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Cancer dormancy, a state in which cancer cells persist in a host without sig-

nificant growth, is a natural forestallment of progression to manifest disease

and is thus of great clinical interest. Experimental work in mice suggests

that in immune-induced dormancy, the longer a cancer remains dormant in

a host, the more resistant the cancer cells become to cytotoxic T-cell-mediated

killing. In this work, mathematical models are used to analyse the possible

causative mechanisms of cancer escape from immune-induced dormancy.

Using a data-driven approach, both decaying efficacy in immune predation

and immune recruitment are analysed with results suggesting that decline

in recruitment is a stronger determinant of escape than increased resistance

to predation. Using a mechanistic approach, the existence of an immune-

resistant cancer cell subpopulation is considered, and the effects on cancer

dormancy and potential immunoediting mechanisms of cancer escape are

analysed and discussed. The immunoediting mechanism assumes that the

immune system selectively prunes the cancer of immune-sensitive cells,

which is shown to cause an initially heterogeneous population to become a

more homogeneous, and more resistant, population. The fact that this selec-

tion may result in the appearance of decreasing efficacy in T-cell cytotoxic

effect with time in dormancy is also demonstrated. This work suggests that

through actions that temporarily delay cancer growth through the targeted

removal of immune-sensitive subpopulations, the immune response may

actually progress the cancer to a more aggressive state.
1. Introduction
Cancer escape from the immune-induced dormant state involves the immuno-

editing process [1–3] and the adaptive immune system [4–7]. Mechanisms of

escape can be classified into two broad categories: those that involve the

secretion of factors, and those that involve direct cell–cell contact [8]. In general,

soluble factors work to suppress anti-tumour immunity by converting the

immune response (and cytokines) to a pro-tumour inflammatory reaction.

Direct contact between cancer cells and cytotoxic T lymphoctyes (CTLs), on

the other hand, may reduce tumour-associated antigen recognition and

lymphocyte survival and increase cancer cell apoptotic resistance.

Saudemont & Quesnel [9], using a mouse model of immune-induced dor-

mancy in acute myeloid leukaemia (AML), recently reported that the longer

leukaemic cells persist in the dormant state, the more resistant they become

to CTL-mediated cell lysis. This resistance was linked to cancer cell expression

of B7-H1 or B7.1. The mice were vaccinated against the AML with irradiated

CD154- or IL12-transduced cells, which helped to stimulate a targeted

immune response against the cancer. After three weekly injections of the

vaccine, the mouse was injected on the fourth week with active AML cells

(DAI-3b). Mice were then sacrificed on days 35, 60, 90, 120 and 365 after chal-

lenge. Per cent lysis assays with CTLs isolated from mice spleens at day 35 and

day 365 both demonstrate a decrease in lysis efficacy the longer the AML cells

persist in a dormant state within the host. Additionally, production of IFN-g
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and TNF-a, two known anti-tumour cytokines, was also

shown to decline in cancer-CTL co-cultures with increasing

time in dormancy.

The increased resistance to apoptotic signals from CTLs

(as well as from imatinib mesylate) may be due to an IL-3

autocrine loop. Saudemont et al. [10] showed that IL-3 over-

production can lead to SOCS1 inactivation through DNA

methylation to deregulate the JAK/STAT pathways and

evoke resistance. Interestingly, natural killer cells recruited

by CXCL10-transduced DAI-3b cells may provide an effective

mechanism to clear dormant cancers as their predation

efficacy does not decline with time in dormancy [11].

The observed decline in CTL predation strength that

occurs over 1 year in dormancy [9] is considerable, but may

not solely be due to overexpression of the B7-H1 or B7.1 sur-

face proteins. For example, at the extreme effector–target

ratio of 20 : 1 at day 35, the per cent of CTL-mediated

cancer cell lysis is 100 per cent for wild-type (day 0) AML

cells but only about 20 per cent for AML cells that persisted

in the dormant state for 365 days. This loss can be recovered

back up to 80 per cent using anti-B7-H1 and anti-B7.1

antibodies, but it cannot be fully recovered.

Cancer heterogeneity provides an additional mechanism

for the emergence of resistance to immune predation. Exper-

imental work by Schatton & Frank [12] and Schatton et al.
[13] suggests that cancer resistance to immune cytotoxic

activity may be imposed by cancer stem cells. They suggest

that these tumour-initiating cells may exist as a subpopula-

tion of the cancer cells and function in a manner that helps

the cancer evade host immunity. Additionally, cancer clonal

heterogeneity, acquired through branching evolutionary pro-

cesses [14], can result in the emergence of clones that are

more resistant to CTL attack via immunoediting [1,7].

T-cell exhaustion is another mechanism that may lead to

the appearance of resistance and cancer escape from dor-

mancy. This progressive state of cell dysfunction worsens

with time and can include poor effector function and sus-

tained activation of inhibitory pathways and immune

regulators [15]. Exhaustion can lead to limiting the T-cell

response during persisting infections and cancer, and strat-

egies to avoid regulatory inhibition of the immune response

such as the programmed death-1 and cytotoxic T-lymphocyte

antigen-4 pathways are now being investigated as possible

immunotherapy targets to improve tumour control [16–18].

Mathematical models have been used successfully to

improve our understanding of cancer growth dynamics and,

in particular, the dynamics of immune-induced dormancy.

Some common approaches include ordinary differential

equations [19–27], partial differential equations [28,29],

agent-based simulations [29–31] and the kinetic theory of

active particles [32,33]. Models that specifically analyse the

mechanisms of tumour evasion from immune control are rela-

tively new. A general model for the mechanisms of learning

and hiding by interacting populations was proposed using

the kinetic theory for active particles [32]. These mechanisms

were also investigated by incorporating time-varying par-

ameters for immune predation, growth and recruitment into

an existing system of differential equations [34]. The par-

ameters were prescribed to initially increase as the immune

response learned to recognize the cancer and then to decrease

as the cancer developed means of immune evasion (hiding).

A constant decrease in predation efficacy was also investigated

as a means of escape from tumour dormancy, and a linearly
decreasing immune growth rate was investigated as an

ageing mechanism leading to tumour regrowth [35]. A bifur-

cation analysis was performed to study the behaviour of

system equilibria under the assumption of slowly varying

parameters [36], but the work was theoretical with no discus-

sion of time dynamics or connection to experimental data.

Additionally, in the same paper, the role of immunoediting

in cancer evasion through mutation to a resistant clone was

studied analytically. Effects of both direct cell contact [37,38]

and bounded noise [39] have also been investigated. Interest-

ingly, a spatio-temporal model of emerging cancer cell

resistance suggests that escape may occur through declining

recognition or increasing resistance (or both) [40]. In relation

to the role of B7-H1 in cancer resistance, Galante et al. [41] pro-

posed a model to examine the interactions between CTLs and

cancer cells that have low or high expression of B7-H1. While

they did not consider the time-evolution of this expression,

they did include both the Fas/FasL and perforin/granzyme

mechanisms of CTL-induced apoptosis.

Here, we present two approaches to mathematically study

the observed decline in CTL predation efficacy owing to

cancer dormancy time. The first approach is more empirical

and takes into account the observed decay trend for the

CTL predation strength in a model of cancer–immune inter-

actions to predict the resulting dynamics and possible escape

from dormancy. Interestingly, this approach suggests that

decline in predation may be accompanied by either increased

recruitment without cancer escape from dormancy, or a

decline in recruitment with cancer escape from dormancy.

It is concluded, in this case, that predation decay must be

coupled with recruitment decay (or T-cell exhaustion) in

order for the model to predict escape from the dormant

state, suggesting that recruitment ability may be a stronger

determinant of escape potential than predation strength.

The second approach is more mechanistic in that it con-

siders the immune system as a process that selectively

prunes a heterogeneous population of cancer cells to produce

a more homogeneous population that may correspond to the

overexpressing B7-H1/B7.1, highly resistant, population of

cells described by Saudemont & Quesnel [9], or to a cancer

stem cell population as described by Schatton et al. [13].

This mechanistic approach uses the immunoediting hypoth-

esis to transform a mostly sensitive population into a

mostly resistant population, while still maintaining the dor-

mant state. In silico per cent lysis assays predict a decline in

CTL efficacy with time in dormancy owing to the evolving

heterogeneity of the population. The predicted decline in preda-

tion strength agrees with the experimentally observed decline

while providing an intuitive and mechanistic explanation for

its cause. Repetition of the described transition from more sen-

sitive to more resistant populations will eventually lead to

cancer escape from the dormant state.
2. Material and methods
2.1. Experimental data
Saudemont & Quesnel [9] use a mouse model of AML (DA1-3b)

to investigate the immune-induced dormant state. Mice were

immunized with three injections of irradiated and IL12- or

CD154-transduced DA1-3b cells, challenged with wild-type cells

and randomly sacrificed over a 1 year period. CTL activity was

measured with effector cells from vaccinated mice, and the
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Figure 1. Immune cytotoxicity assay data and model fits for predation decay after 0, 35, 60, 90, 120 or 365 days in dormancy. (a) Experimental specific lysis assay
data published by Saudemont & Quesnel [9] ( figure 2e) show predation efficacy after various days in dormancy as a function of the effector – target (immune –
cancer) cell ratio, and (b) another view of these data that shows the decay of each effector – target ratio with time in dormancy. (c) The predation efficacy parameter
a0 was estimated using our MCMC algorithm and the experimental data at each time point, resulting in the values indicated by the red dots. Three fits for the decay
of predation efficacy were then estimated by least squares fitting. Fit 1 is an exponential decay, fit 2 is an exponential decay but the initial value (day 0) is matched
to the day 0 data estimate a0

d ¼ a0, and fit 3 is a modified exponential decay. (d – f ) The simulated cytotoxic assays assuming the predation decays according to
fit 1, 2 or 3.
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specific lysis assays were conducted after various times in dor-

mancy (0, 35, 60, 90, 120 and 365 days). The data suggest that the

longer the cancer cells were kept in an immune-induced dormant

state, the more resistant they became to CTL predation. For the

sake of simplicity, we interpret this as a loss of T-cell predation

efficacy and immunological function. Plots of the experimen-

tal data are shown in figure 1a,b, demonstrating the decay in

efficacy as either a function of effector–target (immune–

cancer) cell ratio or as a function of time in dormancy (for constant

effector–target ratios).

In addition to the marked decline in cytotoxic efficacy,

production of IFN-g and TNF-a was found to decrease in CTL-

cancer cell co-cultures the longer the DA1-3b cells were maintained

in the dormant state. Because both these cytokines are signalling

proteins associated with activating and maintaining anti-tumour

immunity [42], we interpret this decline as a reduction in recruit-

ment potential. In our model, we consider only the presence of

activated CTLs, and thus the primary action of these cytokines

within the framework is to stimulate the presence of active CTLs

through chemoattraction, growth and differentiation. This is, by

necessity, a simplified view of these multifaceted cytokines.
2.2. Markov chain Monte Carlo parameter estimation
A Markov chain Monte Carlo (MCMC) algorithm [43,44] is used

to estimate the predation strength parameter, at with t ¼ 0, 35,

60, 90, 120 and 365, where the estimated values are anticipated

to decrease with time in dormancy. The parameter estimation
algorithm works as follows: from an initial guess of at, an MC

of permitted parameter values is created by randomly perturbing

the previous value and accepting this perturbed value with a

probability determined by a measure of the goodness of fit.

Here, we use the sum of squared deviations between simulated

and experimentally measured percentage of cancer cell lysis at

each effector–target ratio. The algorithm is repeated 10 times

with each run having 20 000 iterations and varying initial guesses.

The 10 runs produced consistent results indicating a math-

ematically consistent system. The simulated lysis assay time was

taken to be 2 h. The resulting estimated values of predation

strength at each time point (time held in dormancy) are denoted

fa0, a35, a60, a90, a120, a365g and indicated by the red dots

in figure 1c.

To model the decay trend observed in the experimental data,

we prescribe three functional forms based on an exponential

decay and fit their parameters to the data. Fit 1 is a typical expo-

nential decay function, fit 2 is an exponential decay function with

the initial value forced to match the day 0 estimate, that is

a0 ¼ ad
0 ¼ a0, and fit 3 is a modified exponential decay with a

square-root to slow the effect of progressing time. That is,

fit 1 : aðtÞ ¼ a0 expð�t=tÞ; ð2:1Þ

fit 2 : aðtÞ ¼ ad
0 expð�t=tÞ ð2:2Þ

and fit 3 : aðtÞ ¼ a0 expð�
ffiffiffiffiffiffiffi
t=t

p
Þ: ð2:3Þ

For fits 1 and 3, parameters a0 and t are fit, in the least squares

sense, to the values of fa0, a35, a60, a90, a120, a365g previously



Table 1. Parameter values used in the simulations.

parameter definition

a ¼ 0.2 cancer growth rate

K ¼ 1010 cancer carrying capacity

a0 ¼ 1024 cancer sensitivity to immune predation

( predation strength)

g ¼ 0.2 immune growth rate

Ie ¼ 100 immune homeostatic state
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estimated by fitting the model to the per cent lysis data at each

time point with an MCMC algorithm. For fit 2, only t is fit in

the least squares sense, as the initial value is forced to match

the data estimate, or a0 ¼ ad
0 ¼ a0. Note that in the MCMC fitting

algorithm, the time of the simulated lysis assay is 2 h.

Figure 1c shows these three fits and the estimated preda-

tion strength values that they are fitted to. Figure 1d– f
shows the simulated cytotoxic assays assuming the three fits.

From these plots, it appears that the best fit to these data is

fit 3, because the error of the fit is smallest, i.e. the spread

between the per cent lysis curves is captured most accurately

by fit 3.
m ¼ 1023 immune recruitment potential

C0 ¼ 104 cancer initial condition for homogeneous

population per cent lysis simulations

C0 ¼ 1 cancer initial condition for homogeneous

population growth simulations with decays

C0 ¼ 9 � 103 sensitive subpopulation initial condition for

heterogeneous population simulations

R0 ¼ 103 resistant subpopulation initial condition for

heterogeneous population simulations

terface
Focus

3:20130010
2.3. Mathematical modelling and numerical simulations
We consider homogeneous populations of cells that can vary in

time but have no spatial dimensions. Thus, the mathematical for-

mulation outlined below uses ordinary differential equations to

describe the rate of change of each population whose size is

measured by the number of cells. We consider two populations

of cells: cancer cells, C(t), and immune cells, I(t). The cancer

cells are assumed to grow according to a logistic growth function

and to be inhibited by immune cells (mostly comprised of CD8þ

T-cell effectors) according to the law of mass action. The equation

governing tumour growth is thus,

dC
dt
¼ aC 1� C

K

� �
� a0CI; Cð0Þ ¼ C0: ð2:4Þ

Here a is the proliferation rate and K is the carrying capacity, or

maximum size of the cancer population.

We note that the assumption of mass action to govern the

predation term may be viewed as overly simple, but we argue

that it is sufficient for our purposes. For example, de Pillis et al.
[45] claim that a ratio-dependent Hill-formulation predation

term better fits the shape of experimental per cent lysis curves.

The ratio-dependent form presented, however, better captured

the saturation effect observed in the experimental data they

were fitting [46,47]. The saturation effect describes the appear-

ance of a limit on per cent lysis, or the lack of increase in

predation strength with increasing effector–target ratio. In the

experimental data of Saudemont & Quesnel [9], however, there

is no indication of saturation in the per cent lysis curves, and

thus we feel that the assumed mass-action form adequately

captures the trends observed in these data.

In the mass-action formulation, the strength of CTL preda-

tion is controlled by parameter a0. This parameter controls the

lysis activity and immunological function of the activated

CTLs interacting with the cancer cells. Initially, we will consider

the predation effectiveness to be constant such that the lysis rate

is proportional to the interactions of the two populations, CI.
Next, we will allow the effectiveness to decrease in time, simulat-

ing the observed decay in predation strength with time in

dormancy. Exponential or modified exponential decay functions

will be assumed, which will represent the accumulation of

immune-resistance mutations within the cancer population.

Saudemont & Quesnel [9] correlate this increase in resistance to

increased cancer cell expression of B7-H1 and B7.1. Physically

speaking, the decay in predation strength and immune function

(or increase in cancer cell resistance) should occur as a result of

the interactions of the two populations, but we simplify these

interactions here to their time dynamics, which are captured by

the exponential decay.

The immune population is assumed to grow logistically, with

a proliferation rate of g. The carrying capacity is non-constant,

and may increase due to recruitment by cancer–immune inter-

actions, Ie þ mCI. Note that the initial (i.e. post-immunization)

level of immune presence in the host is Ie. The immune popu-

lation may also be directly recruited by the cancer population,
grC, but this recruitment is ultimately limited by the logistic

growth term. Putting all these together gives

dI
dt
¼ gðI þ rCÞ 1� I

Ie þ mCI

� �
:

To simplify the analysis, however, we shall assume that direct

recruitment by the cancer population is negligible, that is r ¼ 0,

so that the only recruitment occurs through cancer-initiated

increases in the carrying capacity. Thus, the immune population

is assumed to grow according to

dI
dt
¼ gI 1� I

Ie þ mCI

� �
; Ið0Þ ¼ Ie: ð2:5Þ

Model equations are numerically simulated in MAPLE (www.

maplesoft.com) with the parameter values listed in table 1.

Parameter values were chosen to simulate an immune-induced

dormant tumour state. Note that these parameter values were not

estimated from experimental data, but that they are biologically

relevant values, as they are intended to allow the model to demon-

strate, quantitatively, the phenomenon of immune-induced tumour

dormancy and the emergence of immune-resistance as observed

in AML [9].
3. Decaying immune predation and
recruitment efficacy

With this mathematical system, we can investigate the effect

on cancer growth dynamics of decay in immune predation

or recruitment owing to dormancy. The increasing ability

of cancer cells to resist CTL-mediated apoptotic signals will

be interpreted mathematically as a decrease in the immune

predation strength with time in dormancy. Similarly, the

decreased production of IFN-g and TNF-a by CTLs in culture

with dormant cancer cells will be interpreted as a decrease in

immune recruitment potential. Thus, we focus here on decay

in two of the model parameters: immune predation strength

a0, and immune recruitment potential m. Analytical and

http://www.maplesoft.com
http://www.maplesoft.com
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numerical results will be discussed in relation to cancer

dormancy and escape from the dormant state.
3.1. Analytical results
We first establish the baseline behaviour of the mathematical

system defined by equations (2.4) and (2.5) using a bifurcation

analysis on the predation strength parameter. Equilibrium

points of the system, found by solving (dI/dt ¼ dC/dt ¼ 0),

are (I, C) ¼ (0, 0), (0, K), (Ie, 0) and (Id, Cd), where

Cd ¼
1

2m
mK þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmK � 1Þ2 þ 4mK a0

a
Ie

q� �

and

Id ¼
1

2mKa0=a
mK � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmK � 1Þ2 þ 4mK a0

a
Ie

q� �
:

As (0, 0) and (Ie, 0) correspond to zero cancer presence, and

(0, K) corresponds to zero immune presence (and a presumably

lethal cancer size), the focus of our analysis will be on the

dormant state given by (Id, Cd), where both the cancer and

immune populations are non-growing.

Assuming positive growth rates (a . 0, g . 0) implies

that the equilibrium point (0, 0) is unstable and that the

point (0, K) is an unstable saddle. If the immune predation

parameter lies in the physical region 0 , a0 , a/Ie, then the

equilibrium point (Ie, 0) is also an unstable saddle, leaving

the point (Id, Cd) as the only stable attractor in the system.

This implies that any non-trivial cancer, given sufficient time,

will be controlled to the dormant state by the immune

response. Note that this accurately models the experimental

set-up of Saudemont & Quesnel [9] where mice were immu-

nized before cancer cell injection to guarantee the formation

of an immune-induced dormant state. Furthermore, note that

if a0 . a/Ie, then the dormant cancer state is negative and

thus unphysical. In this situation, the equilibrium point (Ie, 0)

becomes stable, and thus all tumours will be eliminated,

given sufficient time, because the predation strength with

homeostatic immune surveillance is strong enough to

overcome the tumour growth rate.
The behaviour of the dormant state depends not only on

the predation strength parameter, a0 but also on the immune

recruitment parameter, m. Figure 2 shows bifurcation dia-

grams for the cancer dormant population, Cd, the immune

dormant population, Id and the relationship between the

two. Two regions are displayed in each graph, one region

contains solutions where m . 1/K (shaded blue) and the

other where m , 1/K (shaded green).

The cancer dormant state (Cd) tends to zero as immune pre-

dation approaches the maximal size a0¼ a/Ie, but behaviour

differs based on three cases of the recruitment potential as

predation strength weakens. That is, when m� 1=K then

Cd � Kð1� a0Ie=aÞ, which tends to Cd ¼ K as predation weak-

ens. Also, when m ¼ 1/K then Cd ¼ Kð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0Ie=a

p
Þ, which

lies below the previously described case, but also tends to

Cd ¼ K as a0! 0. Interestingly, however, when m� 1=K;
then Cd � 1=mð1� a0Ie=aÞ, which tends to Cd ¼ 1=m� K
as predation weakens. This suggests that when recruitment is

strong, the dormant cancer state may be achieved and main-

tained below the maximum possible size, even as predation

strength weakens.

For the dormant immune population, Id, when recruit-

ment is very strong, that is, in the limit as m!1 (m . 1/K),

then Id! a/a0, which tends to infinity as a0! 0. Similarly,

if m ¼ 1/K, then Id ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aIe=a0

p
, which is also unbounded as

predation weakens. In the range m , 1/K, if mK� 1; then

Id ¼ Ie½1þ ð1� a0Ie=aÞmK þOðm2K2Þ�, which shows that

for mK � 0, Id � Ie and for 0 , mK� 1, Id � Ieð1þ mKÞ as

a0! 0, indicating that in these cases, the immune dormant

population is bounded when predation weakens owing to neg-

ligible recruitment potential. The cases for strong recruitment

suggest that as predation weakens the immune response will

grow infinitely large to compensate for the loss in efficacy.

This analysis suggests that strong recruitment potential is

essential for the maintenance of the dormant state given that

predation strength decays in time. It also suggests that to com-

pensate for the decreasing efficacy, the immune population

must grow infinitely large, which may result in either of two

outcomes. First, the host may not be able to survive such a

large immune onslaught, and second, the immune response
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Figure 3. Simulations of immune-mediated tumour dormancy assuming the three fits to predation decay. Predation strength is assumed to decay according to fit 1
in (a), fit 2 in (b) and fit 3 in (c). Cancer – immune phase portraits for each fit are shown in (d – f ). Note that the recruitment is strong enough to increase the
immune population sufficiently to compensate for the diminishing predation strength, thus maintaining the dormant state. Theoretically, in long time, this will
require the immune population to grow infinitely large, which is unphysical.
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may become exhausted at some point and be incapable of

producing any more immune cells.

3.2. Numerical simulations and results
While the earlier-mentioned analytical results are very infor-

mative, they do not illuminate the time dynamics of the

induction of dormancy or the escape from dormancy—both

of which are critical to host survival. Numerical simulations

will now be presented to examine the dynamics of the

system over time.

Note. The oscillations present in these simulations may be a

modelling artefact, or they may be an observable biological

phenomenon. In this model, the immune response necessarily

lags behind the predation level required to exactly control the

tumour, because the immune response grows only in response

to cancer presence. This lag produces the oscillations observed

in the simulations. However, both clinical and experimental

observations of oscillatory behaviour in immune cells [48,49]

and cancer burden [50–53] have been reported.

3.2.1. Decay in predation efficacy
Figure 3 shows the simulated cancer and immune growth

curves assuming that the predation efficacy decays according

to these three fits. As predicted, with strong recruitment, the

immune population grows large to compensate for the dimin-

ishing predation efficacy, while still maintaining the cancer in

the dormant state. Both the growth curves and phase portraits

demonstrate the slower progression captured by fit 3 compared

with fits 1 and 2. Because of the unlimited immune recruit-

ment, the dormant cancer state will always (theoretically)
be maintained, and thus the cancer escape time for these fits

is infinite. Note that we define the escape time as the time

it takes the cancer population to reach the size of 109 cells, a

presumably symptomatic and near-lethal size.
3.2.2. Limited immune potential
Theoretically, the immune response will grow unbounded to

compensate for the decay in predation strength with our

assumption of strong recruitment potential. However, phys-

ically, this should be impossible as either the host will

succumb to symptoms associated with such a large immune

presence, or, the host will limit the immune response to some

maximal tolerable size through T-cell exhaustion. Here, we

consider the latter case, where the immune response is limited

to 109 cells. Owing to the oscillations in population size, we

limit the immune size once the mean value over one oscillation

is greater than or equal to the theoretical limit. After this point

in time, the immune response is large and constant, and thus

cannot compensate for any further decay in predation strength.

As a result, the cancer population will escape dormancy with

further decay in predation efficacy.

T-cell exhaustion, which includes the inability to proliferate

or recruit new T cells in addition to the decline in predation

strength, provides a possible mechanism for cancer escape

from dormancy. Figure 4 shows simulations of the cancer

growth curves with limited immune responses assuming the

three fits in predation decay. Escape times for the cancer popu-

lation are 8.5 years for fit 1, 6.5 years for fit 2 and 47.9 years for

fit 3. The much slower decay captured by fit 3 results in a much

larger prediction of escape time. In these simulations, the limit
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Table 2. Time for the cancer population to reach the size of 109 cells with parameter values as listed in table 1 if not specified. Three fits to the predation
decay are assumed and applied to decaying predation, decaying recruitment and decaying predation and recruitment.

fit 1 fit 2 fit 3

a0exp(2t/t)

a05 7.25 3 1025

t 5 227.9

a0exp(2t/t)

a05 a05 1.054 3 1024

t 5 168.1

a0exp(2
ffiffiffiffiffiffiffi
t=t

p
)

a05 1.08 3 1024

t 5 99.0

predation decay n.a. n.a. n.a.

predation decay with

limited immune

response

3100 days or 8.5 years (200 days

after the immune limit is

reached)

2367 days or 6.5 years (159 days after

the immune limit is reached)

17 486 days or 47.9 years (438

days after the immune limit is

reached)

recruitment decay 3159 days or 8.6 years 2334 days or 6.4 years 19 077 days or 52.2 years

predation and

recruitment decay

3135 days or 8.6 years 2312 days or 6.3 years 18 901 days or 51.7 years
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imposed on immune presence provides the mechanism for

cancer escape following the decline in predation strength, as

without this limit, escape would theoretically never occur.

3.2.3. Decay in recruitment potential
The decreased production of anti-tumour-associated cyto-

kines by cancer–immune co-cultures after increasing time

in dormancy suggests that immune recruitment potential, in

addition to predation efficacy, may decay. For the sake of

simplicity, we assume that the same three fits of decay,

equations (2.1)–(2.3), apply for the recruitment potential

with the same timescale t as determined by the fitting pro-

cedure (table 2). The initial value for m is as listed in table 1.

With decay in recruitment potential, the immune

response becomes unable to grow in response to the cancer

presence and thus allows the cancer population to slowly

escape from the dormant state. Figure 5 shows the effect on

tumour growth of decay in recruitment potential, assuming

all three fits. The escape time, when the cancer population

reaches 109 cells, is 8.6 years for fit 1, 6.4 years for fit 2 and

52.2 years for fit 3, respectively.

3.2.4. Decay in predation and recruitment
Finally, we assume that both immune predation strength and

recruitment potential decay with time in dormancy according
to the fits described in table 2. Figure 6 shows the simulations

corresponding to this dual decay. As predation strength and

recruitment both decay, the cancer population is allowed to

grow larger, and as a result, the dormant state is escaped.

Interestingly, these two factors combined do not significantly

alter the escape time compared with recruitment decay alone.

In these dual-decay simulations, the cancer population will

reach 109 cells in 8.6 years for fit 1, 6.3 years for fit 2, and

51.7 years for fit 3—only slightly faster than was predicted

by decay in recruitment alone.

The escape time results for these four cases assuming the

three fits are summarized in table 2. The fastest escape times

are predicted by fit 2, and the slowest times by fit 3. Predation

decay alone cannot explain escape from dormancy so long as

the immune response can grow to compensate for the lost

efficacy. If the immune response is somehow limited, how-

ever, then escape will occur after 2367 days (or 6.5 years) of

growth assuming fit 2. This is 159 days after the immune

response was limited. In comparison, if recruitment decays

alone, cancer escape will occur in 2334 days (or 6.4 years),

and if both recruitment and predation decay, then escape

will occur in 2312 days (or 6.3 years). This suggests that

decay in recruitment potential is the stronger mechanism of

cancer escape than decay in predation strength, especially

because their combined actions do not significantly alter the

escape time of recruitment decay alone.
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4. Emergence of a resistant cancer
subpopulation

We now investigate one possible mechanism for the observed

decay in predation strength with time in dormancy. The

immunoediting hypothesis [1] proposes that during dormancy,

immune selection processes can eliminate sensitive sub-

populations of the cancer, leaving more resistant (and less

immunogenic) subpopulations to grow in their place. Exper-

iments in mice have demonstrated this fact, by clearly

showing how the immunoediting process can drive cancer pro-

gression by selecting cancer subpopulations with decreased

sensitivity to immune attack and decreased immunogenicity

[5,6]. Presumably, this process occurs iteratively as new

mutations lead to the production of more or less sensitive sub-

populations over time. Here, we consider a simple analogy of

the immunoediting process with two subpopulations: sensitive

cancer cells, C(t), and resistant cancer cells, R(t). Subject to the

predation imposed by immune cells, I(t), we demonstrate

how a population that is initially composed of mostly sensitive

cells, can, over the course of 1 year in dormancy, transform into

a population composed mostly of resistant cells, and thus cause

the appearance of decreased immune predation efficacy, as

observed by Saudemont & Quesnel [9].
4.1. Modification of the mathematical model
We now extend our mathematical model to allow for two

subpopulations within the cancer: C(t), an immunogenic
and immuno-sensitive subpopulation, and R(t), a less-

immunogenic and immuno-resistant subpopulation. The

sensitive subpopulation is assumed to grow according to

dC
dt
¼ aC 1� Cþ R

K

� �
� a0CI; Cð0Þ ¼ C0; ð4:1Þ

and the resistant subpopulation is assumed to grow accord-

ing to

dR
dt
¼ bR 1� Cþ R

K

� �
� b0RI; Rð0Þ ¼ R0: ð4:2Þ

Note that both subpopulations contribute to the total carry-

ing capacity of the cancer, which introduces a competition

mechanism for space and nutrients between the two

subpopulations.

The immune population is assumed to be strongly

recruited by the sensitive subpopulation (with recruitment

potential m) and weakly recruited by the resistant subpopu-

lation (with 0.1% of the recruitment potential m). Thus,

immune population growth is governed by

dI
dt
¼ gI 1� I

Ie þ mðCþ 0:001RÞI

� �
; Ið0Þ ¼ Ie: ð4:3Þ
4.2. Analytical results
In the logistic growth terms of (4.1) and (4.2), the sum of the

two subpopulations contribute to the total cancer carrying

capacity, which allows each subpopulation to inhibit the

other through the biological mechanisms of competition
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Figure 6. Simulations of immune-mediated tumour dormancy assuming the three fits for decay are applied to both the predation strength and the recruitment potential.
Predation and recruitment are assumed to decay according to fit 1 in (a), fit 2 in (b) and fit 3 in (c) with initial values of m ¼ 1023 and the initial predation strengths and
timescales of the decays determined by the fit. Cancer – immune phase portraits for each fit are shown in (d – f ). Note that as predation strength and recruitment decay
together, the immune population cannot maintain the dormant state, but the two populations grow large together. After long time, however, the immune response
returns to the homeostatic level since recruitment has become negligible. The escape time for each fit is indicated in the corresponding plot.
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for space and nutrients. For example, if C is much larger than

R, then C will continue to grow while the growth of R will be

inhibited by the large presence of C. Because of this compe-

tition, if one subpopulation proliferates slower than the

other, there is an increased chance that the inhibition will

smother the slower proliferating subpopulation. Addition-

ally, there is no evidence to suggest that the immunoediting

process selects for cancer subpopulations with shortened

proliferation times. Thus, we assume that both cancer sub-

populations in our model have equal proliferation rates and

set a ¼ b.

Non-trivial dormant solutions to the system of equations

given by (4.1)–(4.3) are found by setting dC/dt ¼ dR/dt ¼ dI/
dt ¼ 0. Solving this system indicates that dormancy can exist

with either one of the cancer subpopulations eliminated,

(C, R, I ) ¼ (Cd, 0, Id) or (C, R, I ) ¼ (0, Rd, Id), or where both

subpopulations exist (C, R, I ) ¼ (Cd, Rd, Id). This last case,

where both subpopulations are non-trivial, requires the

following two criteria:

ðiÞ Id ¼
Ie

1� mCd � 0:001mRd
and ðiiÞ a0

a
¼ b0

b
: ð4:4Þ

The first criterion requires that the immune response has sat-

isfied the recruitment signals emitted by the cancer

population, and the second requires that the ratio of the pre-

dation effectiveness parameter to the proliferation rate is the

same for the two cancer subpopulations. Under our assump-

tion that a ¼ b, this second criterion requires b0 ¼ a0, so that
the two populations have the same sensitivity to immune

predation—contradicting our assumption of one sensitive

and one resistant subpopulation.

Therefore, if both cancer subpopulations exist simultaneously

in the dormant state, with the same proliferation rates, they must

both be equally sensitive to immune predation. If, however,

one subpopulation is more resistant to predation than the

other, that population will be maintained in dormancy while

the sensitive population will be eliminated.

4.3. Numerical simulations and results
Simulations of this model system are shown in figure 7.

Parameter values are listed in table 1 with the addition of

b ¼ a and the value of b0 indicated in each subfigure. In

figure 7a, both the growth rates and the predation sensi-

tivities are equal between the two cancer subpopulations as

required by the second criterion mentioned earlier. Using

initial conditions C0 ¼ 9 � 103 and R0 ¼ 103 (so that resistant

cells are 10% of the population), dormancy is induced by the

immune response with decaying oscillations. In figure 7b, this

induction of dormancy is indicated by the black diagonal line

that connects the initial composition to the dormant point in

the phase portrait for resistant-to-sensitive cancer subpopu-

lations. Also demonstrated here is the effect of increasing or

decreasing the predation strength for the resistant subpopu-

lation. Note that if b0, a0, then the resistant subpopulation

is less sensitive to immune predation and thus increases

to a larger dormant size while simultaneously eliminating
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Figure 7. The transition of a heterogeneous cancer population to a mostly homogeneous but resistant population can explain the observed decline in pre-
dation efficacy. Induction of the dormant state for the heterogeneous population (90% sensitive and 10% resistant cancer cells) is shown in (a) and cancer
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the sensitive subpopulation through contact inhibition.

Figure 7c demonstrates the time-course of this process. In

comparison, if the resistant subpopulation is more sensitive

to immune predation (contrary to its definition), then the

resistant subpopulation will be eliminated by the immune

response, leaving a homogeneous sensitive population in

the dormant state.

To eliminate the noise introduced by the oscillations, we

now choose initial conditions close to the dormant state

induced when b0 ¼ a0 to demonstrate the effect of immunoe-

diting on observed predation efficacy when b0 , a0. This

simulates the acquisition though mutation of a small resistant

subpopulation within a dormant mostly homogeneous and

sensitive cancer population. The new initial conditions are

C0 ¼ 950, R0 ¼ 106 and I ¼ 2000. Figure 7d shows the time

dynamics of the transition from one dormant state to the

other when b0 ¼ 0.5a0. Figure 7e shows how the per cent com-

position of the tumour changes over this transition, with the

days where experimental measurements were obtained indi-

cated. And finally, figure 7f shows the simulated per cent

lysis curves that would be obtained at each time point in
dormancy assuming the heterogeneous composition

indicated for that time by figure 7e.

The observed decay in immune cell predation efficacy [9] is

captured by the simulated per cent lysis curves, and the simu-

lated curves fit the experimental data well. In this example, the

process of immunoediting converted a heterogeneous popu-

lation of about 90 per cent sensitive cells and 10 per cent

resistant cells to about 100 per cent resistant cells over the

course of 1 year. In doing so, the dormant cancer burden was

increased from about 104 cells to about 106 cells, which still

represents a small cancer burden to the host.
5. Discussion
5.1. Decline in recruitment a strong mechanism to

escape dormancy
Assuming strong immune recruitment potential, our work

suggests that decay in immune predation may not be sufficient

to explain cancer escape from dormancy. Theoretically, the
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immune response may be able to sustain the dormant state by

increasing immune presence to compensate for the loss in preda-

tion strength. In long time, however, this may require an almost

infinite immune presence, which is unphysical. Therefore, we

consider that the immune response may be ultimately limited

through an immune-exhaustion mechanism wherein the CTLs

become unable to proliferate or recruit more immune cells in

addition to the decline in predation efficacy. With this additional

mechanism of limiting the immune response, our simulations

predict cancer escape in as little as 6.5 years (fit 2).

Interestingly, decay in immune recruitment potential alone

can explain cancer escape from dormancy. Our simulations

show that even with strong predation strength, declining recruit-

ment will lead to cancer escape. The escape times predicted in

this case range from 6.4 (fit 2) to 52.2 years (fit 3). When both pre-

dation strength and recruitment potential are allowed to decay

the escape times are not significantly shortened when compared

with the previous case. The smallest escape time predicted is 6.3

years (fit 2).

This work suggests that recruitment decay is a stronger deter-

minant of cancer escape than decay in predation efficacy because

cancer escape is only predicted when recruitment is declining or

limited. Additionally, escape times are not significantly shor-

tened when predation decay is added to recruitment decay.

Theoretically, if recruitment is strong enough, it can maintain a

dormant cancer state until the required immune presence

overwhelms the host.

Incidentally, the escape times predicted by our model with

fits 1 and 2 seem to correspond to recurrence rates for immune-

induced cancer dormancy. In clinical trials reported by Davis

et al. [54] individuals with B-cell lymphomas were treated with

anti-idiotype antibodies to stimulate an immunological reaction

to their cancer. In five of the reported patients, residual disease

(evidence of cancer dormancy) was found after 3–8 years,

and these five continued recurrence-free for up to 3 years after

the study. This suggests that the escape time for these

immune-induced dormant cancers was at least 6 years.

In the least squares fitting procedure, fit 3 provided the best

fit to the experimental per cent lysis curves from [9]. Fits 1 and 2,

however, seem to predict cancer escape times that are more bio-

logically relevant. This observation may be a consequence of

over-fitting the data—or using a more complex model to capture

an aspect of the data that is not as significant as the general trend.

Another explanation may be that this data-driven modelling

approach may misrepresent the actual causative mechanism of

cancer escape from dormancy, which may be better captured

by the mechanistic (immunoediting) approach described in §4.

5.2. Immunoediting a mechanism for declining
cytotoxic T lymphoctye efficacy

Immunoediting has been proposed as one mechanism behind

the escape of cancers from dormancy [1,5,6], and here we

have demonstrated that this mechanism can also explain the

observed decline in predation efficacy. Increase in cancer cell

resistance to CTL-induced apoptotic signals has been linked

to an increase in B7-H1 and B7.1 surface markers and a decrease

in the production of anti-tumour immunity cytokines IFN-g

and TNF-a [9]. These observations were incorporated into

our simulation of the immunoediting process, wherein a lar-

gely sensitive and immunogenic population was transformed

over the course of 1 year into a population consisting of cancer

cells that were less sensitive to immune attack and less
immunogenic (lower recruitment potential). This transformation

recapitulates the decay observed in CTL per cent lysis curves

with time in dormancy through a mechanistic explanation.

Over time, mutations may arise in the cancer popula-

tion creating more subpopulations of increasingly resistant

cancer cells with low immunogenicity or increasingly sensitive

cancer cells with high immunogenicity. The immunoediting

process will quickly clear the mutations leading to more

sensitive cancer cells, whereas the mutations leading to more

resistant cancer cells will transform the population as

demonstrated here. Through repetition of this transformation

process, the cancer will eventually escape the dormant state,

leaving behind an evolutionary history of increasingly resist-

ant, decreasingly immunogenic, subpopulations.
6. Conclusions
This work is a first attempt to mathematically investigate the

dynamics and mechanisms of immune-induced dormancy

and immunoescape by incorporating relevant timescales of

decay from experimental data. Other theoretical investi-

gations have been made [32,34–37,40], but these lacked a

connection to experimental cancer dormancy data. We have

made many simplifying assumptions in this work to distil

the process of cancer escape down to the fundamental players:

cancer cells and CTLs. By necessity, we have thus ignored

other cell types that may contribute to immune suppression

(such as T regulatory cells and myeloid derived suppressor

cells). We have also ignored other confounding factors such

as the tumour microenvironment, tumour vasculature and

other stromal cells. These additional players, as well as the

incorporation of patient data, would enhance this model and

lead to a more biologically complete predictive framework

for the study of cancer dormancy and immunoevasion.

The goal of this work is to investigate the escape mechanisms

from the immune-induced dormant state. To do this, we impose

the dormant state, as is done in the AML mouse model [9],

through the assumption of high immune recruitment and preda-

tion parameter values. Conversely, in patients, minimal residual

disease may be imposed following therapies, and the immune

response may play a role in maintaining this dormant state. All

models, whether mouse or mathematical, are simplifications

of the complex real-world system, but are nonetheless useful

tools to investigate causative mechanisms. Here, we design the

mathematical model to ensure the dormant state is reached

(mimicking the mouse model and not patient outcome) so that

the mechanisms of escape might be analysed.

The concept of treating cancers and minimizing recur-

rence through long-term maintenance of the dormant state

[55] requires a complete understanding of all mechanisms

of escape. Mathematical models and analyses provide an

alternate modality to investigate these biological mechan-

isms, and continued interdisciplinary work can only lead to

a more rapid attainment of this goal.

This project emerged from discussions during the First Annual
Center of Cancer Systems Biology Workshop, ‘Systems Biology of
Tumour Dormancy’, hosted at Steward Saint Elizabeth’s Medical
Center, Tufts University School of Medicine [56]. The authors wish
to thank the participants of the immune working group where this
problem was discussed. This work was supported by the National
Cancer Institute under award no. U54CA149233 (to L. Hlatky) and
by the Office of Science (BER), US Department of Energy under
award no. DE-SC0001434 (to P.H.).
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