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The vasculature inside breast cancers is one important component of the tumour

microenvironment. The investigation of its spatial morphology, distribution

and interactions with cancer cells, including cancer stem cells, is essential for

elucidating mechanisms of tumour development and treatment response.

Using confocal microscopy and fluorescent markers, we have acquired three-

dimensional images of vasculature within mammary tumours and normal

mammary gland of mouse models. However, it is difficult to segment and recon-

struct complex vasculature accurately from the in vivo three-dimensional images

owing to the existence of uneven intensity and regions with low signal-to-noise

ratios (SNR). To overcome these challenges, we have developed a novel three-

dimensional vasculature segmentation method based on local clustering and

classification. First, images of vasculature are clustered into local regions,

whose boundaries well delineate vasculature even in low SNR and uneven

intensity regions. Then local regions belonging to vasculature are identified by

applying a semi-supervised classification method based on three informative

features of the local regions. Comparison of results using simulated and real vas-

culature images, from mouse mammary tumours and normal mammary gland,

shows that the new method outperforms existing methods, and can be used for

three-dimensional images with uneven background and low SNR to achieve

accurate vasculature reconstruction.
1. Introduction
Tumour-associated vasculature is an important component of the tumour micro-

environment (mE) [1,2]. As such, the spatial morphology of vasculature, e.g.

density and diameters, inside the tumour mE is one important parameter for

understanding roles of vasculature in drug response [2–4]. Also, information

about variations in the morphology of vasculature is important for modelling

vasculature development and the availability of nutrient, oxygen and drug mol-

ecules within the tumour [5–7]. Using confocal microscopy, we have acquired

three-dimensional image sets of fluorescently labelled vasculature in order to

investigate the spatial morphology and distribution of vasculature inside

normal mammary gland and the mammary tumour, as shown in figure 1. To

analyse the vasculature quantitatively, automated reconstruction and geometric

analysis are needed. However, it is challenging, with existing methods, to recon-

struct the vasculature from in vivo three-dimensional images of mammary
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(a) (b)

Figure 1. Examples of vascular images from (a) mammary tumour and (b) normal mammary gland of mouse models.
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tumour and normal mammary gland because of complex vas-

culature structures and the existence of uneven intensity and

low signal-to-noise ratio (SNR) regions.

Although many methods have been reported in the litera-

ture to analyse vasculature structure images, there is still a

need for improved methods that can be used to segment and

reconstruct the three-dimensional vasculature from in vivo
images of normal mammary gland, and mammary tumours

of mouse models. Level set is also widely used for vasculature

reconstruction. For example, the local binary fitting (LBF)-

based level set model [8,9] and level set-based vascular

segmentation approach in vmtk (the Vascular Modelling

Toolkit) (vmtk, http://www.vmtk.org) were developed for

segmenting vascular images. The level set-based methods

often require manual selection of initial contour points, and

often fail to identify vasculature with low SNR and uneven back-

ground. The Farsight toolkit provides a robust adaptive vascular

segmentation approach [10,11], which is fast, but fails to dis-

tinguish vasculature with low SNR from background. The

TubularTracking module [12] in MeVisLab (MeVisLab, http://

www.mevislab.de) implements a template-based multiple

hypothesis vessel tracking approach [13]. It can generate con-

tinuous vasculature reconstruction results, but requires manual

selection of seed points on vasculature, and might identify

false connections among seed points. Moreover, NeuronStudio

[14], NeuronJ [15] and Vaa3D [16] could be used to reconstruct

vasculature, but their results closely depend on the manually

selected seed points.

Herein, we propose a novel automated three-dimensional

vasculature reconstruction algorithm using local clustering

and a classification approach to overcome the aforementioned

challenges. In brief, vascular images are first divided into

local clusters that could well delineate the boundaries of vas-

culature. Then, three informative features, i.e. relative local

intensity, shape irregularity and orientation consistency, are

calculated to quantify the distinct characteristics of local clus-

ters belonging to either vascular or avascular groups. Finally,

the graph transduction-based semi-supervised classification

model, which requires a small set of training samples and

integrates the information from unlabelled data, is employed

to separate the local regions on vasculature from those on the

avascular regions. The details of the method, including the

vascular imaging, local clustering, informative feature extrac-

tion and graph transduction model, are provided in §2. The

experimental evaluation and comparison results, on both

simulated vascular images and those from normal mammary

gland and mammary tumour of mouse models, are shown

in §3, and a summary and discussion are presented in §4.
2. Methodology
2.1. Vascular imaging of mammary tumours and

normal mammary gland of mouse models
The vascular images, as shown in figure 1a, of mammary

tumours were acquired from the P53 null mouse mammary

tumour T1model [17,18]. The vasculature was stained by tail

vein injection of a Dextran-conjugated fluorescent marker that

labels the vascular endothelial cells. The vascular images of

normal mammary gland, as shown in figure 1b, were acquired

from a Scid/bg mouse model that carries a transgenic reporter

that expresses a membrane-targeted mCherry fluorescent protein

(Tg(Flk1-myr::mCherry)) [19,20]. Both mammary tumour and

normal mammary gland were excised immediately and clea-

red in 50 per cent glycerol with phosphate-buffered saline

(PBS) for 16 h at 48C. Before imaging, samples were washed

and resuspended in 1X PBS. The z-stack of mammary tumour

was acquired using a confocal microscope LSM 510 META

(Carl Zeiss, Jena, Germany) with a Plan-Apochromat 20�/0.75

lens. The Dextran was excited using the 543 nm laser. The z-

stack consists of 17 images, each of which has 512 � 512 pixels.

The size of a pixel in the x–y plane is 0.88 � 0.88 mm. The axial sep-

aration between the images in the z-stack is 2 mm. The volume of

the z-stack is 450 � 450 � 32 mm. The z-stack of normal mammary

gland was acquired using a TCS SP5 confocal microscope (Leica

Microsystems, Mannheim, Germany) with a Plan-Apochromat

40.0�/1.25 lens. The mCherry fluorophore was excited using the

543 nm laser. The z-stack consists of 32 images each of which has

1024� 1024 pixels. The size of a pixel in the x–y plane is 0.38 �
0.38 mm. The axial separation between the images in the z-stack

is 1.98 um. The volume of the z-stack is 387.5 � 387.5 � 61.3 mm.

2.2. Local clustering
Instead of working on individual voxels, the simple linear iteration

clustering (SLIC) method [21,22], which considers both intensity

variation and spatial information, groups individual voxels into

local clusters with similar size (local clustering). One desirable

characteristic of these local regions (clusters) is that their boundaries

well delineate boundaries of vasculature even in low SNR and

uneven intensity areas, as shown in figure 2. In the local clustering

analysis, each voxel is represented by its intensity [l a b] in the

CIELAB colour space, and its spatial coordinates [x y z]. A new dis-

tance metric is defined by combining the colour-space similarity and

the spatial distance between two given voxels, k and i, as dki ¼

dlab
ki þ v � dxyz

ki , where dlab
ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlk � liÞ2 þ ðak � aiÞ2 þ ðbk � biÞ2

q
,

and dxyz
ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ2 þ ðyk � yiÞ2 þ ðzk � ziÞ2

q
, v is an adjustable

parameter. Then the SLIC is applied based on the new distance

metric to obtain the local clustering result [21,22]. Finally, a vascu-

lar image is divided into a set of local regions: S ¼ fS1, . . . ,Sm,
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(a) (b)

Figure 2. Examples of local clustering analysis. (a) The grid lines (green and blue) indicate boundaries of local clusters (regions). (b) Three-dimensional rendering of
local clusters in vascular (red) and avascular groups, respectively.
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Figure 3. Examples of the orientation feature. (a) Voxel-level orientation vectors. Each cube corresponds to one voxel, and each cone represents the computed
orientation vector for each voxel; the consistent cone region indicates vasculature; the random distributed cone region is the avascular background; (b) region-level
orientation vectors. Arrows show orientation vectors of individual local regions.
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Smþ1, . . . ,SMg, where M is the total number of local regions. By

changing the parameter v and the number of regions, M, the

size and shape of local regions can be adjusted. Examples of

local clustering analysis are shown in figure 2. The other desired

property of the local clustering analysis is that these local regions

in the vascular and avascular groups have distinct characteristics

that will be discussed in the feature extraction section.

2.3. Informative feature extraction
After dividing vascular images into local regions, the following

analysis aims to separate those local regions belonging to the vas-

cular group from those in the avascular group based on their

distinct characteristics. Instead of using a set of complex numerical

features, only three simple but informative features, i.e. relative
local intensity, shape irregularity and orientation consistency, are

designed for the following classification analysis.

2.3.1. Relative local intensity feature
Local intensity variation is important for separating neighbour-

ing objects. Thus, the ratios of average intensity of given local

regions relative to immediate neighbours are discriminative.

The maximum of the ratios is thus used as the relative local inten-

sity feature considering vasculature has relative higher intensity

than neighbouring avascular regions. Mathematically, let Ii

denote the average pixel intensity inside a given local region

Si, and Oi denote the set of its immediate neighbouring

regions, then the relative local intensity of Si is calculated as

rIi ¼ max
sj[Oi

ðIi=IjÞ; i ¼ 1; . . . ;M.



(a)

(c) (d )

(e) ( f )

(b)

Figure 4. Vasculature reconstruction comparison on the simulated vasculature image. (a) Simulated blood vessel tree with noise and uneven background;
(b) vasculature reconstruction using the proposed method. (c) Initial level set contour (red surface), and (d ) vasculature reconstruction result of the Chan – Vese
(CV) model. (e,f ) Two segmentation results with different initial level set contours (green) and segmentation results (red) of the LBF method.
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2.3.2. Shape irregularity feature
Owing to the intensity variation between vascular and avascular

regions, local regions on vasculature often exhibit irregular

shapes, whereas the local regions on avascular background

have regular cube-like shapes, as shown in figure 2. Though ray-

burst-based shape descriptors are effective, the calculation of

these features requires high computational cost [23,24]. Here,

we employ a simpler descriptor to measure the shape irregularity

of local regions. If we denote the surface area of local region Si as

Ai, and its volume as Vi, then the shape descriptor is calculated

as SDi ¼ Ai/Vi, i ¼ 1, . . . ,M. Accordingly, local regions on

vasculature have higher values for this shape irregularity feature.
2.3.3. Orientation consistency feature
The orientation consistency feature is designed to capture the

continuity of vasculature. Based on Hessian matrices analysis,

the orientation of each voxel vk can be determined by the eigen-

vector corresponding to the least absolute eigenvalue [25],

denoted by (dxk, dyk, dzk), k ¼ 1, . . . ,N, where N is the number

of voxels in the image. The orientation vectors of voxels in the

vascular group are all along vasculature consistently, whereas
the orientation vectors of voxels in the avascular group distribute

randomly due to the existence of noise, as illustrated in figure 3a.

Based on direction vectors of individual voxels, we define the

local regions’ orientation vectors as follows. Denote ui ¼ (uxi,

uyi, uzi) as the orientation vector for local region Si, and denote

VSi as all voxels inside Si, then ui is computed as follows:

uxi ¼
P

k[VSi
dxk

Ni
; uyi ¼

P
k[VSi

dyk

Ni
and uzi ¼

P
k[VSi

dzk

Ni
;

where (dxk, dyk, dzk)is the unit length orientation vector for voxel

vk, and Ni is the number of voxels inside Si, i ¼ 1, . . . ,M. Owing

to voxel-level orientation consistency, the region-level orientation

vectors of vascular regions have larger norms (amplitudes), com-

paring with those from the avascular group, as shown in figure

3b. Moreover, the orientation consistency for the neighbouring

vascular local regions still holds, as shown in figure 3b.

2.4. Vascular region classification using a graph
transduction model

Following the feature extraction, the vasculature segmentation

problem becomes a classifcation problem, i.e. separating vascular
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Figure 5. Vasculature reconstruction results of the P53 null mouse mammary tumours. (a) Reconstruction results of the proposed method, (b) NeuronStudio,
(c) Farsight, (d ) Vaa3D and, (e) vmtk, ( f ) TubularTracking.
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regions from avascular ones based on the relative local intensity,

shape irregularity and orientation consistancy features. In this

study, we employ the semi-supervised learning approach for

the classification analysis, as it requires a small set of labelled

samples and integrates the information from unlabelled data

for better classification. The graph transduction model is one

of the most widely used semi-supervised learning methods

[26–28]. In this study, the graph transduction-based semi-

supervised classification model is formulated as follows. Given

the local region set: S ¼ fS1, S2, . . . ,SMg, and the corresponding

feature set f ¼ ff1, f2, . . . ,fMg, where fi is the feature vector for Si,

i ¼ 1, . . . ,M. Suppose the first m local clusters S1, S2, . . . ,Sm have

been labelled and the rest are unlabelled, then the graph transduc-

tion model propagates labels to unlabelled samples locally. This

process can be formulated as the following optimization problem:

FðFÞ ¼ 1

2

XM
i;j¼1

Wij
Fi�ffiffiffiffiffiffi
Dii
p �

F j�ffiffiffiffiffiffiffi
D jj

p
�����

�����
2

þ m
XM
i¼1

k Fi� � Yi� k2

0
@

1
A;

where

Wij ¼
exp �

k fi � fj k2

2s2

� �
; i = j;

0 i ¼ j:

8<
:

is an affinity matrix using the Gaussian kernel with standard devi-

ation s; D is a diagonal matrix with Dii ¼
PM

j¼1 Wij, F is the

expected label vectors of all samples and is required to be non-

negative; Fi denotes the ith row of F; Y is the known label data of

samples, where

Yik ¼
1; Si is labelled to class k;
0; Si is lablelled to another class or unlabelled;

�

where k ¼ 1, 2 represents the vascular and avascular local

regions, respectively; and Yi. is the ith row vector of Y. The first

term in the above equation requires nearby local regions sharing

the same label, whereas the second term limits the predicted

labels to be consistent with the known labels. The parameter m

(m . 0) adjusts weights of label smoothness with neighbours

and consistence with known labels. Based on the differential

theory, the optimal solution, F*, satisfies the following equation:

F* 2 SF*/(1 þ m) 2 mY/(1 þ m) ¼ 0, and it is explicitly given by:

F* ¼ (m/(1 þ m))(I 2 (1/(1 þ m))S)21 Y. Then the labels of

samples can be obtained as: yi ¼ arg maxk � 2 Fik, i ¼ 1, . . . ,M.

To collect training samples, local regions with high intensity

could be conveniently labelled by the thresholding analysis,

and some local regions in the low SNR regions need to be

labelled manually.



(a) (b)

(c) (d)

(e) ( f )

Figure 6. Vasculature reconstruction results of normal mammary gland of Scid/bg mice. (a) Reconstruction results of the proposed method, (b) NeuronStudio,
(c) Farsight, (d ) Vaa3D, (e) vmtk and, ( f ) TubularTracking.
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3. Experimental results
3.1. Simulated vascular images
To validate the performance of the proposed method objec-

tively and quantitatively, we simulated vascular images with

uneven intensity, low SNR and varying diameters of vascula-

ture, as shown in figure 4a. The blood vessel tree was

generated as demonstrated in the study of Hamarneh & Jassi

[29,30]. Gaussian noise and uneven background were added

to the image. The size of image volume is 100 � 100 � 25

voxels. The image was preprocessed first by a median filter

and then a mean filter in a 3 � 3 � 3 neighbourhood. In

the local clustering analysis, we set the size of local region as

5 � 5 � 5 voxels. Figure 4b shows the vasculature reconstruc-

tion result on the simulated data with the proposed method.

As shown, the vascular tree is completely recovered. The pre-

cision and recall of the vasculature reconstruction result are

92.87 per cent and 91.74 per cent, respectively. We also com-

pared the Chan–Vese (CV) region-based level set method

[31]. Figure 4c,d shows the reconstruction by the CV method

on the simulated data. Some vascular branches are missed

due to low SNR, and a large avascular region is misclassified
as vasculature due to the uneven background, as shown in

figure 4d. We further compared the improved region-based

level set method that specifically deals with uneven intensity

by introducing a kernel-based LBF energy. As only the

two-dimensional image analysis programme is available, we

conducted the comparison on two-dimensional image sec-

tions. Figure 4e,f shows the vasculature segmentation results

of the LBF method on a two-dimensional section. As can be

seen, the LBF method cannot identify vascular regions cor-

rectly. Moreover, segmentation results of LBF are sensitive to

the level set initialization.

3.2. Vascular images from mammary tumour and
normal mammary gland of mouse models

Three-dimensional vascular images of mammary tumours and

the normal mammary gland of mice were used to validate the

proposed method. The image was preprocessed first by a

median filter and then a mean filter in a 3 � 3 � 3 neighbour-

hood. In the local clustering analysis, the size of the local

region is set as 5 � 5 � 5 voxels. Figures 5a and 6a show the

vasculature reconstruction results from mouse mammary
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tumours and the normal mammary gland, respectively, of the

proposed method. As can be seen, the vasculature is well seg-

mented in both images. To further indicate the efficiency of the

proposed method, we compared Farsight, NeuronStudio,

Vaa3D, vmtk and TubularTracking. The NeuronStudio and

Vaa3D require manual selection of seed points and then track

the vasculature based on those seed points. Figures 5b and 6b
show the segmentation results of NeuronStudio. As expected,

NeuronStudio detected vasculature partially based on the

manually selected seed points on vasculature. Farsight per-

formed similar to an adaptive thresholding method. Though

identified vasculature with low SNR in the normal mammary

gland but kept most of the noise in tumour vasculature images,

as shown in figures 5c and 6c. Comparing with NeuronStudio,

Vaa3D identified more vasculature, but generated more dis-

continuous vascular segments, as shown in figures 5d and 6d
(red points are the seed points). The results of vmtk are

shown in figures 5e and 6e. As can be seen, many vascular

branches are broken because of the low SNR and uneven

background. Figures 5f and 6f show the vasculature reconstruc-

tion results of TubularTracking. The vasculature is continuous,

but the results depend on the manually selected seed points on

vasculature, and some vascular branches are wrongly con-

nected. In summary, the proposed vasculature method based

on the clustering and classification analyses is effective to

reconstruct vasculature based on three-dimensional vascular

images of mammary tumour and normal mammary gland of

mouse models.
4. Summary and discussion
Tumour vasculature is an important component of tumour

mE regulating tumour initialization, progression, metastasis

and drug response. The spatial morphology, distribution,

density and diameters of vasculature inside tumours and
their relative locations to subpopulations of tumour cells,

are important parameters to study the roles of intratumoural

heterogeneities in tumour development and drug response.

We have acquired vascular images from mammary tumours

and normal mammary gland mouse models with confocal

microscopy. To reconstruct the vasculature, we developed

an automated vasculature segmentation and reconstruction

approach based on the local clustering and classification to

deal with the uneven intensity, low SNR and complex vascu-

lar structure challenges. Comparison results on both simulated

and real vascular images indicated advantages of the proposed

method. Based on the reconstruction results, further geometric

analysis, e.g. centreline extraction and diameter estimation,

could be conducted for the quantitative analysis of vasculature.

The reconstruction and geometric analysis of vasculature are

helpful for modelling the variation of vasculature during

tumour development, and the nutrient and drug availability

within the tumour mE. In the proposed method, some vascular

regions, e.g. vascular branching points, might be misclassified

into avascular regions, which results in the broken vasculature.

Thus, a linking process is always needed to solve this problem.

The other limitation of the proposed method is that when vas-

cular branches with large and small diameters coexist in one

image, it is difficult to select the right region size in local clus-

tering. With a small region size, vascular braches with large

diameters will be divided into small pieces. With a large

region size, local regions on the vascular braches with small

diameters will include avascular voxels. Both settings will

reduce the vasculature reconstruction accuracy. In future

work, we plan to improve the performance of the proposed

method, and reconstruct large-scale vasculature based on vas-

cular images covering the entire tumours.

We thank Ahmad Hammoudi for helpful discussion about the local
clustering. This work was supported by NIH U54 CA149196-01,
R01LM009161 and John S Dunn Research Foundation.
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