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Department of Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA

A tumour is a heterogeneous population of cells that competes for limited

resources. In the clinic, we typically probe the tumour by biopsy, and then

characterize it by the dominant genetic clone. But genotypes are only the

first link in the chain of hierarchical events that leads to a specific cell phe-

notype. The relationship between genotype and phenotype is not simple,

and the so-called genotype to phenotype map is poorly understood. Many

genotypes can produce the same phenotype, so genetic heterogeneity may

not translate directly to phenotypic heterogeneity. We therefore choose to

focus on the functional endpoint, the phenotype as defined by a collection

of cellular traits (e.g. proliferative and migratory ability). Here, we will

examine how phenotypic heterogeneity evolves in space and time and

how the way in which phenotypes are inherited will drive this evolution.

A tumour can be thought of as an ecosystem, which critically means that

we cannot just consider it as a collection of mutated cells but more as a com-

plex system of many interacting cellular and microenvironmental elements.

At its simplest, a growing tumour with increased proliferation capacity must

compete for space as a limited resource. Hypercellularity leads to a contact-

inhibited core with a competitive proliferating rim. Evolution and selection

occurs, and an individual cell’s capacity to survive and propagate is deter-

mined by its combination of traits and interaction with the environment.

With heterogeneity in phenotypes, the clone that will dominate is not

always obvious as there are both local interactions and global pressures. Sev-

eral combinations of phenotypes can coexist, changing the fitness of the

whole. To understand some aspects of heterogeneity in a growing tumour,

we build an off-lattice agent-based model consisting of individual cells

with assigned trait values for proliferation and migration rates. We represent

heterogeneity in these traits with frequency distributions and combina-

tions of traits with density maps. How the distributions change over time

is dependent on how traits are passed on to progeny cells, which is our

main enquiry. We bypass the translation of genetics to behaviour by focus-

ing on the functional end result of inheritance of the phenotype combined

with the environmental influence of limited space.

1. Introduction
Tumours are phenotypically and genotypically heterogeneous. Understanding

even the most superficial definitions of a tumour’s complexity may seem an

overwhelming and daunting task, yet characterizing this heterogeneity has

begun to gain popularity in recent years [1–5]. The pursuit of embracing the

complexity of the myriad of possible interactions between individual parts is

gaining ground in computational and mathematical oncology, and we are

learning how to represent the tumour as the heterogeneous system that it is.

With heterogeneity comes a possibility for competition and selection.

A growing tumour is limited for space and resources, so not all individual

cells will continue propagating over time. The cellular population may adapt

for enhanced overall fitness, but selection can also be used to our advantage

when it comes to treatment if we can better understand how the interacting

parts combine to form the emergent whole.

The actual function of each cell is not just determined by genotype [6]. The

same genotype may yield different phenotypes, and the same phenotype may

result from multiple genotypes [3,6]. Add to that complexity the epigenetic
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modulations that affect the cell’s response [7], the microenvir-

onment [8,9], differential protein expression and biochemical

noise [10–13] and the problem of mapping genotype to pheno-

type appears to be impossible [14]. To reduce this inherent

complexity and because the cell’s function is what selection

will act on, we focus on the phenotype.

Here, we will present a method that will characterize the key

elements of phenotypic heterogeneity in a growing tumour and

simulate situations in which the cells that make up this tumour

will compete with each other. We investigate, using the traits of

proliferation and migration, (i) how trait inheritance matters, (ii)

how spatial competition affects trait selection, and (iii) how

constraints on trait combinations affect population growth.

With heterogeneity in the phenotypes of a collection of

cells, it matters how a cell passes on these traits. The role of

phenotypic inheritance in tumour progression under environ-

mental stresses has been considered before, but remains an

open question [7,9,15–20]. In the pioneering work by Anderson

and colleagues, the evolution of phenotypic heterogeneity of

five different traits was investigated. They compared a linear

progression of mutation and a more random acquisition

of traits (representing phenotypic plasticity) in a growing

tumour in a range of different microenvironments [8,21].

We continue this line of thought by exploring trait inheri-

tance in a much simpler model with only two traits, namely

proliferation and migration, under the stress of limited space.

Space is the only limited resource we consider here. We

assume that with hypercellularity the cells are subject to contact

inhibition, which induces quiescence. We look at two different

configurations that lead to different degrees of competition: a

dispersion of cells and a cluster of cells. The dispersion of

cells begin thinly distributed over a large area with plenty

of space to form their own colonies. This may be analogous to

a cell suspension in vitro or an in vivo situation in which compe-

tition is less pronounced (e.g. circulating tumour cells). The

cluster of cells start tightly packed together so that as it grows

only the cells on the rim of the mass will be in the proliferating

state. Contact inhibition will play a bigger role in providing a

selective pressure for evolution of the population in the latter

configuration. In a model by Lee et al. [22], the growth of popu-

lations in similar spatial configurations was investigated and

the importance of contact inhibition was highlighted, but this

model did not consider heterogeneity or variations in the

mode of inheritance, which will be our primary focus here.

With limited energy and resources, the combinations of

traits that allow cell viability will be bounded. Much has

been studied on the idea of the proliferation–migration

dichotomy (i.e. go-or-grow) [23–25], where there is a trade-

off between proliferating and migrating. This is a simplistic

view of a complicated set of possibilities, but there are

some combinations of traits that a cell will never achieve.

Many traits are coupled in such a way that an effect on one

is sure to have an impact on another. As more traits are

considered, the complexity increases dramatically.

This study also provokes speculation for how treatment

might be affected by the heterogeneity within a tumour and

the inheritance mode of the cells. To keep things as simple

as possible we will not include cell death in this model, but

the implications remain that wiping out a particular cell

type will leave room and resources for other non-targeted

cell types to take over [26]. The selection of phenotypes in a

growing population with environmental influences is an impor-

tant concept that should not be ignored. Most standard of care
anti-cancer therapies act on phenotypic traits (e.g. anti-mitotics,

anti-proliferatives, radiation, chemotherapies). So we are inter-

ested in seeing how the underlying lineage of diversity comes

about in the first place.

This simple model provides a brief look at how inheritance

of proliferation rates and migration rates affects the overall het-

erogeneity and fitness of a growing population of cells. We

build an off-lattice agent-based model to inspect how the

many interacting cells compete for space as they pass on their

traits in various ways. In the first simulations, we vary each

trait individually to get an idea of how they alone influence

the collective behaviour of the population. The subsequent simu-

lations allow combinations of traits with different constraints

imposed on the phenotype space. After discussing how the het-

erogeneity of a population is affected by inheritance, we analyse

how the different schemes affect the fitness of the population.
2. The model
To capture the competition between individuals with hetero-

geneity in proliferation and migration rates, we implement an

agent-based model. Each cell is given a set of traits initially,

but we also need to keep a memory of the previous traits

that are important for some inheritance modes. Each cell at

any time is defined by a set of parameters given by

½ p;m� ¼ ½ðr; r0Þ; ðn; n0; pT ; uÞ�: ð2:1Þ

The phenotype of the cell is represented by a combination

of trait states; the proliferation state p and the migration state

m. The proliferation parameter indicates how quickly a cell

moves through the cell cycle in terms of an intermitotic

time (IMT), and the migration parameters indicate how fast

a cell is moving (speed), how long it moves in the same direc-

tion (persistence time) and in which direction it is moving.

For a given cell, we define the proliferation parameters, r

and r0, as the current and previous proliferation rates,

respectively. The current and previous migration speeds are

n and n0, respectively, pT is the persistence time and u is the

angular direction in which the cell is moving.

For the simulation, each cell is given a random starting

age in the cell cycle, and for each time step it will follow

the decision tree presented in figure 1a. The simulation

starts at the green shape marked ‘t ¼ t þ 1’, which signifies

the start of a new time step. At each time frame, the cell

either divides (yellow loop) if it is ready, goes quiescent if

it has too many neighbours (red loop) or migrates (blue

loop). If it has enough space, the cell will spend most of its

time in the migration loop while ageing and only go through

the act of division during a single time step. In the quiescent

state, the cell discontinues ageing and moving.

All simulations follow the same rules for proliferation and

migration, but vary in the inheritance mode, the spatial

layout and the combinations of traits permitted. The cell

moves by an angle of direction and a speed instead of resid-

ing on an orthogonal lattice; the angular lattice is resolved to

Du ¼ 1 degree, and the updating occurs with a time step of

1 min. All cells are 20 mm in diameter.
2.1. Proliferation and quiescence
The cells are each given an IMT, i.e. the time that it takes to go

through division. At each time point each cell checks for close
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Figure 1. Model details: (a) Flow diagram describing decision-making of each cell at each time frame. The time frame starts at the green arrow where it either goes
through division (yellow loop), goes into quiescence (red loop) or migrates (blue loop). (b) The geometry of angle exclusion that leads to quiescence from contact
inhibition from a dividing cell (black) and its neighbour (light grey). The mid-grey ‘phantom’ cells show the closest possible position of a new cell on each side of
the overlap so that there is a block of excluded angles. (c) The different modes of inheritance (direct, adjusted and resampled) are shown with the probability of
choosing the trait value of the daughter cells given the parent’s trait value (white box).
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neighbours by searching its surrounding space for other

cells positioned at a distance (d) less than four cell radii (r)

away (a position close enough for possible overlap with a

newly formed daughter cell). For each of these close neigh-

bours, a block of angles Du ¼ arccos(d/4r) to each side of the

bisector of the cell is excluded from the bank of allowable

angles (figure 1b), removing the possibility of overlap

upon division. If at any point a cell runs out of available

angles, it will go into quiescence, which means here that it

stops migrating and stops progressing through the cell cycle.

If the quiescent cell has room at a subsequent time to proliferate

as neighbours move out of the way, it will pick up where it left

off in the cell cycle with its previous migration parameters. The

domain boundaries are handled just like neighbouring cells, by

simply taking up space and excluding available angles.

When it is time to divide, if there is space, one daughter

cell will take up the space previously occupied by the

parent, and the second will divide into a neighbouring

space. The new angle is chosen randomly from all available

angles. Given this new angle u, the newly positioned cell

will lie a cell diameter away in that direction. During the

division time step, the cell will not move. Until then, if not

quiescent, the cell migrates.
2.2. Migration and cell collisions
Because migration plays such a large role here, we set up an off-

lattice model to capture the more subtle nuances in movement.

We assume that the cells follow a persistent random walk

[17,22,27,28]. In this case, the cell has a ‘preferred’ or most prob-

able amount of time it will spend continuing in the same

direction. We assume that each cell has a predetermined per-

sistence time, pT, that is randomly drawn from a distribution

(normally distributed around 80 min with a standard deviation
of 10 min). If the cell has not divided or collided with another

cell or the boundary before the persistence time is reached, it

will assume a new direction at random and obtain a new

persistence time from the distribution.

At each time frame, we loop through all cells currently in the

migratory state and identify whether any overlap has occurred

with another cell. The time step is sufficiently small that the fast-

est moving cells will detect an overlap just under 0.5 mm. If two

cells are found to overlap, then a collision response begins at the

time of first contact within the time frame, then the cells move

for the remaining time in the frame as usual with the new trajec-

tory given by the angle of collision. Collisions of one cell with

another follow a regular elastic collision response, i.e. the new

angle is reflected along the normal. The cells collide with the

domain boundaries in the same way. After a collision, a new

persistence time is obtained from the persistence distribution

for each cell. If the cell divides, each daughter cell obtains a

new persistence from the distribution, but they move apart in

opposite directions along their normal instead. In the absence

of a collision or division, the cell simply continues in the same

direction at its given speed.

Variations in the distribution of persistence times and

turning angles do result in differences in population-scale

dynamics, but in order to keep this manuscript focused they

will not be investigated here. We assume that these

parameters are less determined by the cell itself and more by

the microenvironment. A very directional type of environment

(e.g. muscle fibres or blood vessels) might cause a cell to move

with long persistences and small changes in turning angles,

whereas a more tortuous environment (e.g. grey matter in

the brain) might subject a cell to smaller persistences and a

more random distribution of turning angles. We, therefore,

do not consider these to be appropriate as heritable traits,

such as the proliferation rate and the migration speed.
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Figure 2. Model details: (a) The two initial spatial configurations: dispersion and cluster. (b) The different constraints on the phenotype space labelled in order of
presentation (1, proliferation only; 2, migration only; 3, no constraints; 4, go-or-grow).
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2.3. Inheritance schemes
In this study, we primarily investigate the role of trait

inheritance. Three schemes that represent different modes

of adaptability will be presented. We refer to the inheritance

schemes as: direct, adjusted and resampled. Figure 1c relates

these various modes of inheritance as a probability that a

trait will assume a new value either the same as, close to

or completely different from the parent’s current value.

With direct inheritance, daughters inherit exactly the

same trait value as the parent. We, therefore, define the

probability P of the daughter cell inheriting the parent’s

trait tp as simply

PðtdÞ ¼ 1 if td ¼ tp. ð2:2Þ

With adjusted inheritance, the trait value td of the daugh-

ter cells may drift slightly from the parent’s trait in either

direction by a small value e, where e is the size of one bin

in the discretized distribution of allowed values. So, the

probability that the daughter cell inherits a trait is

PðtdÞ ¼

1
3 if td ¼ tp � 1,
1
3 if td ¼ tp,
1
3 if td ¼ tp þ 1.

8><
>:

ð2:3Þ

The values are confined to a range, so surpassing an upper

or lower bound for the adjusted inheritance leads to the

retention of the previous trait at that bound.

With resampled inheritance, the new trait values for the

daughters will have no memory of the parent’s trait, but

instead will randomly be chosen from a weighted normal dis-

tribution:

PðtdÞ/ eðtd�mÞ2=2s2

; ð2:4Þ

wherem is the mean ands is the standard deviation. If a chosen

value falls outside the allowed range, we simply resample from

the weighted distribution. In all of the following simulations,

the resampling distribution is the same as the initial distri-

bution of trait values. Using these modes of inheritance, we

will investigate their effects on the heterogeneity of a growing

cell population over space and time.
3. Results
The three previously introduced inheritance schemes are

examined using two different spatial configurations. We refer

to these as a cellular dispersion and a cellular cluster. With

the cellular dispersion, 800 cells are placed randomly within

a circular area 4 mm in diameter, which could represent

either an in vitro configuration or a disseminated cancer with
many seeds spatially spread out. The simulation runs until

reaching a population of 25 000 cells, which is sufficient to

still discern the colonies just before confluence (approx. 60%

full). With the cellular cluster, 80 cells are placed randomly

within a much smaller circular area (0.25 mm in diameter)

representing a small heterogeneous tumour mass shortly

after initiation. From this arrangement, the population grows

to 8000 cells before the simulation terminates, which is

around the size where vascular recruitment has an effect. The

proximity of cells to viable vasculature, which provides

nutrients and oxygen, affects both proliferation and migration.

To keep the model as simple as possible, we cut off the

simulation around the time that the avascular phase ends.

These two spatial configurations allow different degrees of

competition (figure 2a).

Within each section, we examine different constraints on

allowable trait combinations. We first examine each trait

separately and then in combination with different constraints

on allowable values. The heterogeneity of the cellular population

will be investigated for variation in proliferation only, variation

in migration only, variation in both traits (all combinations

allowed) and the go-or-grow constraint (proliferation rate is

inversely mapped to migration rate). Figure 2b displays these

constraints in a two-dimensional proliferation–migration

phenotype space that we will use both to show the density of

combinations and as a colouring scheme representing pheno-

types in the spatial distributions. We conclude with an analysis

on how the resulting heterogeneity from these situations

contributes to the fitness of the populations as a whole.
3.1. Proliferation: different schemes drive different
compositions

Cells are given initial IMTs randomly sampled from a normal

distribution with a mean of 18 h and a standard deviation of

4 h. Trait values are confined within a range of 8–28 h, and

the width of each bin is 1 h. This is similar to distributions

found in real cancer cell lines [17]. In figure 3, we present

the results for non-motile cells with diversity only in the

proliferation rates.

First and foremost, there is a noticeable difference

between the final distributions of traits for the dispersion

and the cluster. The dispersion, being spread out spatially,

does not provoke much selection, but with the extra compe-

tition in the cluster the selection for faster proliferators is

much stronger. There are differences in the final distributions

of phenotypes across different inheritance schemes. We find

that there is selection for faster IMTs if the inheritance is

direct or adjusted, whereas no change is observed from the
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Figure 3. Heterogeneity of IMTs in dispersions upon reaching 25 000 cells (top) and clusters upon reaching 8000 cells (bottom) with different inheriting modes
(columns for direct, adjusted and resampled inheritance). The spatial distributions are shown with the time taken to reach the final population recorded below. The
histograms above the images show the distribution of IMTs at this final population. The gradient from magenta to blue to cyan represents cells with IMTs going
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original normal distribution, as expected, with the resam-

pling scheme. We also see that, with direct inheritance, the

histogram has more disjointed peaks. With this kind of

inheritance, if a clone gets stuck in the bulk and goes quies-

cent, it cannot further propagate its trait. This is a product

of both chance and ability.

The shape and symmetry of the cellular expansion also

depends on the inheritance mode. For the dispersions, we

find that the colonies with short IMTs are larger in the

direct and adjusted inheritance modes, while the slower pro-

liferating colonies are smaller. Inheritance resampling, on the

other hand, results in colonies of roughly the same size owing

to an equal diversity in each. Just as we refer to colonies in the

dispersion, we will use the term ‘families’ in the cluster to

signify a group of cells that are all progeny of an initial seed.

The cellular clusters evolve in space differently because of

tougher competition. With direct inheritance, once a family

establishes a piece of the proliferating front, it will move out-

wards as a group in radial bands. But at the interface of these

patches of families, competition eventually drives the victory

of only one. We can see this progression within the structure

where some of the bands consisting of slower IMTs taper off

next to a faster growing family. In turn this makes the shape

lobular at these interfaces. With adjusted inheritance, initial

heterogeneity in space may cause a skewed shape to persist

for a while, but the cells eventually drift towards being

faster at proliferating. The shape of the cluster might reflect
the initial heterogeneity but will eventually round out while

wobbling slightly around the lower bound of IMTs. With

resampled inheritance, the cluster retains a rounded geometry.

It can be thought of as being equally heterogeneous locally and

globally with a relatively even radial expansion.
3.2. Migration: movement benefits all
Next, we examine the situation when cells have variation in

migration speeds but have the same proliferation rates. We

set all of the IMTs to be 18 h long, and initialize the cells

with speeds drawn randomly from a normal distribution

centred at 12 mm h21 and with a standard deviation of

5 mm h21. We bound the available migration speeds within

a window from 0 to 25 mm h21, and the width of each bin

is 1 mm h21. This distribution is similar to the values found

in Quaranta et al. [17].

Using this method with the cellular dispersion, we find

that the trait distributions retain their normal shape with no

discernible change (not shown). It appears that once the

cells can move around, regardless of speed, the selection

pressure from spatial competition (which was already

small) is almost negligible. There is a more pronounced

difference for the cluster configuration with variable

migration. These results are shown in figure 4.

We find that there is more competition for space in the

cluster configuration, and the faster movers have a selective
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advantage. However, as they move apart from the mass, it

also actually helps the slower movers continue to proliferate

by making more space available. So, for direct and adjusted

inheritance, we see a shift in the distributions over time

weighted towards the faster migrators while still maintaining

a spread of values as all cells benefit from the outward expan-

sion. We find that, similar to the effect of inheritance on

proliferation rates, direct inheritance results in a distribution

that is skewed towards faster migrators but more rugged

and irregular where some clones are snuffed out from pro-

liferating by getting caught up in the quiescent bulk. The

adjusted inheritance gives a more smooth distribution of

values, and for trait resampling, we find again that the

normal distribution is maintained.

In general, when cells are allowed to move, the whole struc-

ture becomes more jumbled, and the proliferating rim widens.

There are subtle shape effects on the cluster at the leading edge.

For the direct and adjusted inheritance, we see patches where

the cells are more spread out and patches where the cells are

more packed together. Looking closer, we find that the more

diffuse patches correspond, unsurprisingly, to faster movers,

and the more compact edges consist mostly of slower

moving cells. This effect is more pronounced in the direct

inheritance case, where it is more probable that a cell’s neigh-

bours are from the same family and have the same trait

values. Resampling migration speeds results in an edge that

expands rather evenly but that is still moderately diffuse, and

a few stray cells may advance further out because longer

persistence times and/or movement directly away from the

mass may create slight irregularities.
3.3. Trait combinations: just the sum of the parts?
We now take away all constraints on the phenotypes and

allow both traits to vary independently of each other. We

initialized the cells by randomly sampling from the same

normal distributions for IMTs and migration speeds as in

the previous sections. We then ran the same sort of
simulations as before. The final distributions of traits are

shown in figure 5.

Comparing the histograms from figures 3 and 4, where

each trait was varied on its own, with those in figure 5,

where both traits vary independently of each other, we note

that there is very little difference between the distributions.

The dispersions still do not invoke as much selection as the

clusters. The direct and adjusted inheritance schemes select

for both faster proliferators and faster movers, but the

resampled scheme maintains its distribution. The direct inheri-

tance has disjointed peaks as only several clones dominate,

and the adjusted inheritance is smooth over more values.

Once again, faster proliferators are more strongly selected for

than faster movers. As far as the distributions in traits is con-

cerned, the combination of traits appears no different from

the sum of the two individual traits.

Because of the greater competition and better image

resolution, we show only the spatial results for the cluster con-

figuration, and, though the mass appears somewhat jumbled,

we can still pick out some spatial trends. For both the direct

and adjusted inheritance, there is some clumping together of

similar traits (red and magenta patches), but the clumping is

more apparent with direct inheritance. We also note that

some slower proliferators are speckled throughout (black and

green cells). As in the previous section, it is mainly the fast

proliferators that get to the edge, but so do some slow prolifer-

ating, fast migrating cells. The shape of the mass with direct

inheritance is elongated where the faster proliferators have

dominated the region. Where the faster migrators have reached

the leading edge, the proliferating rim is more diffuse. The

resampled inheritance leads to a mix of cells with normally

distributed trait values for both traits. The cells reside in a rela-

tively even spatial distribution throughout the mass and the

shape is quite round compared with the others.

The traits do not appear to be correlated. Even though

there is a complicated spatial distribution for the traits, it

is clear that the combinations of traits that get selected

when both traits vary are quite similar to the combination

of independent traits that get selected when each trait is
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Figure 5. The frequency of occurrence of cells with combinations of traits in the dispersion upon reaching 25 000 cells (top) and the cluster upon reaching 8000 cells
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varied separately. However, the story changes when we limit

the phenotype space by imposing a trade-off between

proliferation and migration.
3.4. Go-or-grow: better do both
So far, we have considered the traits of proliferation and

migration separately and also together but uncorrelated, but

this may not be so. Rapidly advancing through the cell

cycle and synthesizing new material for division and acti-

vely moving around may cost the cell a large amount of

energy. The cell may only have so much energy to expend,

so we consider the idea of a trade-off between proliferation

and migration, often referred to as go-or-grow. We assume

that, if a cell is a faster migrator, it must be a slower pro-

liferator. The migration speed is mapped linearly to the
proliferation rate along the diagonal axis of the phenotype

space in this manner.

The resulting distributions of traits are shown in figure 6.

We see once again that a shift in trait distributions occurs

with the direct and adjusted inheritance, whereas trait resam-

pling results in practically no change from the original

distribution. For the dispersion, there is a slight shift towards

faster proliferating cells, which means that there is a slight

shift towards slower migrating cells. This is not surprising

with the cells spread out like this, because faster proliferators

are more strongly selected for than the faster migrators when

the cells already have enough space. But, for the cluster,

something interesting happens. It is most apparent in the

adjusted inheritance scheme. The same overall shift occurs

towards faster proliferators that are slow at moving, but

another population also appears to be present. In addition to
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the peak at fast proliferation values, there is another peak in the

middle of the distribution where the cells are average at both

proliferating and migrating. For direct inheritance, there may

be multiple peaks, but with the inherent bumpiness of the dis-

tribution it is hard to decipher.

The spatial distributions of the clusters are presented in

figure 6 for the three types of inheritance. We find that, in

general, the assemblage is more heterogeneously mixed

than with the other constraints. With direct and adjusted

inheritance, there are some regions with similar neighbours,

but there are also regions that are more mixed. The resampled

inheritance again maintains its usual diversity.

Further investigation of the adjusted inheritance for the

cluster configuration reveals that the weak bimodality is actu-

ally quite unstable. The peak may either stay in the middle,

move towards faster proliferators or become bimodal with

both peaks present to some degree, as previously described

and shown in figure 6. The initial distribution has a significant

effect on where this final distribution will stabilize. Figure 7

shows the final configurations for simulations starting with

all cells either fast at proliferating, fast at migrating or average

at both. In these cases, the distribution tends to remain centred

around where it began. However, when the trait values begin

in the middle of the range, several outcomes are possible:
either the peak remains in the middle, another peak forms at

fast or slow IMTs, or several peaks arise. The appearance of

a multi-modal distribution or relatively stable distributions

that have peaks at different values most probably means that

many trait values are equally fit.

3.5. The heterogeneity index: quantifying the
phenotypic mix

So far, we have shown how different constraints on the phe-

notype space in heterogeneous tumour growth can affect cell

population heterogeneity both temporally and spatially. To

understand the trait variation and allotment within a range

of values, we have plotted histograms of single traits. To

understand the variation and abundance of trait combi-

nations, we have shown phenotype density maps. Now,

we want to compare the previous results by describing the

heterogeneity numerically. We use the heterogeneity index

outlined in Appendix 1 as our metric for comparison.

In the previous sections, we showed typical results for

each scenario; however, with the amount of stochasticity

involved in these simulations, variation is expected. Here,

we compile from 15 different simulations of each scenario

the heterogeneity indices for proliferation rates (figure 8)
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Figure 7. With the adjusted inheritance, the go-or-grow constraint yields different populations of clusters grown to 8000 cells depending on the initial distribution.
All initial distributions (black box) are monoclonal with IMTs at 10 h (left), 18 h (middle) and 26 h (right).
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and for migration speeds (figure 9). The heterogeneity index

H was calculated from the final trait distributions.

The mean heterogeneity index is generally higher in the

dispersions where there is less selection than in the clusters,
but there are also differences between the different inheri-

tance modes. The direct inheritance scheme consistently

yields the smallest mean H across all scenarios. This is to be

expected, as no new traits can be gained but only lost. The
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resampled scheme appears to remain relatively steady over

the different constraints, while the mean values of H for the

adjusted inheritance scheme jump around to different values.

For the cluster, the mean H always increases from direct to

adjusted to resampled inheritance, and the extra competition

in the cluster configuration makes the homogeneity from direct

inheritance more pronounced. The first two columns reflect

that the mean values for both the direct and adjusted modes

move towards faster proliferation, so this results in a distribution

that is more homogeneous. However, with go-or-grow, there is

more heterogeneity, and also more variation in the amount of

heterogeneity, because many outcomes are possible. This results

in more heterogeneity, and also more variation in the amount of

heterogeneity as there are many outcomes possible.

When comparing the heterogeneity indices for migration,

similar trends are present, but there are differences. Again,

direct inheritance has the lowest mean value of H, but resam-

pling does not always have the highest mean H. With

migration, the adjusted scheme will often tend towards a

very spread out distribution, which translates to a large

H. But the heterogeneity index is largest in the go-or-grow

scenario with the resampling scheme. Now, with a good

understanding of heterogeneity in this system, we define

how it leads to different population fitnesses.

3.6. Fitness: different fates for different constraints
The heterogeneity of a population and its distribution of pheno-

types gives some measure of its capacity to survive in different
environments, but there are other ways to characterize the popu-

lation’s fitness. The most obvious metric is the overall growth rate

of the population, which we will evaluate. We will also look at the

proportion of proliferators in the population, which gives a

measure of spatial diffusiveness, a degree of competition from

neighbours, and an overall capacity for continued proliferation.

The growth rates are quite different for the dispersion and

the cluster (figure 10a). The dispersion grows exponentially

(N/ eat) until reaching confluence, and then it levels off as

the space eventually fills to capacity. For the cluster configur-

ation, the cells do not immediately compete with each other

as there is some space between them from the random

nature of the initial placement. So, after a quick growth

spurt when the population is small, the mass gets larger

and the fraction of cells at the leading edge that can prolifer-

ate reduces. Figure 10a shows the cluster growth fit to a

power law (N/ tb).

The proliferating fraction for the dispersion and the clus-

ter have different temporal dynamics (figure 10b). For the

dispersion, all cells start their own colonies with 100 per

cent in the proliferating state. Each colony grows initially

like its own separate cluster building up individual quiescent

cores, but quickly the space fills up and neighbouring colo-

nies become the competition. The initial proliferating

fraction for the cluster is smaller than the dispersion. This

fraction shrinks very gradually as the quiescent tumour

bulk becomes a larger and larger piece of the whole

population compared with the proliferating rim.
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Understanding how the fitness is affected by different

inheritance schemes and different constraints on heterogen-

eity is not straightforward. We ease into this intricacy by

first looking at the fitness of trait combinations in homo-

geneous populations. For simplicity and to be able to

compare the dispersion with the cluster, we correlate fitness

with the growth rate of the population, which we take as

DN/(N0Dt), where N0 is the initial population, DN is the

change in total number of cells and Dt is the total time.
We grow monoclonal populations (all cells have identical

trait values which are passed on directly to their progeny)

and record the overall growth rate. We take the proliferating

fraction at the end of each simulation. The results are shown

in figure 11 as fitness landscapes over the two-dimensional

space of phenotype combinations.

For the cellular dispersion in figure 11a, the growth rate sur-

face plot indicates that being a faster proliferator makes the

biggest impact on fitness. Increasing the speed is shown to
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increase the proliferating fraction, but it does little to increase

the overall growth. However, there is a noticeable decline in

the growth rates at very slow migration speeds. In this con-

figuration, the cells are already proliferating exponentially, so

allowing them to spread out hardly makes a difference.

For the cellular cluster in figure 11b, the surface plot shows

that the most fit combination of traits corresponds to the fast

proliferating, fast migrating phenotype and the least fit combi-

nation corresponds to the slow proliferating, slow migrating

phenotype. This agrees with what we find to be the most fit

when there is heterogeneity in the traits—the population

trends towards this most fit combination. However, we also

see that there are many combinations in between these

extremes that share the same values for fitness. From figure

11b, we find that, upon the line allowed by the go-or-grow con-

dition, most values are equally fit. The combination with the

largest proliferating fraction, however, does not correspond

to the fastest growth rate. The largest proliferating fraction

occurs when the cells move out fast, but proliferate slowly.

This combination creates a very diffuse tumour that invades

further before filling in the space left behind.

Analysis on monoclonal populations tells us only so much.

It is not always the fastest moving and most proliferative popu-

lations that come out on top when many interacting parts make

up the whole. Just as certain combinations of traits may work

well together, combinations of neighbours may interact differ-

ently. Furthermore, the fitness of the population as a whole

cannot be determined by summing the fitnesses of the clones

that make up the population, as we see next.
We now address the complexity of heterogeneity from the

previous sections. We compare the fitness metrics of each of

the different inheritance schemes with different constraints

and different spatial configurations by compiling results from

15 simulations for each scenario. First, we look at the fitness

of the populations, measured by the growth rate (figure 12).

For the dispersion configuration, there is less difference

between the three inheritance schemes; however, there is a ten-

dency for the resampled inheritance to yield slower growing

populations than the adjusted and direct inheritance schemes.

But when migration varies as a single trait, increasing

migration speeds (as seen with direct and adjusted inheritance)

do little to help when there is already such meagre competition,

so there is hardly any advantage to select, and the three

inheritance schemes produce similar results.

The growth rates for the cluster configuration are more dis-

tinct between inheritance schemes. In the first three columns,

the adjusted and direct inheritance schemes yield faster growth

rates than the resampled scheme, which lags behind. But in the

last column, for go-or-grow, the resampled scheme’s mean

growth rate is faster. In the first three columns, we know that

the distribution tends towards homogeneous populations with

faster proliferators and faster migrators. But when these values

are no longer allowed and many trait values are equally fit (in

go-or-grow), this heterogeneity that previously reduced the fit-

ness of the population is now beneficial. Though the adjusted

and direct inheritance schemes are seen to also lead to increases

in the heterogeneity indices for both traits in the go-or-grow case,

the resampled scheme has more local heterogeneity. Local
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heterogeneity is harder to achieve when the inheritance has some

familial memory (direct and adjusted inheritance gives rise to

daughter cells exactly like or similar to their parent, respectively).

These schemes will never achieve the same degree of local het-

erogeneity that the resampled scheme is capable of providing

when neighbours can easily be different from each other. This

is presumably a growth advantage.

Fitness is not just a measure of the growth rate of a popu-

lation. A population of cells may also be more fit if there is a

larger proportion of cells in the proliferating state. So, we exam-

ine, for all situations, the percentage of proliferators of the total

population at the end of each simulation (figure 13).

We record the proliferating fraction for the dispersion when

it is around 60 per cent confluent, whereas the cluster’s prolif-

erating fraction is measured when it reaches a size of around

2 mm in diameter. Therefore, the proliferating fraction is

always larger in the dispersion than in the cluster because we

are comparing the edges of many proliferating colonies with

the edge of one big proliferating mass, respectively. Also,

when the cells do not migrate (the first column), the mean frac-

tion is always smaller, because there is no diffuse boundary of

cells at the edges that increase this proliferation ratio value.

Once the cells have some movement, the edges become more

diffuse, and this value increases.

For the dispersion, the mean fraction of proliferators for

the resampling inheritance mode is larger than the others,

and this is more pronounced in the go-or-grow scenario.

For the cluster, the resampling scheme actually appears to

have mean proliferating fractions that are less than or equal
to the other schemes, yet the value once again is largest for

the go-or-grow scenario. The drift towards faster migrators

with direct or adjusted inheritance could lead to a diffuse

boundary, but the local heterogeneity found with the

resampled inheritance could also lead to a diffuse edge by

avoiding large pockets of closely packed fast proliferators.

We have examined three metrics to numerically evaluate

the heterogeneous population growth of this system: the

heterogeneity index, the growth rate and the proliferating

fraction. Not one of these metrics gives the complete under-

standing of the dynamics, but each has provided some

insight into piecing together how the many interactions

between the parts lead to the dynamics of the whole.
4. Discussion
This analysis has brought to light that, with heterogeneity

in traits, different modes of inheritance of phenotypes can

result in different outcomes for population composition,

heterogeneity and fitness. The only environmental constraint

considered here is space, and lack of space can drive selection

towards populations that are more or less heterogeneous

depending on the allowed trait combinations.

An obvious question to ask is, is one of these inheritance

schemes more realistic? It is probable that some traits do not

change often upon division, as with direct inheritance, and

that some adaptability is also allowed, as with the adjusted

inheritance. The unchanging diversity of the resampling
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scheme seems quite improbable, yet we saw in the go-or-grow

scenario that this local heterogeneity provides an advantage to

the growth of the population, and it might also be beneficial

when first entering a new microenvironment (e.g. a new meta-

static niche) to be maximally heterogeneous to better evaluate

which traits work best. With all of the ways that function actu-

ally comes about in a cell, it is also not necessary that every trait

will be passed on in the same way.

It is clear that, with an inheritance scheme that allows

plasticity of a phenotype, the traits of cells in a population

may converge to be more homogeneous even though the

cells come from different clones of origin. This idea of conver-

gent evolution is not new, but has recently been

demonstrated by genetically characterizing biopsies from

different sites within a tumour [3,4]. To explicitly confirm

this phenomenon in our model, we use the scenario where

the trait combinations are unlimited and the inheritance is

adjusted (figure 14).

We colour the images in figure 14 according to ‘families’,

or progeny from the same clone of origin (a), and position in

the two-dimensional phenotype space as before (b). We see

that each biopsy site results in different distributions of

families and different distributions of phenotypes. Further,

the originating family and phenotype need not be related.

Looking at the overall heterogeneity, it is clear that there

are multiple families producing the same phenotypic behav-

iour (the phenotype density map shows convergence towards

faster proliferation and faster migration). If we then look at

each biopsy in isolation this pattern is similar for biopsies 1,

2 and 4. In biopsy 3, we see that the families and phenotypes

are similarly diverse. This naive example shows how looking

at the genotype (or here, the original clonal family) might be

misleading, and as these tumours grow the divergence

between genotypes will grow while the convergence to phe-

notypes will also increase. It is worth noting that there is still
utility in looking at the spatial distribution of genotypes as

those that dominate will be correlated with the fitter pheno-

types. However, our example here has only 80 initial

‘genotypes’ that do not mutate and is certainly a gross under-

estimation of reality. We therefore believe that it is critical to

characterize the phenotypic heterogeneity (at the single cell

level) even more than the genotypic heterogeneity as ulti-

mately this will facilitate our understanding of how the

tumour grows and might be better treated.

Advances in single cell analysis have allowed us to exam-

ine more fully the heterogeneity of genetic and phenotypic

states of individual cells [17,29]. But perhaps more important

than understanding the variation in single traits is the hetero-

geneity of certain trait combinations and how they are

distributed spatially. For just the two traits we have examined

here, there is the potential for one trait to influence the other.

The faster a cell divides the faster the whole population can

grow, but if it is not moving apart it only keeps a very

small proliferating rim so that the growth is limited. There

is a balance needed for optimal growth between keeping

the cells dividing to grow the population and moving out

to keep the cells in the proliferating state. Beyond just looking

at growth rates for a measure of fitness, the proportion of the

population that is proliferating is significant.

We incorporate competition for space as the only envi-

ronmental factor (in both the dispersion and the cluster

configuration), which provides a very simplistic view of pro-

liferation and invasion of a population. Nevertheless, an

important feature of these two very different spatial configur-

ations is that the growth, evolution, heterogeneity and fitness

of the populations are dramatically different. We should be

careful in interpreting in vitro models in which the cells do

not experience this competition or make more observations

when cells are closer to confluence. We know that in vitro
models are, nonetheless, models and should be considered
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as such. Biological models such as tumour spheroids, scratch

assays, three-dimensional cultures and the Nest assay [30,31]

are better at mimicking spatial competition over standard cell

cultures. These models represent the migration much more

realistically, but, with so many combinations of traits, there

is no way to study them all without the help of mathematical

and computational models.

Some scenarios played out here may be more realistic

than others though all are quite abstract from the complexity

of a real tumour. Though abstract, this method of heterogen-

eity analysis of trait inheritance could be played out with any

combination of traits. We could also consider the evolution of

populations with more than two traits as angiogenesis,

metabolism, build-up of acidity and other processes change

the microenvironment. The complexity with just two traits

is already quite extensive, but a multi-dimensional pheno-

type space is also possible. With each additional trait

considered, the combinations of traits grows quickly, but rea-

listic constraints on these combinations may significantly

reduce the dimension, as in the go-or-grow scenario.

The spatial and temporal evolution of phenotypic hetero-

geneity (as defined by trait combinations) in a tumour has

significant implications for the treatment of that tumour

[32]. With the growing trend of genetic characterization of

tumours from a single biopsy, we may only be capturing a

skewed subset of the whole heterogeneity. Beyond the poten-

tial for misconstruing the type of treatment based on where

the biopsy is obtained, when a certain clone or phenotype

is targeted, we may be freeing up space and resources for

other cell types to take over. If we look at tumour growth

and regrowth during and after treatment as an evolutionary

process, we may get a better understanding of how to best

prevent recurrence. The mode of phenotypic inheritance

directly affects tumour growth, and the interplay between

the various traits is a source of complexity that deserves

much more attention from the biological community as this
ultimately may be the place where the best therapeutic

strategies for targeting a given tumour are found.

The authors gratefully acknowledge funding from the NCI Integrative
Cancer Biology Program grant no. U54 CA113007.
Appendix A. The heterogeneity index
Common formulae for quantifying heterogeneity include

those proposed by Shannon [33] and Simpson [34] in the

late 1940s. Both of these values grow quickly as sample size

increases and slower as the numbers even out. We want to

avoid this bias and present a value that represents the occu-

pied proportion of the available space. This point can be

made clear with figure 15, which shows a distribution calcu-

lated by the heterogeneity index described here, which ranges

from 0 to 1 linearly, and also by the normalized Shannon

index, which is logarithmic, for comparison.

Basically, we sum up, over all bins, the difference between

each bin and the bin with the highest frequency. So, if all

traits occupy one bin, we get a maximum value, and if

all bins are equally populated we get nil. We then subtract

the summation from 1 to get the heterogeneity index. The

equation for the heterogeneity index is as follows:

H ¼ 1� 1

Nmaxðtmax � tmin � DtÞ
X

j

ðNmax �NjÞDt: ðA 1Þ

This equation defines a simple measure for how disperse

the values are within a trait’s range t [ ðtmin; tmaxÞ. It ensures

that H ¼ 1 when the range of trait values are filled equally

and H ¼ 0 when all cells have the exact same trait value

(figure 15). We define Nmax as the bin with the highest fre-

quency, Nj as the occupancy of every other bin and Dt as

the bin size. Choosing the range and bin sizes appropriately

is an important part of determining this value.
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