
rsfs.royalsocietypublishing.org
Research
Cite this article: Gevaert O, Villalobos V, Sikic

BI, Plevritis SK. 2013 Identification of ovarian

cancer driver genes by using module network

integration of multi-omics data. Interface Focus

3: 20130013.

http://dx.doi.org/10.1098/rsfs.2013.0013

One contribution of 11 to a Theme Issue

‘Integrated cancer biology models’.

Subject Areas:
computational biology, systems biology

Keywords:
gene expression, DNA methylation, copy

number, ovarian cancer, data integration

Authors for correspondence:
Olivier Gevaert

e-mail: olivier.gevaert@gmail.com

Sylvia K. Plevritis

e-mail: sylvia.plevritis@stanford.edu
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsfs.2013.0013 or

via http://rsfs.royalsocietypublishing.org.
Identification of ovarian cancer driver
genes by using module network
integration of multi-omics data

Olivier Gevaert1, Victor Villalobos2, Branimir I. Sikic2 and Sylvia K. Plevritis1

1Cancer Center for Systems Biology, Department of Radiology, Stanford University, Lucas Center for Imaging,
1201 Welch Road, Stanford, CA 94305, USA
2Division of Medical Oncology, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA

The increasing availability of multi-omics cancer datasets has created a new

opportunity for data integration that promises a more comprehensive under-

standing of cancer. The challenge is to develop mathematical methods that

allow the integration and extraction of knowledge from large datasets such

as The Cancer Genome Atlas (TCGA). This has led to the development of a

variety of omics profiles that are highly correlated with each other; however,

it remains unknown which profile is the most meaningful and how to

efficiently integrate different omics profiles. We developed AMARETTO, an

algorithm to identify cancer drivers by integrating a variety of omics data

from cancer and normal tissue. AMARETTO first models the effects of

genomic/epigenomic data on disease-specific gene expression. AMARETTO’s

second step involves constructing a module network to connect the cancer dri-

vers with their downstream targets. We observed that more gene expression

variation can be explained when using disease-specific gene expression data.

We applied AMARETTO to the ovarian cancer TCGA data and identified sev-

eral cancer driver genes of interest, including novel genes in addition to known

drivers of cancer. Finally, we showed that certain modules are predictive of

good versus poor outcome, and the associated drivers were related to DNA

repair pathways.
1. Introduction
The unprecedented wealth of data currently being generated for cancer patients

has provided us with the challenge of its interpretation and translation to per-

sonalized medicine. Personalized medicine aims to tailor medical care to the

individual through the meaningful characterization of biological heterogeneity

present in cancer. Technological innovation has enabled the acquisition of

multi-scale information ranging from genotypes to several phenotypic layers.

For example, advances in high-throughput sequencing allow quantification of

global DNA variation and RNA expression of tissue or blood samples [1–3].

These platforms produce a variety of omics profiles that, while highly correlated

to each other, often raise difficulty in discerning meaningful interpretation

and integration.

Previous data integration efforts in cancer have focused on integrating a subset

of omics profiles. For example, Ciriello et al. [4] used a method based on mutual

exclusivity to model copy number and mutation data and identified driver

genes in glioblastoma. Similarly, Vandin et al. [5] developed a method to identify

driver genes in cancer, but focused on finding pathways with a significant enrich-

ment of approximately mutually exclusive genes. In addition, other groups are

focusing on identifying driver genes through network analysis of copy number

data to filter potential regulators in Bayesian module network analysis [6].

We selected a module network approach to integrate copy number, DNA

methylation and gene expression data. We developed an algorithm called

AMARETTO to unravel cancer drivers by using data integration of omics data,

conditioned on differential expression between cancer and normal samples. We

applied AMARETTO to the ovarian cancer data from The Cancer Genome Atlas
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Figure 1. Workflow of AMARETTO. Step 1 involves generating a list of candidate cancer driver genes by using a linear model capturing the relationship between
genomic and transcriptomic data for each gene separately. First, we create disease-specific gene expression (DSE) profiles by taking normal gene expression profiles
into account. Second, only genes identified by GISTIC and MethylMix are modelled. Step 2 connects the cancer drivers from step 1 with their downstream targets by
reconstructing a module network. This module network associates a set of co-expressed genes with cancer driver genes through learning a regulatory program. The
regulatory program is modelled using linear regression with elastic net regularization.
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(TCGA) project [7]. AMARETTO builds further on previous

work by adding a number of new concepts [8]. AMARETTO

focuses on identifying what is specifically aberrant in cancer

tissue compared with normal tissue, although matched can-

cer and normal samples are not required for each patient;

this specific aspect is integrated throughout our algorithm.

In addition, AMARETTO focuses on candidate cancer dri-

vers that are recurrent in different samples and are regarded

as functional. Drivers are regarded as functional if there is a sig-

nificant relationship between the genomic/epigenomic event

and their resulting gene expression. AMARETTO also incor-

porates DNA methylation data, which to date are often not

integrated because of a lack of methods to extract cancer-

specific DNA methylation aberrations. To address this issue,

we developed a method called MethylMix [9] that allows us

to integrate DNA methylation in our workflow as a complemen-

tary driving genomic force of cancer cells, thus enabling us to

expand beyond copy number aberrations.

We applied AMARETTO to identify driver genes based on

multi-omic profiles from 511 ovarian cancer patients. In step 1

of AMARETTO, we identify the main cancer driver genes

based on a linear model of the relationship between copy

number data or DNA methylation data and disease-specific

gene expression data. We observed that both copy number

and DNA methylation are more explanatory of disease-specific

gene expression than raw gene expression. This suggests that

using normal tissue variation as a reference improves the

signal and potential integration of copy number or DNA
methylation data with gene expression. Next, AMARETTO’s

second step connects candidate cancer driver genes with

their downstream targets by constructing a module network.

We discuss several cancer driver genes identified by our

model. We then associate the module network with the

TCGA-identified molecular subtypes in ovarian cancer

to identify the main cancer driver genes. Finally, we correlated

the module network with overall survival and therapy

response, and found some promising associations.
2. Material and methods
2.1. AMARETTO
We developed a method called AMARETTO to identify cancer dri-

vers by using data integration of omics data that considers the

differential expression between cancer and normal samples.

AMARETTO accomplishes this using a multi-step algorithm that

integrates copy number, DNA methylation and gene expression

data to identify cancer driver genes and subsequently associates

them with their downstream targets through module network

analysis. Figure 1 gives an overview of how the steps are linked

to each other and which algorithms are used for each step.

— Step 1 attempts to identify cancer driver genes by modelling

the relationship between genomic and transcriptomic data on

an individual gene basis. In addition, we add two important

filters to this model. First, we take gene expression variation

in normal tissue into account and focus on disease-specific
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expression. Second, we focus only on genomic events such as

copy number alterations or aberrant DNA methylation that

are recurrent in the population of cancer samples.

— Step 2 uses the cancer driver genes identified from step 1 and

now takes a global approach by dissecting global gene

expression data into modules of co-expressed genes. Each

module also has an associated gene regulatory program that con-

nects the cancer driver genes from step 1 with their downstream

targets. This gene regulatory program is modelled using linear

regression with elastic net regularization.

2.1.1. Step 1: generating a list of candidate cancer driver genes
To generate a list of candidate cancer driver genes, we used a

linear regression model to estimate the effect of copy number

and DNA methylation on gene expression. This step focuses on

modelling the cis-regulatory effects of genomic data on gene

expression. This linear regression model was built for each

gene independently. Next, we evaluated whether copy number

data had a significant positive effect on gene expression and

whether DNA methylation had a significant effect on gene

expression. These effects were quantified using the R2 statistic.

Significance of each genomic event was selected using 10-fold

cross validation. We modelled disease-specific gene expression

and only focused on genes that have either copy number or

DNA methylation alterations. We describe the algorithms used

for these filters in the following paragraphs.

Disease-specific gene expression analysis: we were specifically

interested in modelling disease-specific gene expression. Our

rationale is that genes which exhibit high variability in normal

tissue are less likely to be candidate cancer drivers. Therefore, we

integrated disease-specific gene expression data into our models

using disease-specific genomic analysis (DSGA; [10]). DSGA is a

mathematical method that first models the normal gene expression

data and subsequently extracts the disease-specific component as a

deviation from normal [10]. The normal gene expression data are

modelled by dimensionality reduction using modified principal

component analysis. Next, each cancer gene expression profile is

then fitted to this normal model and the residual is defined as

the disease-specific component [10].

Filtering for recurrent genomic events using GISTIC and
MethylMix: next, we focused on identifying recurrent genomic

alterations by using several model-based approaches. Copy

number data have been extensively studied in this context, and

several methods are available to identify recurrent amplifica-

tions and deletions [11,12]. We selected the GISTIC method and

extracted the amplified and deleted genes from the GISTIC

output. GISTIC focuses on identifying focal copy number altera-

tions by separately modelling arm-level and focal alterations.

This method identifies candidate driver genes and reduces the

confounding effects of broad-level alterations. Few methods have

been developed that statistically model DNA methylation aberra-

tions in cancer. We recently developed a method called MethylMix

to identify methylation states by differentiating normal DNA

methylation from aberrations found in cancer [9]; a summary

of MethylMix has been provided as electronic supplementary

material associated with this paper. MethylMix uses a mixture

model to identify the major methylation states, compares each

state with normal DNA methylation and identifies which genes

are hyper- and hypo-methylated. We combined both GISTIC

and MethylMix to identify candidate cancer driver genes and

only these genes were used as input for downstream analysis.

2.1.2. Step 2: associating candidate drivers with their
downstream targets

The second step of AMARETTO involves connecting the cancer

drivers of step 1 with their downstream targets by reconstructing

a module network using an approach built upon previous work
[8,13]. This step focuses on modelling the trans-effects of cancer

drivers identified in step 1. A major change in this version of

AMARETTO is that in step 2 we model disease-specific

expression. The algorithm is initiated by clustering the disease-

specific gene expression data into gene modules of co-expressed

genes and then assigns a regulatory program to each module.

This regulatory program is defined as a sparse linear combi-

nation of cancer driver genes selected in step 1 that predict the

module’s mean expression. The sparseness of the regulatory pro-

gram is induced using elastic net regularization. After initial

clustering of the data, the module network algorithm is run itera-

tively by learning the regulatory program and reassigning genes

to modules based on the updated regulatory program. Genes are

reassigned to the module to which they are closest, based on Pear-

son correlation. We used k-means clustering with 100 clusters as

the initial clustering algorithm. Next, our algorithm is run until

convergence corresponding to less than 1 per cent of the genes

being assigned to new modules is achieved.

2.2. Data preprocessing
We used gene expression, copy number and DNA methylation

data from TCGA ovarian cancer [7]. The gene expression data

were produced using Agilent G4502A microarrays. Preprocess-

ing was done by log-transformation and quantile normalization

of the arrays. Next, we used DNA methylation data generated

using the Illumina Infinium Human Methylation 27 Bead Chip.

We used the level 3 methylation data containing methylation

data on 27 578 CpG sites in 14 473 genes. DNA methylation is

quantified using b-values ranging from 0 to 1, with values

close to 0 versus 1 indicating low versus high levels of DNA

methylation, respectively. We removed CpG sites with more

than 10 per cent of missing values in all samples, reducing the

number of usable CpG sites to 23 030 for ovarian cancer.

We used the 15-K nearest neighbour algorithm to estimate the

remaining missing values in the dataset [14]. Next, we used copy

number data produced by the Agilent Sure Print G3 Human

CGH Microarray Kit 1 M � 1 M platform. This platform has high

redundancy at the gene level, but we observed high correlation

between probes matching the same gene. Therefore, probes match-

ing the same gene were merged by taking the average. For all data

sources, gene annotation was translated to official gene symbols

based on the HUGO Gene Nomenclature Committee (version

August 2012). Owing to the size of the TCGA project, the TCGA

samples are analysed in batches and a significant batch effect

was observed based on a one-way analysis of variance in most

data modes. We applied Combat to adjust for these effects [15].

In total, we used 511 primary tumour and eight normal fallopian

tube samples for ovarian cancer [7]. These normal samples were

profiled using the same TCGA pipeline and platform. In addition,

fallopian tube tissue has been shown as a cell or origin for serous

ovarian cancer [16,17]. All TCGA data are accessible at the

TCGA data portal (https://tcga-data.nci.nih.gov/tcga/).

2.3. Gene set enrichment analysis
To evaluate the enrichment of modules with gene sets, we used

several databases, namely: MSigDB v. 3 [18], GeneSetDB v. 4

[19], CHEA for CHIP-X gene sets v. 2 [20] and manually curated

gene sets related to stem cells and immune gene sets. We used

a hyper-geometric test to check for enrichment of gene sets in

the lists of hyper- and hypo-methylated genes. We corrected

for multiple hypothesis testing using the false discovery rate

(FDR; [21]).

2.4. Survival analysis
We used Cox proportional hazards modelling to investigate uni-

variate relationships between modules and overall survival

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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Figure 2. (a) Number of genes whose disease-specific expression is significantly explained by only copy number, only DNA methylation or both. The number of
genes is shown at different thresholds for the R2 value. CGH, copy number data; MET, DNA methylation. (b) Box plot of the difference in the R2 value of the disease-
specific gene expression data versus the uncorrected gene expression data, showing a bias towards a higher R2 for the disease-corrected gene expression data.
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(survival R package v. 2.36–10). Hazard ratios were used to

report the direction of the survival effect, and the Wald test

was used to determine the significance of Cox models. We

applied the FDR to correct for multiple hypothesis testing [21].

2.5. Supervised modelling
We used linear regression with lasso regularization to build

supervised models predicting clinical and prognostic markers

[22], and investigated whether modules can accurately predict

these outcomes by applying 10-fold cross validation to estimate

the performance.
3. Results
3.1. Disease-specific candidate cancer driver genes
Using gene expression, copy number and DNA methylation

data for 511 patients with ovarian cancer from TCGA,

AMARETTO identified both known and novel ovarian

cancer driver genes. We first looked at how disease-specific

copy number alterations and DNA methylation influence dis-

ease-specific gene expression on a genome-wide scale in the

ovarian cancer TCGA data. We used a mathematical method

to estimate the disease-specific gene expression [10] and com-

pared our results with the raw gene expression data, which

were unadjusted for the variation in normal samples. We

used a linear regression model and estimated for each gene

whether copy number, DNA methylation or both are signifi-

cantly predictive of gene expression.

Figure 2a shows the number of genes that have a signifi-

cant effect of copy number, DNA methylation or both. We

compared this with the uncorrected gene expression data

and found that more gene expression variation, captured

using the R2 statistic, can be explained when using the dis-

ease-specific gene expression data. This was also found when

calculating the difference in explained gene expression values

in both cases. We found that this differential R2 distribution

was skewed towards an increased R2 when using the

disease-specific gene expression data ( p-value 3.7261 �
10220, Wilcoxon rank-sum test; figure 2b). In addition, when

focusing on cancer-specific genes from the cancer gene
census [23], we observed a tendency towards higher R2

values for cancer-specific genes after correction for normal

gene expression data ( p-value 0.0652, Wilcoxon rank-sum test).

Regarding STAT3, for example, we observed an increase of

14 per cent in the R2 value when explaining its disease-specific

gene expression (36% versus 22% for the disease-specific model

versus the model not adjusted for normal variation), solely

based on its copy number. Similarly, TNFRSF1A shows an

increase of 11 per cent for the R2 in the disease-specific

model versus the model not adjusted for normal. Both genes

have functions related to cell growth and apoptosis, which rep-

resent major processes that are deregulated in cancer. Next, we

looked at examples of a decreasing R2 in the disease-specific

gene expression. This corresponds to genes where adjusting

for normal variation reduces the correlation between genomic

markers and gene expression. We found, for example, that

LY86 shows a decrease of 13 per cent, indicating that normal

gene expression variation is confounding the correlation

between genomic data and gene expression data, and, after cor-

recting for normal gene expression variation, the genomic data

explain less of the disease-specific gene expression.
3.2. Recurrent genomic or epigenomic events
In addition to focusing on disease-specific gene expression,

we select genes that are recurrently altered genomically or

epigenomically. In the case of copy number data, this entails

that we look for genes that are recurrently amplified or

deleted. Copy number data have been extensively studied

and several methods are available to identify recurrent ampli-

fications and deletions [11,12]. We used GISTIC to identify

recurrent amplifications and deletions across 481 TCGA ovar-

ian cancer samples. GISTIC identified 670 and 2353 genes

that are in recurrently amplified and deleted regions, respect-

ively, consistent with earlier reports that ovarian cancer has a

large number of copy number alterations.

In the case of DNA methylation, we focused on genes that

are significantly and differentially methylated in a subset of

patients. To accomplish this, we developed an algorithm

called MethylMix that uses a mixture model to identify sub-

groups of patients with similar DNA methylation for a
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specific gene [9]. This allows us to define hyper- and hypo-

methylation states when compared with DNA methylation in

normal tissue. MethylMix identified 205 and 251 significantly

and differentially hyper- and hypo-methylated genes, respect-

ively, in the TCGA ovarian cancer dataset. This includes

well-known hyper-methylated ovarian cancer genes such as

BRCA1, RAB25 and ATM.

We refined the list of potential driver genes from 8464 to

1572 by applying the GISTIC and MethylMix filters. These

resultant genes have significant relationships between genomic

data and disease-specific gene expression data, and have recur-

rent genomic or epigenomic alterations, and constitute likely

cancer driver genes.

3.3. Cancer driver genes associated with their
downstream targets

The candidate driver genes still constitute a large set, even

after selecting for significant relationships between genomic

and transcriptomic data, and recurrent events. The second

step of AMARETTO associates candidate driver genes with

their downstream targets. This provides insight into the pro-

cesses that candidate driver genes are regulating, and also

serves to focus only on driver genes that are predictive of

downstream gene expression.

We selected the top half of the genes that exhibited the high-

est variance to build the module network, producing 8907

genes on 560 samples. This variance-based filter was also

applied to the candidate driver genes, further refining the list

to 865 candidate driver genes. We built a network consisting

of 100 modules with corresponding regulatory programs (see

figure 3 and the electronic supplementary material, figure S1)

that are functionally enriched for key processes in cancer such

as cell cycle, immune response, RNA regulation and extra-

cellular matrix signalling. Electronic supplementary material,

table S1, contains the modules and regulatory programs of

the complete ovarian cancer module network. This network

contains 339 selected cancer driver genes including 213 that
are copy number driven and 144 that are DNA methylation

driven. Interestingly, a higher proportion of genes selected are

DNA methylation driven compared with the initial number

of DNA methylation candidate driver genes. The selected

cancer driver genes include well-known genes such as

CCNE1, CDKN2A, KRAS, PTEN and RB1 but also genes

with unknown functions in cancer such as EVI2A, C1orf114

and LCP2.

A number of biological hypotheses can be deduced from

this network. For example, the network suggests that CCL5 is

a master immune system response regulator. This gene is sig-

nificantly hypo-methylated in a subset of samples. CCL5 is

one of the top cancer drivers in the network and is part of

five regulatory programs. Each of the corresponding modules

is highly enriched with gene sets related to immune response

or defence response. For example, module 37 is highly enriched

with immune response genes and is also significantly increased

in the immunoreactive molecular subtype (figure 4; p-value

1.2009 � 10229, Wilcoxon rank-sum test; [7]). CCL5 is a chemo-

kine that facilitates disease progression by recruiting and

modulating the activity of inflammatory cells, which sub-

sequently remodel the tumour microenvironment. Moreover,

CCL5 has been shown to promote metastasis in basal breast

cancer cells [24].

Next, we analysed how frequently certain cancer drivers

co-occur in a regulatory program. This analysis showed that

NUAK1 and PCOLCE always co-occur and are part of four

regulatory programs. NUAK1 is known to directly phosphor-

ylate TP53 and regulate cell proliferation. PCOLCE is a pro-

collagen and is active in the extracellular matrix. All four

NUAK and PCOLCE modules are highly correlated with the

mesenchymal molecular subtype, suggesting that both genes

are major drivers of this ovarian cancer subtype. For example,

module 32 is regulated by NUAK1 and PCOLCE and is signifi-

cantly upregulated in the mesenchymal subtype (figure 4;

Wilcoxon rank-sum test, p-value 1.3125 � 10251). It is interest-

ing to note that both NUAK1 and PCOLCE are aberrantly

methylated genes.
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Similarly, CHEK1 and FBXO5 co-regulate two modules:

module 55 and module 16. These modules are the top mod-

ules enriched for cell proliferation and cell cycle. This

suggests that both genes are disease-specific drivers of cell

proliferation in ovarian cancer. CHEK1 is a well-known cell

cycle gene required for checkpoint-mediated cell cycle arrest
in response to DNA damage. FBXO5 is a well-known regula-

tor of the mitotic cell cycle. Both CHECK1 and FBXO5 are

recurrently deleted genes.

Finally, EVI2A is among the top regulators in the net-

work. EVI2A is a membrane protein that has unknown

function. The predicted targets of EVI2A are highly enriched
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in the KEGG pathways, ECM receptor interaction and focal

adhesion, indicating that this gene may have a role in inter-

actions between cancer cells and the extracellular matrix.

EVI2A is a methylation-driven gene expressed in neutrophils

and leads us to speculate that we may be measuring the infil-

tration of neutrophils in ovarian cancer cells, which may

reflect an immune-mediated driver of oncogenesis.

3.4. Modules that accurately predict molecular subtypes
Next, we focused on how modules can be combined to predict

the ovarian cancer molecular subtypes [7]. This allows further

identification of the cancer drivers of each of the molecular

subtypes. We used linear regression with lasso regularization

to build a model for each of the four molecular subtypes based

on module expression. The performance was estimated using

the area under the receiver operating characteristic (ROC)

curve (AUC) in a 10-fold cross-validation loop (figure 5).

All four subtypes can be accurately predicted with AUCs

ranging from 0.857 to 0.975. The mesenchymal subtype

is most accurately predicted. This model is based on only

one module: module 48. Module 48 is one of the four

modules regulated by NUAK1 and PCOLCE. Functionally,

this module is highly enriched in extracellular matrix genes

and focal adhesion (see figure 3 and electronic supple-

mentary material, figure S1). Module 48 is also significantly

enriched in genes upregulated in ovarian cancer metastasis

versus primary tumours [25]. This is consistent with the

mesenchymal subtype. Similarly, the proliferative subtype

is also predicted based on only one module: module 34.

This module has limited functional enrichment in genes

related to protein kinase activity but is otherwise not well

characterized. The other two subtypes need an average of

2.9 modules for the differentiated subtype and 2.3 modules

for the immunoreactive subtype.
3.5. Correlation of modules with ovarian cancer
outcome data

We investigated whether the modules can be used to predict

therapy response and survival. We used Cox proportional

hazards modelling to correlate the module expression with

overall survival. We found that eight modules were signifi-

cantly correlated with overall survival (table 1; Wald test

, 0.05 at FDR , 15%).

We compared patients with good survival with those with

poor survival to investigate whether analysis of the extreme

cases results in more significant results. More specifically,

we compared patients who had no recurrence or progression

for at least 1000 days versus patients who have treatment-refrac-

tory disease. We found that four modules are significantly

correlated with this outcome (Wilcoxon rank sum test , 0.01,

FDR , 15%). Module 16 in particular was significantly cor-

related with this outcome ( p-value 8.2757 � 10206, FDR

8.2757 � 10206). Module 16 is functionally enriched for cell

cycle and DNA repair, and by the co-regulators CHEK1 and

FBXO5 (figure 6). Expression of module 16 is highly upregulated

for good versus poor survival. This is consistent with the copy

number data of CHEK1 and FBXO5, both recurrently deleted,

corresponding to a tumour suppressor function. Thus, patients

with intact CHEK1 and FBXO5 expression have a better progno-

sis, consistent with these genes’ function in DNA repair or cell

cycle control. In addition, supervised modelling using 10-fold

cross validation of this outcome resulted in an accurate model

using only module 16 expression (AUC 0.83; figure 6).

Finally, we investigated whether any of the modules are

correlated with drug response. More specifically, we looked

at sensitivity (time to failure greater than 365 days) or resistance

(time to failure less than 365 days) to platinum-based che-

motherapy. We found that three modules were significantly

correlated with this outcome ( p-value , 0.01, FDR , 15%).



Table 1. Correlation with survival of the top 20 modules. HR, hazard ratio; CI, 95% confidence interval; FDR, false discovery rate.

module number Wald test HR HR lower CI HR upper CI FDR

module_41 0.0013115 0.60921 0.45029 0.82422 0.13115

module_17 0.0063686 1.6636 1.1541 2.398 0.14577

module_18 0.0067449 0.6607 0.48953 0.89171 0.14577

module_76 0.0094106 0.66192 0.48479 0.90377 0.14577

module_39 0.0098352 0.64297 0.45979 0.89911 0.14577

module_69 0.010812 1.5165 1.101 2.0889 0.14577

module_81 0.011528 0.63858 0.45091 0.90435 0.14577

module_44 0.011662 1.3305 1.0657 1.6609 0.14577

module_52 0.021869 0.70067 0.51695 0.94969 0.20173

module_37 0.022771 1.3389 1.0415 1.7211 0.20173

module_65 0.023899 1.2892 1.0342 1.607 0.20173

module_73 0.026206 0.69138 0.49935 0.95725 0.20173

module_62 0.026224 0.72201 0.54177 0.96221 0.20173

module_45 0.030562 1.2241 1.0191 1.4702 0.2183

module_47 0.033869 0.68353 0.48095 0.97142 0.2223

module_7 0.037937 0.72948 0.54157 0.98259 0.2223

module_57 0.03836 0.69547 0.49319 0.98072 0.2223

module_59 0.040014 1.2658 1.0108 1.5852 0.2223

module_15 0.043767 0.70292 0.49898 0.9902 0.23035

module_13 0.050691 1.3951 0.999 1.9482 0.25157
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Module 86 was highly correlated with platinum sensitivity

( p-value 0.00046015, FDR 4.6%). Module 86 is functionally

enriched with the Notch signalling pathway, which has been

tied to platinum-based chemotherapy response [26].
4. Discussion
AMARETTO is an analytical approach that aims to address

the challenges associated with integrating and interpretating

multi-omics cancer datasets, for example through the TCGA

project. TCGA now has over 20 cancers that are being studied

extensively with multiple omics technologies. This clearly

creates a need for methods such as AMARETTO to extract

knowledge that leverages all the data.

AMARETTO identifies cancer driver genes by considering

that genes which are recurrently altered at the genome or

epigenome level with functional consequences, as measured by

their gene expression, are the most likely candidates. In addition,

AMARETTO takes into account only disease-specific expression

variations. This eliminates genes that are naturally expressed in

normal tissue and are most likely not to be cancer drivers. Finally,

AMARETTO only focuses on cancer drivers that explain

downstream gene expression in the form of modules.

AMARETTO is being continuously developed and impro-

ved. Future plans involve integrating microRNA and DNA

sequencing data into our models. We investigated the

integration of microRNAs in the regulatory programs.

However, our results suggest that microRNAs do not explain

additional expression variation at the module level compared

with cancer driver genes based on our observation that they

are not selected in the regulatory programs. This is most
likely to be caused by the observation that many microRNAs

are located in introns of so-called host genes, confounding gene

expression. Accordingly, microRNAs do not seem to explain

more expression variation compared with candidate cancer

drivers. We also investigated DNA mutation data from sequen-

cing technology, but two issues emerged. First, a mutation

does not necessarily have to affect gene expression. For

example, mutations that constitutively activate protein function

may not result in increased expression, but in increased function.

Second, mutation data are notoriously sparse, thereby limiting

our ability to find statistically significant relationships between

DNA mutations and gene expression. Further work is necessary

on the most optimal way of integrating microRNAs, mutations

and other omics data in AMARETTO.

The main limitation of methods such as AMARETTO is the

difficulty in evaluating the resulting network models. The

most accepted route is experimental validation, a laborious

and time-consuming process. In silico validation by comparison

with other modelling strategies or networks is a more efficient

validation strategy. However, the lack of standardized databases

that store computational network models of cancer further com-

plicate this level of validation. Most models are now hidden

in supplementary files in non-standardized formats. A com-

munity effort in this area could create a comprehensive

resource of computational models that can serve as a resource

for experimental biologists.

In summary, we developed AMARETTO as a biocompu-

tational approach for integrating multi-dimensional cancer

data in a manner that enables the identification and analysis

of genomic and epigenomic features that influence disease-

specific gene expression. Using this method, we identified

several novel oncogenic drivers in ovarian cancer and
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Figure 6. Visualization of module 16, significantly correlated with very good versus poor outcome in ovarian cancer. (a) Regulatory program of module 16.
(b) Estimated expression of module 16 using the regulatory program versus actual mean expression. (c) Module 16 gene expression. (d ) Patients with very
good outcome are indicated in black versus poor outcome patients in white. (e) Box-plot of the module 16 expression in very good versus poor outcome patients.
( f ) ROC curve of the supervised model based on module 16 to predict the very good versus poor outcome.
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developed several new biological and clinical hypotheses. We

identified potential drivers of the mesenchymal and prolifera-

tive ovarian cancer subtypes. Finally, we identified modules
predictive of good versus poor outcome that implicate

DNA repair pathways as a marker of ovarian cancer outcome

as well as response to platinum therapy.
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