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Tumour – stromal interactions generate
emergent persistence in collective cancer
cell migration

William K. Chang, Carlos Carmona-Fontaine and Joao B. Xavier

Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Cancer cell collective migration is a complex behaviour leading to the inva-

sion of cancer cells into surrounding tissue, often with the aid of stromal

cells in the microenvironment, such as macrophages or fibroblasts. Although

tumour–tumour and tumour–stromal intercellular signalling have been

shown to contribute to cancer cell migration, we lack a fundamental theoretical

understanding of how aggressive invasion emerges from the synergy between

these mechanisms. We use a computational self-propelled particle model

to simulate intercellular interactions between co-migrating tumour and

stromal cells and study the emergence of collective movement. We find

that tumour–stromal interaction increases the cohesion and persistence of

migrating mixed tumour–stromal cell clusters in a noisy and unbounded

environment, leading to increased cell cluster size and distance migrated by

cancer cells. Although environmental constraints, such as vasculature or

extracellular matrix, influence cancer migration in vivo, our model shows

that cell–cell interactions are sufficient to generate cohesive and persistent

movement. From our results, we conclude that inhibition of tumour–stromal

intercellular signalling may present a viable therapeutic target for disrupting

collective cancer cell migration.
1. Introduction
One of the most harmful features that tumour cells acquire is the ability to migrate

and invade surrounding tissues, leading to deadly systemic metastases [1]. This

has fuelled an active research programme to understand cancer cell migration

and invasion from experimental and theoretical points of view. Novel techniques

for direct visualization of tumour invasion in vivo [2] have revealed that cancer

cells frequently migrate as groups of closely interacting cells [3]. The paradigm

of collective cell migration has been rapidly accepted by experimentalists and it

is now clear that collective migration is not exclusive to cancer but a widely

used mode of cell migration [4]. However, we still lack a complete and thorough

understanding of how individual cells coordinate to migrate collectively.

Ecological models may be useful in understanding cancer collective

migration. Collective migration is observed in biological systems of many dis-

parate length scales, ranging from bird flocks [5–7] to bacterial swarms [8,9].

It is an emergent phenomenon and a universality class, in which the large-

scale properties of the collective result from the activities of individuals, but

are to some extent independent of the specific behaviour of individuals

[10,11]. Similarly, in cell biology, collective migration of groups of closely inter-

acting cells has been implicated in such behaviours as organ morphogenesis

during embryonic development or vascularization [4,12–15] and, the main

motivation for our study, cell invasion during cancer progression [13,16].

One of the most successful theoretical approaches to study the emergence of

collective migration from simple interactions between moving individuals are a

class of models called self-propelled particles (SPPs). In the classic SPP model

[17] an individual moving at a fixed speed interacts with its neighbours by align-

ing itself with the average direction of all individuals within a given radius. These

simple rules for local interaction give rise to emergent global properties, such as a

phase transition from disordered, or individual, motion to ordered, or collective,
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motion with a decreasing level of noise in the interaction. This

model and derivations of it have been applied to numerous

problems in collective migration by using the individual par-

ticle to represent real-world individuals in collectives, such as

an animal in a flock [18,19], micro-organisms in a colony [20]

or a cell in a tissue [21,22].

Experiments in which a homogeneous cell population dis-

plays collective migration in the absence of other cell types or

external signals [22–25] are compatible with the original

SPP model. However, migratory cancer cells interact with

each other but also with stromal cells. For example, stromal

cells such as macrophages [26,27] and fibroblasts [28] are

known to assist cancer cell migration through secretion of

migration-stimulating cytokines and proteinases that remodel

and create permissive tracks in the extracellular matrix [1,29].

Thus, the application of the SPP model to cancer is complicated

because cell migration in tumours requires synergy between

diverse cell types [29–31]. The SPP paradigm has been

used before to investigate cell sorting in development and

regeneration [32,33]. Yet, it remains unknown how interactions

between different, non-reciprocally interacting cell types affect

collective cell migration.

Here, we explore what are the consequences of imple-

menting experimentally inspired modifications to the original

SPP model. More specifically, we investigate what are the

consequences of the presence of a small subpopulation—repre-

senting stromal cells—with a distinct behaviour. Thus, we

extend the Vicsek SPP algorithm [17] to introduce an additional

particle type representing stromal cells. Tumour-associated

macrophages are one of the most abundant and well-studied

stromal cell types within solid tumours [27]. These macro-

phages are known to attract cancer cells, and this interaction

is crucial for tumour invasiveness in vivo [29,34,35]. Based on

these observations, we add a specific non-reciprocal attraction

rule compelling cells of one type (tumour) towards nearby cells

of the second type (stromal). This attraction has a relatively

longer range of action, i.e. can occur between non-adjacent

cells. We use our expanded model (hereafter referred to

as the cancer–stromal model) to explore cell displacement

and cell cluster size as metrics for quantifying the impact

of stromal cells on collective cancer cell migration. Our

simulations suggest that stromal cells can have profound impli-

cations for large-scale cancer cell collective migratory patterns

and, consequently, for tumour aggressiveness.

It is important to stress that, although our initial motivation

is to model attractive macrophage–tumour interactions

described experimentally [29,34,35], our model is simplified

and neglects other aspects of cancer–macrophage interaction

such as angiogenesis promotion [36,37] and modulation of

the inflammatory response [38]. Thus, the model is general

and can be extended to any other attractive stromal cell.
2. Results
2.1. Extending self-propelled particles to model a

tumour – stromal interaction
We use the homogeneous population of SPPs with one simple

alignment rule as described in the original SPP model [17] as a

starting point to model migrating tumour cells. To this popu-

lation, we introduce a minority population of a second type

of SPP, representing stromal cells. Cells of both kinds,
tumour or stromal, align non-specifically to the mean polariz-

ation of cells in the neighbourhood. In addition, we add an

attractive tumour–stromal interaction. This interaction is

assumed to be type-specific and asymmetrical, that is,

tumour cells are attracted to nearby stromal cells, but not

vice versa (figure 1a). The angle of polarization u of each

cancer cell i is thus recalculated at each iteration:

uiðtþ 1Þ ¼ uðtÞral þ ats argðrijÞrts þ Du; ð2:1Þ

where u(t)ral is the mean angle of polarization of all cells within

distance ral of the focal tumour cell i; ats is the strength of the

attractive tumour–stromal interaction relative to cell–cell

alignment; arg(rij)rts is the mean angle of vectors from the

centre of focal tumour cell i to all stromal cells j within distance

rts of cell i; and Du is a random angle on the interval [2h, h],

representing noise. The polarization calculation for stromal

cells lacks the second term, and thus is identical to the

migration rule in [17],

uiðtþ 1Þ ¼ uðtÞral þ Du: ð2:2Þ

All length scales and cell speeds in the model are normalized as

previously [17]: that is, the range of cell–cell alignment, ral,

equals 1. Local interaction mechanisms such as cell–cell

adhesion and shear viscosity at high cell density [39] can

account for this short-range alignment.

Conversely, we assume that the possible mechanisms for

tumour–stromal interaction, such as paracrine signalling

through diffusible molecules [29,34], chemotactic motility

from cancer cells towards stromal cells or forms of long-

range alignment via adhesion to common collagen fibres in

the extracellular matrix [1,29], have greater effective range

than those contributing to cell–cell alignment adhesion to

common collagen fibres in the matrix [1], and set rts ¼ 2.

Interaction and noise strengths are normalized to the cell–

cell alignment strength; that is, cell–cell alignment strength

equals 1. The noise amplitude, h, varied from 0 � h � 5,

which is the range in which the ordered–disordered phase

transition was observed previously [17], and the interaction

strength, ats, varied from 0 � ats � 2.

All simulations were performed in two dimensions, repli-

cating the cell density and boundary conditions, again as

used previously [17]. We used a ratio of 4000 simulated

tumour cells and 40 simulated stromal cells. With ats ¼ 0,

the stromal cells effectively behave identically to the

tumour cells and the model should be equivalent to the orig-

inal SPP. Our cancer–stromal model, when its additional

parameters are set to 0, thus reproduces the behaviour pre-

viously observed in the original SPP study [17]. Simulation

parameters are summarized in table 1.

2.2. Tumour – stromal interaction enhances collective
migration in noisy environments

We first evaluated whether our model performed consistently by

calculating the global order parameter, a key parameter in the

original SPP model [17]. Briefly, the order parameter quantifies

the average direction of particles, which we then compared at

the pseudo-steady state (10 000 iterations) with the results in

the original study. As expected, a global order parameter of

approximately 0 indicates a disordered system with cells ran-

domly polarized and distributed throughout the simulation

space, while a global order parameter of approximately 1 indi-

cates a system in which all the cells are roughly aligned and
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Figure 1. (a) Cell – cell interactions in the cancer – stromal model of self-propelled particles. Cells move at fixed speed with a direction set by the polarization vector
p. Stromal cells align non-specifically to the local mean direction of motion. Tumour cells align non-specifically in addition to moving towards any nearby stromal
cells. (b) Order parameter quantifies the extent of cell polarization. When the global order parameter is approximately 0, cells are randomly polarized. When the
global order parameter is approximately 1, cells are polarized in the same direction. (c) In a system with no tumour – stromal attraction (ats ¼ 0; i.e. all cells behave
as tumour cells) with low noise and cyclic boundary conditions, in the infinite-time limit, the global order parameter approaches 1: almost all cells eventually group
into a single coherent cluster, in which individual polarizations deviate little from the mean polarization of the cluster. In a high-noise system, the global order
parameter approaches 0, and the cells are spread throughout the available space with no discernible clustering.

Table 1. Parameters used in model. Parameters not in the original SPP
model [17] are given in bold. All parameters are dimensionless.

cell migration speed 0.03

size of simulation space 31.6 � 31.6

range of cell – cell alignment 1

strength of cell – cell alignment 1

noise 0 � h � 5

number of cancer cells 4000

number of stromal cells 40

range of tumour – stromal

attraction

2

strength of tumour – stromal

attraction

ats ¼ [0, 0.2, 0.4, 0.6, 0.8,

1.0, 2.0]
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migrating as a single coherent cluster (figure 1b,c). A phase tran-

sition from ordered to disordered motion occurred ash increases.

These observations confirmed that our SPP implementation cor-

responded to the original model [17].

We then considered the effect of tumour–stromal attrac-

tion on the order of motion by setting ats to positive values.

Simulations with ats . 0 showed notable deviations from the

original SPP model [17]. We observed high variability in

global order at the end of the simulation runs, but with oppo-

site trends for low and high noise. The global order decreased

compared with ats ¼ 0 for low values of h (h , 2.5), and

increased for high values of h (h � 3; figure 2). End-simulation

global order did not noticeably vary between simulations with

different positive values of ats and the same value of h (not

shown). The effect of changing cell density simultaneously

with noise on the phase diagram of the order parameter is

shown in the electronic supplementary material, figure 1.

These results demonstrate that a simple extension to the

original SPP can produce a significant change in the predic-

ted pattern of collective migration and may have important

implications for cancer. Specifically, the results suggest that

tumour–stromal interaction can stabilize cancer collective

migration in noisy systems.

2.3. The effect of stromal stabilization is stronger in
expanding tumours

Our model so far, like the original SPP model, assumes cyclic

boundary conditions [17], which confine the particles to a
space of torus-like geometry and unrealistically small volume.

However, cancer invasion in vivo drives cancer progression on

time and length scales much larger than those of individual

cell migration or even intercellular signalling within small

groups of cells [40]. To extrapolate collective co-migration of

cancer and stromal cells to larger length scales and longer simu-

lation times, we implemented a second extension in our model,

now using an unbounded system in which cell migration is

essentially unlimited by spatial constraints (figure 3a).
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Figure 2. Global order parameter as a function of noise in a system with
cyclic boundary conditions. Under a fixed value of ats, as h is increased,
the system exhibits a phase transition from ordered (global order parameter
approx. 1) to disordered (global order parameter approx. 0). When ats ¼ 0,
the phase transition occurs as in ref. [8]. When ats ¼ 1.0, global order is
decreased for low values of h, but increased for high values of h compared
with the ats ¼ 0 system. Asterisks indicate a significant difference between
the ats ¼ 1.0 and ats ¼ 0 simulations ( p , 0.001).
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We carried out simulations with the unbounded system for

a range of interaction strength and noise levels and we calcu-

lated the global order parameter after 10 000 time steps. As

expected, with no tumour–stromal interaction (ats¼ 0), the

global order decreases towards the end of simulation for all

levels of noise (figure 3b). This occurs because, in unbounded

systems, the decoherence effect of noise in each cell cluster is

cumulative, and is unlikely to be cancelled by encounters

with other cell clusters; thus, the ability of the system to sustain

large coherent clusters over long time spans is decreased.

Adding tumour–stromal interaction uniformly increases the

end-simulation global order for all noise levels, implying that

tumour–stromal interaction has much greater impact on the

coherence of migrating cancer cell groups when the available

space is large. Tumour–stromal interaction delays the disinte-

gration of coherent migrating clusters, and increases the end-

simulation global order (figure 3b).

In addition to calculating the order parameter, we also

examined the distance migrated by cancer cells as a mea-

sure of cancer cell invasiveness. For simulations without

tumour–stromal interaction in which noise is moderate to

high, the mean displacement rapidly increases initially but

starts to level off within the simulation time (figure 4a). In

contrast, in simulations with tumour–stromal interaction,

the mean displacement increases steadily (linearly) through-

out the duration of the simulation; this increase is seen to

saturate within the simulation time only when noise levels

are high (figure 4a). Consequently, for all positive values of

h tested, tumour–stromal interaction increased the mean dis-

tance migrated by cancer cells (figure 4b). We conclude that

tumour–stromal interaction increases the persistence and ulti-

mately the performance of collective cancer cell migration, as

measured by distance travelled.

We also considered the effect of tumour–stromal inter-

action on the size of collectively migrating cell clusters, as

measured by the number of cells in the clusters. Clusters

are defined as groups of cells within the same interaction
network, i.e. cells interacting directly or indirectly via other

cells. We determined the presence of cell–cell interactions

by thresholding the centre–centre distance of each pair of

cells with the appropriate interaction range (1 for a pair of

tumour cells or a pair of stromal cells, 2 for a heterogeneous

pair of 1 stromal cell and 1 tumour cell) and sorted the cells

into clusters using the well-established equivalence class

sorting algorithm [41]. Stromal cells were included in the stat-

istics for stromalized clusters; however, as they constituted 1

per cent of the total population, we assumed that they did not

significantly affect the overall statistics. Cells not in contact

with another cell were interpreted as clusters of size 1. At

low levels of noise, tumour–stromal interaction increased

the global mean size of collectively migrating cell clusters

compared with the control simulations. However, this trend

reversed as h was increased above approximately 2.5, and

for high levels of noise, tumour–stromal interactions in fact

decreased the global mean cluster size (figure 4c).
2.4. Stromalized clusters are more invasive
To understand this biphasic effect of tumour–stromal inter-

action on the sizes of migrating clusters (figure 4c), we then

sorted the cell clusters into those that included at least one

stromal cell (‘stromalized’ clusters) and those that did not

(‘unstromalized’ clusters) (figure 5a). We estimated the dis-

tance migrated by a cluster of interacting cells by

calculating the mean displacement of all cells in the cluster at

the end of simulation. We then examined the relationship

between the stromalized clusters, the distance migrated by a

cluster and its size. In the low-noise (h � 0.5) regime, both

the stromalized and unstromalized clusters were smaller and

displayed a smaller mean displacement than clusters in the

control (ats ¼ 0) simulations (figure 5b). This is caused by the

same fragmentation and consequent decrease in coherence

observed in the cyclic boundary simulations. In addition, the

distribution of multiple stromal cells throughout the cell popu-

lation at inoculation possibly creates multiple conflicting

directional signals that propagate through many cancer cells,

leading to wandering behaviour that contributes little to the

mean displacement.

For larger values of h, both the size of and distance

migrated by clusters decreases noticeably for the control

simulations. The stromalized clusters separate into a distinct

coherent, far-migrating subpopulation (figure 5c). At very

high noise levels, cluster size and distance migrated are

decreased for both stromalized and unstromalized clusters

in test simulations, and for all clusters in control simulations.

Regardless, stromalized clusters retain a significantly larger

mean cluster size than the unstromalized subpopulation

(figure 5d ). These results suggest that tumour–stromal inter-

action can increase both the motility of migrating cancer cells

and the number of motile cancer cells.

Notably, control simulations saw the emergence of very

large clusters, of the order of 1000 cells, with cluster displace-

ment close to 0 (figure 5d). This is because the cells are

inoculated at high enough density to constitute a single inter-

acting cluster, and at high noise most cells are unable to

‘escape’ the inoculum cluster. Similarly to the medium-noise

situation, these results suggest that, in microenvironments

that present strong barriers to cancer cell migration, interaction

with stromal cells can aid in the escape of motile cancer cells

from the main tumour mass.
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boundary conditions, cells leaving the area of inoculation will re-enter the area at the diametrically opposite point, maintaining its polarization. In an unbounded
system, the cell is not spatially constrained and may leave the area of inoculation. (b) Global order parameter as a function of noise in an unbounded system. The
order of the system decreases rapidly as h increases. When ats ¼ 1.0, the order increases for all positive values of h compared with simulations in which ats ¼ 0.
Asterisks indicate a significant difference between the ats ¼ 1.0 and ats ¼ 0 simulations ( p , 0.001).
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3. Discussion
In order to understand the effect of complex tumour–stromal

and tumour–tumour intercellular interactions on collective

cancer cell migration, we have implemented and analysed

the cancer–stromal model, a minimal computational model

for simulating the collective co-migration of two phenotypi-

cally distinct cell types under the SPP paradigm. We have

designed the model with intended application to stromal

cell-assisted cancer cell invasion, but it can theoretically be

applied to any heterogeneous population in which interaction

between subpopulations is orthogonal to interaction within

subpopulations; for example, a symbiotic or antagonistic

relationship between two animal herds of different species.

We find that, given an unbounded space in which to disperse,

the addition of tumour–stromal interaction increases the

end displacement of cells within stromalized clusters. The

presence of system-level effects in our simulations is remark-

able, considering the stromal cells constitute less than 1 per

cent of all cells in the system, and in an unbounded system

only a slim minority of cancer cells will directly interact with

stromal cells in the course of a simulation.
The effect of tumour–stromal interactions on the sizes of

co-migrating cell clusters changes relative to the amount of

noise in the system. At finite but low levels of noise, positive

attraction between tumour and stromal cells increases the size

of stromalized clusters over unstromalized clusters in the

same system or clusters in systems in which tumour–stromal

attraction is absent. With high levels of noise, cancer cells

tend to clump in large but non-migratory clusters. Interaction

with stromal cells causes cancer cells to fragment from these

static clusters into smaller, but more invasive clusters, leading

to the escape of cancer cells from the inoculum.

Our results suggest that the presence of a small number of

stromal cells expressing an attractive signal for migrating

cancer cells can lead to a population-level increase in the ability

of cancer cells to migrate long distances, and that cell clusters of

significant size leaving the initial tumour site will probably be

aided in their migration by stromal cells. In realistic settings,

increasing the coherence of migrating cancer cell clusters

may increase the aggressiveness of cancer invasion by preser-

ving other deleterious collective phenotypes, such as pooling

of paracrine growth signals or matrix-remodelling proteases

[1,16,28,29,35,42,43]. Tumour–stromal interactions increase
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the number of cells that are able to migrate coherently and

maintain cell–cell signalling. Thus, they may increase the

fitness of the invading cancer cell population [36,38,44].

It is now well established that collective migration can

emerge within cancer even without the presence of stromal

cells. This phenomenon seems to be suitably described by

the 1-species SPP model [15,22]. Here, we add one degree

of complexity by investigating the effect of a minority of

attracting cells within a large population. While this work

is inspired by reports showing that carcinoma cells are

attracted to epidermal growth factor secreted by tumour-

associated macrophages [34], it necessarily presents a simpli-

fied view. There are potentially many other interaction

processes existing within macrophages, tumour cells and

their complex microenvironment [36–38]. Such interactions

represent further levels of complexity that are outside the

scope of this study.

Nonetheless, our simple model already shows a dramatic

effect on the behaviour of the population. Specifically, the emer-

gence of system-level increases in migration distance in our

cancer–stromal model does not require a structured environ-

ment featuring system-level signals such as chemoattractant
or extracellular matrix gradients [45]. We show that increased

migration efficiency and escape of tumour cells from a pri-

mary tumour mass can be achieved purely through local,

pairwise cell–cell interactions; no global migration trigger or

directional cue is necessary. When we investigate the spatial

distribution of stromal cells in migrating cell clusters, we find

that it becomes asymmetrical and correlated with the mean

polarization of the stromal cells when tumour–stromal inter-

action is switched on (see the electronic supplementary

material, figure 2b). This effect decreased with increasing

noise (see the electronic supplementary material, figure 2a),

suggesting that tumour–stromal interaction causes the stromal

cells to emerge as leaders on the leading edge of their moving

clusters. Still, on a theoretical level, our model is distinct from

collective migration models in which the population is divided

into ‘leaders’ that are sensitive to a global directional signal (e.g.

a patchy nutrient environment) and ‘followers’ that are not [46],

since in our case the stromal cells do not follow a global direc-

tional cue. On a biological level, the dynamic construction of

leadership we use in the cancer–stromal model reflects the

experimental observation that leadership in collective cancer

cell migration can be defined not by genotype but by the spatial
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(ats ¼ 0) for a medium-noise condition. Unstromalized clusters in test simulations distributed similarly to clusters in control simulations both in terms of size
and displacement. Stromalized clusters in test simulations distributed distinctively from the unstromalized and control clusters, displaying greater displacement
and cluster size overall. (d ) Distributions of cluster sizes and displacements for stromalized and unstromalized clusters in five test simulations (ats ¼ 1.0)
versus control (ats ¼ 0) for a high-noise condition. Stromalized and unstromalized clusters from the test simulations distributed similarly with respect to displace-
ment, with stromalized clusters being larger overall. Cells in the control simulations formed large, nonmotile clusters owing to being unable to significantly migrate
from their points of origin. In the test simulations, tumour – stromal interactions break the cells into small, motile clusters.
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structure of the cell population itself and differential access to

microenvironmental factors [13,47].

It is also worth noting that our cancer–stromal model

makes the assumption that long-range signalling between

tumour cells and stromal cells has a digital response, vanish-

ing at distances greater than the range of tumour–stromal

interaction rts. To determine whether our results are an arte-

fact of this model assumption, we performed additional

simulations using a function in which the strength of the

tumour–stromal interactions decayed continuously away

from the stromal cell as rij/rts with a maximum value of ats.

We found that at h ¼ 1, ats ¼ 1, cancer cells moved towards

the centre of mass of the stromal cells, which, given the

uniform distribution of cells at inoculation, was calculated

to be the centre of the simulation space. This effect is a

modelling artefact owing to boundary conditions used in

simulations and has no relevance to biological reality.

When we started decreasing ats to 0.01 the artefact vanished

and the simulation yielded similar results to those using

equation (2.1). Given that the two methods yielded similar

results, and that the continuous interaction function increased
both the degrees of freedom in the model and the com-

putation time required, we concluded that equation (2.1)

was preferable for modelling tumour–stromal interactions.

In addition, within the dense and heterogeneous tissue of

real solid tumours, continuous decay over long distances

may not accurately describe the distribution of diffusible

molecular signals.

Recent studies on interactions between the tumour and its

stromal microenvironment have generated interest in target-

ing the microenvironment for treatment, that is, ‘ecological

therapy’ [48]. Our results suggest that cell–cell communi-

cation among the migrating cancer cell population may

serve to amplify and increase the robustness of pro-invasive

tumour–stromal interactions, propagating signals beyond

the leading edge of cancer cells in direct contact with stromal

cells. It may thus be necessary to consider the reinforcement

of pro-tumour tumour–stromal interactions by signalling

within the tumour cell population when designing and

testing potential ecological therapies. A hybrid therapy tar-

geting tumour–stromal and tumour–tumour intercellular

signalling simultaneously may be required for effectiveness.
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It is worth noting that the metrics we used to quantify the

performance of collective migration may be applicable to

both simulated and experimental cell systems such as in
vitro cell tracking assays [22]. By collecting phenomenological

data with sufficient resolution to track the positions and vel-

ocities of individual cells and quantifying collective

migration experimentally for a specific biological system

(here meaning a stromal cell type and a cancer cell type),

one may parameterize or ‘tune’ a phenomenological model

to reproduce the collective-level behaviour of an experimental

system. Such hybrid experimental/computational studies

have been performed in animal [49] and cellular [22] systems.

The tuned computational model may then be modified and

interrogated to make testable hypotheses for the specified
system; for example, to predict the co-migration patterns of

cancer cells and tumour-associated macrophages in a highly

structured in vivo environment using data collected in an

unstructured in vitro co-culture assay, such as a chemotaxis

chamber or collagen gel. We hope that our expanded

SPP model will help bridge the knowledge gap

between the tractability of low-perturbation in vitro exper-

iments and the complexity of stromal-assisted cancer cell

invasion in vivo.

This work was supported by the Office of the Director, National Insti-
tutes of Health, under award number DP2OD008440 to J.B.X. and the
Integrated Cancer Biology Program under grant U54 CA14896704.
C.C.F. is supported by the same U54 grant as an independent fellow
of the Computational Biology Center at Memorial Sloan-Kettering.
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9. Czirók A, Ben-Jacob E, Cohen I, Vicsek T. 1996
Formation of complex bacterial colonies via self-
generated vortices. Phys. Rev. E 54, 1791 – 1801.
(doi:10.1103/PhysRevE.54.1791)

10. Kadanoff LP. 1990 Scaling and universality in
statistical physics. Phys. A Statist. Mech. Appl. 163,
1 – 14. (doi:10.1016/0378-4371(90)90309-G)

11. Toner J, Tu Y. 1998 Flocks, herds, and schools: a
quantitative theory of flocking. Phys. Rev. E 58,
4828 – 4858. (doi:10.1103/PhysRevE.58.4828)

12. Carmona-Fontaine C, Matthews HK, Kuriyama S,
Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R.
2008 Contact inhibition of locomotion in vivo
controls neural crest directional migration. Nature
456, 957 – 961. (doi:10.1038/nature07441)

13. Friedl P, Gilmour D. 2009 Collective cell migration in
morphogenesis, regeneration and cancer. Nat. Rev.
Mol. Cell Biol. 10, 445 – 457. (doi:10.1038/nrm2720)
14. Palm MM, Merks RM. 2013 Vascular networks due
to dynamically arrested crystalline ordering of
elongated cells. Phys. Rev. E Stat. Nonlin. Soft
Matter Phys. 87, 012725. (doi:10.1103/PhysRevE.
87.012725)

15. Szabo A, Unnep R, Mehes E, Twal WO, Argraves WS,
Cao Y, Czirok A. 2010 Collective cell motion in
endothelial monolayers. Phys. Biol. 7, 046007.
(doi:10.1088/1478-3975/7/4/046007)

16. Deisboeck TS, Couzin ID. 2009 Collective behavior in
cancer cell populations. Bioessay 31, 190 – 197.
(doi:10.1002/bies.200800084)
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