stage when the stiffness of the rota-
tional springs (RS model) and flexural stiffness (FS model)
were used as updating parameters. The table also shows the
comparison with the measured (identified) natural frequen-
cies. The percentage error in the table indicates the deviation
of the analytical frequencies from the measured ones. As can
be seen in the table, the errors in the RS model were much
lower than in the FS model, which implies that the RS model
is capable of representing the behavior of the test structure
more accurately than the FS model. In both cases, the error
increased as the intensity of excitation increased. This is pro-
bably because the test structure behaved nonlinearly during
large amplitude excitations, although parameter identifica-
tion was made based on a linear model.

Table 5 summarizes the updated parameters at each stage
of shaking and is represented as graphs in Figure 7.The values
in the table and graphs were normalized to the values of the
undamaged model. Damage of the structure can be inferred
from the changes of the parameters. As indicated in Figure 5,
major cracks were observed at both ends of the second- and
third- floor slabs, the right end of the fourth slab, and the bot-
tom of the first-story wall. In both the FS and RS models, the
parameter set that showed an apparent stiffness drop included
the observed damagedmembers and some of the undamaged
members.The overall distribution in stiffness ratios appeared
to be closer to visual inspection in the case of RSmodel. In the
FS model, the stiffness degradation of the slab on the fifth
floor was relatively significant, although there was no major
crack observed. In addition, the stiffness ratio of the wall at
the first story was not distinctively low compared to the other
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Figure 6: Updating parameters for damaged model.

wall members. At 0.50 g shaking, the stiffness of the walls on
the second through fifth stories decreased by about 40%,
although there was no major crack observed.

The distribution of stiffness ratios for RS model enabled a
clear distinction between damaged and undamaged mem-
bers.The range of stiffness ratios increased (0.98 to 0.02 in the
case of 0.50 g shaking). The stiffness ratios of the rotational
springs of thewalls indicated that the stiffness drop at the bot-
tomof the first-story wall wasmost significant, while the stiff-
ness ratios of the other rotational springs did not decrease
considerably.

As mentioned previously, the stiffness of a framemember
with nonuniform damage along its length cannot be simu-
lated accurately by adjusting the flexural stiffness EI

𝑧
alone.

The stiffness degradation, including undamaged members in
the FS model, can be seen as a consequence of “diffusion” or
“spreading out” of damage in which the stiffness of the un-
damagedmembers was affected by the damage in othermem-
bers. On the other hand, in the RSmodel, this diffusion effect
was greatly reduced. The ability of the FE model to replicate
the global behavior of a structure with the progress of damage
is important for accurate damage detection. The RS model is
effective in detection of earthquake-induced damage in
framed structures.

6. Conclusions

In this paper, damage of a 5-story framed structure induced
by shaking table testingwas identified and quantified using an
FE model updating procedure. The model updating method
in this study used the frequency response functions and nat-
ural frequencies as observations, which were obtained from
acceleration measurements during the test. Generally, it is
known that using many kinds of observations is advanta-
geous, since more information can be supplied and the ill-
posedness of the inverse problem can be mitigated. However,
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Table 4: Comparison of measured and analytical natural frequencies.

Stage Mode Measured Freq. (Hz) RS model FS model
Freq. (Hz) Percent error Freq. (Hz) Percent error

PGA 0.12 g

1st 3.78 3.78 0.0% 3.78 0.0%
2nd 12.65 12.73 0.6% 12.68 0.2%
3rd 24.85 24.82 −0.1% 24.99 0.6%
4th 40.80 40.60 −0.5% 40.13 −1.6%

PGA 0.20 g

1st 3.00 2.90 −3.3% 3.13 4.3%
2nd 11.06 11.02 −0.4% 11.17 1.0%
3rd 22.42 22.61 0.8% 22.14 −1.2%
4th 39.73 37.98 −4.4% 36.00 −9.4%

PGA 0.30 g

1st 1.90 1.83 −3.7% 2.03 6.8%
2nd 8.49 7.84 −7.7% 8.79 3.5%
3rd 19.64 17.73 −9.7% 17.80 −9.4%
4th 34.67 31.67 −8.7% 29.38 −15.3%

PGA 0.40 g

1st 1.59 1.68 5.7% 1.82 14.5%
2nd 8.16 7.27 −10.9% 8.04 −1.5%
3rd 18.55 16.80 −9.4% 16.10 −13.2%
4th 33.40 30.55 −8.5% 26.45 −20.8%

PGA 0.50 g

1st 1.24 1.32 6.5% 1.45 16.9%
2nd 7.57 6.31 −16.6% 6.98 −7.8%
3rd 17.49 15.65 −10.5% 14.90 −14.8%
4th 32.32 29.41 −9.0% 24.78 −23.3%

Table 5: Updated parameters normalized with those of undamaged model.

0.12 g 0.20 g 0.30 g 0.40 g 0.50 g
RS FS RS FS RS FS RS FS RS FS

Wall 1S Bot. 1.00 0.99 0.81 0.82 0.36 0.52 0.29 0.45 0.21 0.35
Top 1.00 1.00 0.79 0.79 0.78

Wall 2S Bot. 1.00 1.02 1.00 0.90 0.78 0.64 0.78 0.62 0.78 0.56
Top 1.00 0.85 0.80 0.71 0.67

Wall 3S Bot. 0.88 0.92 0.88 0.82 0.78 0.59 0.70 0.59 0.67 0.56
Top 0.95 0.95 0.83 0.74 0.69

Wall 4S Bot. 1.00 1.04 1.00 0.92 0.75 0.66 0.67 0.64 0.67 0.58
Top 1.00 1.00 1.00 0.99 0.98

Wall 5S Bot. 1.00 1.04 1.00 0.94 1.00 0.69 0.96 0.66 0.96 0.57
Top 1.00 0.98 1.00 1.00 1.00

Slab 2F 0.89 0.91 0.57 0.55 0.20 0.22 0.17 0.14 0.07 0.07
Slab 3F 0.91 0.78 0.46 0.40 0.14 0.13 0.12 0.07 0.02 0.03
Slab 4F 0.93 0.89 0.61 0.55 0.23 0.23 0.19 0.15 0.11 0.08
Slab 5F 1.00 0.90 0.84 0.59 0.44 0.32 0.39 0.24 0.27 0.17
Slab RF 1.00 0.90 0.92 0.79 0.57 0.58 0.50 0.57 0.34 0.51

for more accurate results, appropriate weighting and scaling
between the groups of observations are needed. In this study,
a procedure to determine the rational weightings of different
groups of observations was proposed and applied. In addi-
tion, considering the typical features of earthquake-induced
damage in framed structures, an FE model for updating was
constructed using a modified frame element which includes
rotational springs at both ends, and the rotational springs
were chosen as updating parameters. When conventional

frame elementswere used and the flexural stiffness of individ-
ual members was chosen as updating parameters, the effects
of concentrated damage at the members’ ends were not repli-
cated with sufficient accuracy. Therefore, damage detection
based on this type of model updating may contain large in-
accuracy. In this paper, model updating using conventional
frame elements (FSmodel) andmodified frame elements (RS
model) was conducted separately. Then, the degrees of dam-
age evaluated using the results of the two model updating
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Figure 7: Change in stiffness ratios: (a) FS model, and (b) RS model.

methods were compared. The comparison showed that the
errors in the natural frequencies of the updated FE models at
0.50 g shaking were about 8–23% in the FS model and 6–17%
in the RS model, which indicated that the RS model is cap-
able of representing the dynamic behavior of the structure
more accurately. The location and severity of damage were
identified from changes in the updated parameter values in
each case. The damage identified by the FS model showed
somewhat diffused; that is, the stiffness ratios of severely
damaged members were not reduced sufficiently, and some
undamaged members showed large stiffness drops although
no major cracks were observed. On the other hand, the dam-
age identified by the RS model showed clear distinctions bet-
ween damaged and undamaged members, and were more
consistent with observed damage.
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