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A small but growing number of people are finding interesting parallels

between ecosystems as studied by ecologists (think of a savannah or the

Amazon rainforest or a coral reef ) and tumours. The idea of viewing

cancer from an ecological perspective has many implications but, basically,

it means that we should not see cancer just as a group of mutated cells. A

more useful definition of cancer is to consider it a disruption in the complex

balance of many interacting cellular and microenvironmental elements in a

specific organ. This perspective means that organs undergoing carcinogen-

esis should be seen as sophisticated ecosystems in homoeostasis that

cancer cells can disrupt. It also makes cancer seem even more complex but

may ultimately provide insights that make it more treatable. Here, we dis-

cuss how ecological principles can be used to better understand cancer

progression and treatment, using several mathematical and computational

models to illustrate our argument.
1. Cancer and ecosystems
One of the primary aims of mathematical modelling is to make the system being

studied more understandable. This often means defining the system as simply

as possible, and not making it more complex than reality. Einstein is known to

have said that everything should be made as simple as possible, but not simpler

[1]. It turns out that complexity has its place and, as convenient as it would be

for cancer biologists to study tumour cells in isolation, that makes as much

sense as trying to understand frogs without considering that they tend to live

near swamps and feast on insects. A frog’s sticky tongue makes much more

sense when you consider how useful is it when trying to catch flies. Similarly,

it makes sense that a cancer cell that is close to a blood vessel and is capable of

producing vascular endothelial growth factors would benefit from co-opting

endothelial cells to grow its very own vasculature and obtain more nutrients

and oxygen. This dialogue between tumour cells and their environment is criti-

cal to understanding how an ecological view of cancer may be beneficial. The

standard gene-centric view states that cancer is only a product of mutation,

but since the importance of a mutation only makes sense when we understand

the context. The context in which genes operate is ultimately the ecosystem. An

ecosystem is made of individuals (plants, animals, bacteria, independent cells,

etc. ) and the physical environment they inhabit (water, soil, oxygen, food, etc.).

Survival and proliferation, the only things that matter at the evolutionary level,

depend on how well a cell competes for the existing resources and cooperates

with other cells to produce new ones. Even a simplified ecosystem should

showcase the interdependence of species and how important the interactions

between them are. In many ecosystems, the species and the way they interact

do not change significantly over time. Occasionally, changes in the environment

or a new species invading the ecosystem can disrupt the existing homoeostasis.

From the cancer ecology perspective, tumourigenesis is the process by which

the homoeostasis that characterizes a healthy tissue is disrupted either via

changes in the tissue microenvironment, or by an invading species (some
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bacteria and viruses are known to be able to lead to tumour-

igenesis), or by a local invasion (a resident species producing

a brand new one as a result of mutations).

The local environment is thus an important factor, not

only in traditional ecosystems but also in cancer. This idea

dates back to the late nineteenth century with Paget’s well-

known seed–soil hypothesis [2], which suggests that for suc-

cessful metastases, the soil (the site of a metastasis) is as

important as the seed (the metastatic cells). It is now begin-

ning to be widely accepted that cancer is not just a genetic

disease but the one in which evolution plays a crucial role

[3,4]. This means that tumour cells evolve, adapt to and

change the environment in which they live. The ones that

fail to do so will ultimately become extinct. The ones that

do, will have a chance to invade and metastasize. The

capacity of a tumour cell to adapt to a new environment

will thus be determined by environment and the cellular

species from the original site, to which it has already

painstakingly adapted.

Adaptation is the key process for any system subject

to Darwinian evolution, and cancer is no exception [5].

Because its role in cancer is only now beginning to be

explored, the full implications have yet to impact the cancer

research community at large. Tumour cell adaptation to

complex dynamic environments not only means that finding

the roots of the disease just got a whole lot more complex

(as it is not restricted to the role of a few genes), but this

view also opens new routes to stop or even reverse cancer

progression [6]. Normal organ ecosystems (and the tissues

that define them) maintain a dynamic balance or homoeo-

stasis between their cellular and environmental components

and therefore do not create selection pressures that lead

to adaptation.

This homoeostasis is a defining feature of normal healthy

body organs (such as those in which cancer has not been

initiated). Evolution selects for organisms that achieve homo-

eostasis and this evolutionary process also makes them

capable of recovering from environmental and genetic pertur-

bations [7,8]. The normal form and function of most tissues

(defined by the integration of multiple cellular, extracellular,

chemical and physical signals/constraints) is to maintain a

homoeostatic balance and carry out the role they are required

to perform. Homeostasis loss is traditionally seen as a key

initial step on the route to cancer development [9,10]. At its

simplest tissue, homoeostasis is the balance between cell pro-

liferation and apoptosis such that the tissue architecture and

function remains constant. It is no accident that disruptions in

these processes are considered as key features of oncogenic

transformation. Fortunately, there are multiple mechanisms

that regulate these processes and actively ensure homoeo-

static maintenance, mainly through the regulation of both

proliferation and apoptosis. These mechanisms fall into the

two broad camps of cellular (e.g. cell–cell adhesion and

cell–extracellular matrix (ECM) adhesion) and environmental

(e.g. metabolic factors, growth factors and stroma), although

there is a great deal of feedback between these camps with

changes in one driving the other. Therefore, to escape homo-

eostatic control mutant cells need to significantly modify

their baseline phenotypes and ignore environmental signals.

This will be profoundly influenced by both cellular (in

terms of phenotypic traits such as cell adhesion) and environ-

mental heterogeneity (in terms of metabolite levels and

stromal communication) and the feedback between them.
Cellular heterogeneity represents an intrinsic variability

that may be driven by genetic or non-genetic factors but

importantly provides the means for driving homoeostatic dis-

ruption and responding to it. This heterogeneity further

emphasizes the need to understand interactions that occur

within the cancer ecosystem, i.e. between cells and between

cells and their environment. Intratumour heterogeneity is of

great interest to the cancer community as it has highlighted

a potential issue with molecular signatures and even person-

alized medicine as it is currently understood. Specifically,

Gerlinger and co-workers [11] have shown that multiple

biopsies from the same tumour display distinct genetic

profiles and yet are phenotypically similar. This genotypic

divergence and phenotypic convergence has also been

observed across many different cancers, including those

originating in the lung, kidney [11], prostate and brain

[12,13]. We believe that this disparity, between genotype

and phenotype, is a natural result of the organ ecosystems.

The intricate dialogue between the tumour cells and their

environment selects for clones that are best adapted

phenotypically to survive.

From our discussion above, it is clear to us that tumours

are made of a heterogeneous mixture of cells and that

tumour heterogeneity, which manifests itself at the genotypic

and phenotypic levels, affects the way that tumour cells inter-

act with other tumour cells, other healthy cells as well as the

physical microenvironment. Furthermore, these interactions

can drive the behaviour of healthy cells such as fibroblasts,

which can be permanently transformed into carcinoma-

associated fibroblasts [14] under the right conditions. An

ecosystem view of cancer dictates that cancer progression

is a complex process that emerges from the interactions

between individuals and their environment. How can we

hope to understand tissue homoeostasis and evolution-

driven disruption that leads to cancer? Purely experimental

approaches are unpractical given the complexity of

interactions and timescales involved in cancer. Fortunately,

there already exist mathematical and computational tools

that can be used to study ecosystems regardless of size,

scale and complexity.
2. Mathematical tools
One good example of a mathematical tool to study evolution

in ecosystems is game theory (GT). GT was initially intro-

duced to understand behaviour. With GT, we can study

games in which the outcome affecting a player depends not

only on the strategy used but also on the strategies employed

by the other players. A key aspect is that a game strategy is

not good or bad considered in isolation. Only when com-

pared with the strategies employed by other players can we

make that call. John Maynard Smith pioneered the use of

this tool to study evolutionary dynamics in biology. This is

known as evolutionary GT (EGT). The GT assumption that

players have to be rational is, paradoxically, better suited to

the individuals in sociology, economics or war. The force of

natural selection keeps ecosystem denizens focused on opti-

mizing the bottom line: long-term reproduction. In the

games studied by evolutionary game theoreticians, individ-

uals compete for available resources using a variety of

strategies. These features and behaviours, known as the phe-

notypic strategy, determine the winners and losers of



Box 1. The hawk – dove game.

Imagine a species in which individuals could have either aggressive or meek strategies to resolve disputes over food. Let us call

the former hawks and the latter doves. When two doves have to share food (which we will refer as V) they just divide it into two

halves (each getting V/2). When two hawks dispute over food they fight and the victor takes the spoils (V), whereas the loser is

assumed to be severely harmed (2C). In the third scenario, when a hawk and a dove meet, the dove balks away from the fight

leaving all the food to the hawk. This information is captured in the payoff table shown below. EGT can tell us a few things

about this population. For instance, the obvious one: that a population made of dove-like individuals is susceptible to be

invaded by a few hawks. Intriguingly, we can also learn that in many cases a population made of hawks is unlikely to be

immune to invasion by a handful of doves: hawks fight until one of them is severely beaten then a dove that does not fight

might go hungry before it meets another dove but that still beats being severely injured. With a little information about how

serious the average injury would be and how much a given resource would help reproduction we could deduce what the pro-

portion of aggressive versus meek individuals would be in the long term. This is what, in game theoretical parlance, is known as

an evolutionary stable set of strategies, which implies that the ecosystem is at an equilibrium that will not be easily disrupted.

hawk

hawk

dove

dove

V–C
V

V
2

2

0

A population in this type of equilibrium will recover from perturbations, even if part of the population changes strategy

(unless, of course, we consider alternative phenotypic strategies to hawk and dove). Similar games can be played with

tumour cell populations. A good example would be a tumour with cells that move away when confronted with scarce

resources (motile) and cells that stay to use them (proliferative). This scenario was studied using a hawk–dove game [15].

In our view, a multicellular organism can be seen as a group of cells in a dynamic equilibrium (known as homoeostasis)

that is robust and stable for phenotypic strategies that are normal in a healthy organism but not necessarily to cancerous

ones. This phenotypic approach to study cancer can be quite useful. It is widely accepted that tumour cells acquire a

number of new phenotypical capabilities on the path towards malignancy [9]. The interactions among different tumour phe-

notypes can be studied using EGT to investigate the possible sequence of steps that characterize cancer progression as well as

the circumstances that lead to the emergence of increasingly aggressive phenotypes.

Table 1. Payoff table for the glycolytic game.

AG INV GLY

AG 1/2 1 1/22n

INV 12c 12c/2 12c

GLY 1/2 þ n2k 12k 1/22k

The three phenotypes in the game are autonomous growth (AG), invasive
(INV) and glycolytic (GLY). The base payoff is 1 and the cost of moving to
another location is c. The fitness cost of acidity is n, whereas k is the cost
of having a less efficient metabolism (glycolytic). The payoff table should
be read following the rows so that the fitness change for an invasive cell
interacting with an AG is 12c.
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evolution. We, and others, have developed simple mathemat-

ical models using EGT to understand homoeostasis and its

disruption in cancer (for an example of an evolutionary

game take a look at box 1). Many lessons can be learnt

from very simple games like that one.

— One crucial lesson, especially when used to understand

cancer evolution, is that focusing on indiscriminately

destroying as many cancer cells as possible is not necess-

arily the best thing to do for a patient. In EGT, the

long-term (equilibrium) outcome of a game depends on

the interactions between the players, not on the size of

the population. A treatment based exclusively on indiscri-

minately removing most (but not all) cancer cells may

only have a temporary effect; as in most cases, the original

number of tumour cells will eventually be restored and

exceeded. Many EGT models show that a more effective

alternative would be based on changing the way cells

interact with each other and their environment which

would affect their fitness and thus, potentially, drive

tumour evolution towards less aggressive cell types or

at least to a stable coexistence that would be less harmful

to the patient ([6]; table 1).
— Intra-tumour heterogeneity is a crucial property of cancer,

and the dynamics of a tumour can change dramatically if

more phenotypes with different traits emerge in a popu-

lation of cancer cells. A good example of this can be seen

in [15,16], a variation of the game explained in box 1. In

this version of the game, we consider the two phenotypes

of the original game: invasive (INV) and proliferative (AG),



Table 2. Payoff table for the stromagenic versus stromal independent game.

S D I

S 0 a 0

D 1þ a� b 1� 2b 1� bþ r

I 1� g 1� g 1� g

The fitness of each of the phenotypes (S, stroma; D, microenvironmentally
dependent; I, microenvironmentally independent) depends on the interactions
with other phenotypes and the values of the costs and benefits resulting from
these interactions. These costs and benefits are a (benefit derived from the
cooperation between a S cell and a D cell), g (cost of being
microenvironmentally independent), b (cost of extracting resources from the
microenvironment) and r (benefit derived by D from paracrine growth factors
produced by I cells).
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Figure 1. Result from a replicator equation resulting from a game where
certain stromal cells (S) and certain tumour cells (D) cooperate. Treatment
(sky blue) kills stromal cells effectively selecting for the I tumour population.
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and add a new one: glycolytic (GLY). The resulting table

can be seen in the payoff table above this paragraph. In

the original situation with two phenotypes, the presence

of more aggressive motile phenotypes depended almost

exclusively on the cost of motility (cost: an abstraction for

the fitness that moving cells pay in terms of degrading

the ECM and avoiding anoikis). The addition of a new phe-

notype alters the game by changing the incentives in

favour of motile phenotypes. By making proliferative phe-

notypes less successful, glycolytic phenotypes increase the

relative fitness advantage of motile phenotypes resulting in

more aggressive tumours than in the original situation. In

general, EGT can be used to explore how changes in

tumour’s phenotypic heterogeneity could change the evol-

utionary dynamics in a cancer even if, as in the example,

that intermediate phenotype might not be evolutionarily

successful in the long term (table 2).

— Modern clinical cancer research is betting that personalized

treatments and targeted therapies are our best shot at provid-

ing durable cures to many types of cancer. Understanding the

impact of targeted treatments in cancer is easier with tools

such as EGT where the effects of selective therapies in hetero-

geneous tumours can be studied. Using a model described in

the above table [17], we have explored how treatments could

affect tumour heterogeneity and clonal dominance. An

example from this game can be seen in figure 1 showing a

tumour with two main clonal populations (D, I), and a stro-

mal population (S) that has been co-opted to help the more

successful tumour population (D, in this scenario). In this

case, treatment designed to impact the maximum possible

number of tumour cells has left behind a smaller tumour

population and its growth potential unaffected. Furthermore,

the resulting tumour, which initially was incredibly

susceptible, is now completely resistant to the treatment.
We will produce better treatments if we use evolution in

our favour instead of ignoring it as the driving force of

tumour progression. An ecologically enlightened approach

would take into account what we learned before: that killing

the most tumour cells might not be the best strategy, that

intra-tumour heterogeneity increases the chances of tumour

recurrence after treatment and those treatments represent a

form of selection—where phenotypes that are not selected

against will survive and lead to resistant cancer. The
models suggest an approach where tumour diversity could

be reduced in stages, and treatments chosen so they select

for increasingly more benign or easier to treat tumours. An

example of such an approach was initially proposed by

Merlo et al. [3], who dubbed it sucker’s gambit. The idea of

sucker’s gambit is that we could change the selection pressure

in an evolving tumour such that the easier to treat pheno-

types would be selected for. Subsequently, Gatenby, Brown

and Vincent suggested using insights gained in ecology to

further explore the idea of the ‘sucker’s gambit’. With an

evolutionary double bind, the species whose numbers need

to be controlled must be predated by at least two different

types of predators [18,19]. The secret of a successful evol-

utionary double bind is that the strategies of the two

predator species have to be synergistic such that a prey, evol-

ving in order to avoid being attacked by one of the predators,

will in fact become more susceptible to being attacked by the

other. This type of strategy is easy to conceive as a EGT

model and recently we have framed clinical results from

Antonia and co-workers [20,21] in an evolutionary double

bind to try to explain their results. In their research, Antonia

and co-workers show that when applying two different

therapies to lung cancer patients, a p53 vaccine and standard

chemotherapy, the order of the application of treatments has

a substantial impact on the efficacy of the overall treatment.

Specifically, patients that went through chemotherapy

before the p53 vaccine was administered responded much

better than patients where only one treatment was used or

those where the sequence was reversed. The EGT model con-

sidered three populations: those susceptible to all treatments,

those resistant to chemotherapy and those resistant to the p53

vaccine [22]. The model highlights the importance of finding

the right sequence of treatments such that evolution can be

directed to tumours that are easier to treat.
2.1. Interactions and cooperation
Another potential use of the cancer–ecosystem viewpoint is

the study of the evolutionary dynamics leading to the emer-

gence of cooperation [23–25]. A common misunderstanding

about evolution is that the survival of the fittest means that

only the strongest and meanest survive and that they have



Figure 2. Mutualism. Both the bee and the flower derive a benefit from their
interaction (Wellcome Library, London).

Figure 3. Parasitism: parasitic wasp cocoons attached to a caterpillar. By
Jacob Scott M.D.
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done so through competition only. But nature is abundant

with examples of inter- and intra-species cooperation. The

trick is that cooperation can emerge only within the con-

straints of selection: it can be sustainable only if everybody,

or at least the genes that promote cooperation, benefits

from their interactions.

Interactions between individuals (people, animals, cells,

bacteria) are normally categorized as mutualistic (figure 2),

competitive, predatory, parasitic (figure 3) and comensalistic

(box 2; [26]). EGT is particularly useful at studying the inter-

actions between the players, how those affect tumour

Darwinian evolution, and how evolution might lead to or

away from homoeostasis. However, there are other important

aspects in an ecosystem that can be approached in more

detail with the help of other mathematical tools.

Most EGT models do not explicitly capture the role of space

in an ecosystem. They assume that players interact with each

other with a frequency that is dependent only on the relative

proportion of each subpopulation. EGT models are also

usually concerned with the relative proportion of the different

subpopulations but, given the limitations of the approach,

rarely do they study the absolute numbers in the population.

Absolute numbers could be inferred from a properly parame-

trized model if the initial subpopulations are known, as the

fitness payoffs represent long-term proliferation rates. As has

already been reported, many EGT models use more abstract

parameters so that meaningful extrapolations between fitness

and population size are not possible.

These limitations are not as severe as they might seem:

many as of yet unaddressed questions can be answered by rela-

tively more abstract approaches such as EGT. Its simplicity and

focus on interactions makes it easy to understand the role of

different subpopulations in a heterogeneous tumour. Alterna-

tively, modelling tools in ecology can also use parameters

derived from observations in the field. In cancer research

there is abundant data resulting from in vivo and in vitro exper-

iments at both the molecular and cellular levels that could be

integrated with the right mathematical tool. One good example

of such an approach is individual-based models (IBMs) where

each cell in a tumour is given its own identity and where the

properties of the tumour as a whole can naturally emerge

from the interactions between the different cells and between

the cells and their environment. IBMs are a large class of

models that consider both space and time explicitly and offer
and ideal methodology to integrate some features of the

other approaches discussed here. One of the pioneering IBM

approaches is cellular automata (CA), which as in the case of

GT were first introduced by Von Neumann [27], and were

first used to explore biological questions. Theoretical ecologists

have used CA to investigate population dynamics [28,29] and

the role of space in the interactions between individuals [30].

Specifically, they can incorporate detailed descriptions of the

individual (tumour cell, fish, fox, etc.) defining its behaviour

(migrate, reproduce, die, etc.) in a given context (savannah,

lake, muscle tissue, etc.). IBMs, therefore, capture the spatial

and temporal variation that characterizes real ecosystems

allowing us to explore the robustness of key homoeostatic

mechanisms [7,8]. Moreover, they have been extensively used

by the modelling community to look at many different biologi-

cal systems focusing on how individuals and their interactions

collectively drive different evolutionary outcomes.

An IBM approach that has been used extensively in cancer

modelling are hybrid models that integrate both continuous and

discrete variables and are able to incorporate biological

phenomena on various temporal and spatial scales (see [31]

for a recent review). These models represent cells as individual

discrete entities and often use continuous concentration or

density fields to model intracellular and extracellular environ-

ments. By their very nature, hybrid models are ideal for

examining direct interactions between individual cells and

between the cells and their microenvironment, but they also

allow us to analyse the emergent properties of complex multi-

cellular systems (such as cancer). It is worth noting that as

these interactions take place on the intracellular and intercellu-

lar levels, but are manifested by changes on the tissue level, the

emergent behaviour of growing multiclonal tumours are

almost impossible to infer intuitively. Hybrid models can

facilitate our understanding of the underlying biophysical pro-

cesses in tumour growth. For example, by using high-



Box 2. Competition and cooperation.

Mutualistic interactions are those in which both interacting parties benefit equally. Competitive interactions are those in

which both parties have a detrimental effect on each other. Predatory and parasitic interactions are similar in that one of

the parties benefits from the interactions whereas the other suffers, but in the former the harmed party will significantly

reduce its fitness and in the latter the fitness reduction is much smaller. Finally, comensalism describes interactions in

which one of the parties derives neither harm nor gain whereas the other obtains some (often small) benefit.

A B type

neutralism

amensalism

comensalism

competition

mutualism

predation/parasitism–

––

–

+

+

+ +

This table shows the costs (2) and benefits (þ) of interactions between two parties (A and B). All these interactions may

occur, to some degree or the other, in a tumour ecosystem. For instance, tumour cells compete for space and nutrients

but, intriguingly they may also team up to produce enough growth factors to sustain tumour growth [24].

Figure 4. Example of simulation in which an IBM is used to explore how the
interactions between tumour cells and their environment affect progression.
The screen on the top left shows tumour (red) and stromal (black and brown)
interacting. Other screens show concentrations of elements of the physical
microenvironment (TGFb, matrix degrading enzymes and extracellular
matrix). An IBM model can shed light on the spatial distribution of relevant
cellular species.
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throughput simulation techniques, we can examine the impact

that changes in specific cell interactions (or their microenviron-

ment) have on tumour growth and treatment. Hybrid models

are often multiscale by definition, integrating processes on

different temporal and spatial scales, such as gene expression,

intracellular pathways, intercellular signalling, cell growth or

migration. We have developed many hybrid models to inves-

tigate different aspects of cancer. For example, the hybrid

discrete-continuum cellular automaton (HDC) model has

been used to study how the interactions between tumour

cells and stromal cells via a molecule known as TGFb explain

prostate cancer progression. Figure 4 shows an example of the

simulations produced by the model. With this approach, it is

possible to parametrize each cell independently using data col-

lected from in vivo and in vitro experiments. Importantly, the

mathematical model integrates all these biological data in a

way that can yield clinically relevant insights by studying

the emergent properties of the prostate cancer through time-

scales that typically cover decades.

Another major advantage of hybrid models is their ability to

easily incorporate heterogeneity both in terms of the tumour cell

phenotype and the tumour microenvironment. Since inter-

actions between tumours and their microenvironment drive

selection and ultimately define the ecology of the tissue in

which the tumour is developing, these models represent ideal

tools to investigate evolution and selection in a growing

tumour. Anderson and colleagues at Moffitt and Vanderbilt

have shown (figure 5) that different microenvironments (in

terms of ECM density or nutrient concentration) will produce

tumours with distinct morphological characteristics [5,32,33].

The research also shows that harsher microenvironments will

select for more aggressive phenotypes (those that would lead
to a worse prognosis for the patient) whereas nicer microenviron-

ments could yield more heterogeneous tumours (where less

aggressive clones coexist with more aggressive ones). These
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Figure 5. Simulation results from the HDC model under three different microenvironments: (a) uniform ECM, (b) grainy ECM and (c) low nutrient. The upper row
shows the resulting tumour cell distributions obtained after three months of simulated growth; we can see that the three different microenvironments have pro-
duced distinct tumour morphologies. The lower row shows the relative abundance of a possible 100 tumour phenotypes over time as the tumour invaded each of
the different microenvironments. We note that there are approximately six dominant phenotypes in the uniform tumour, two in the grainy and three in the low
nutrient tumour. These phenotypes have several traits in common: low cell – cell adhesion, short proliferation age and high migration coefficients. In each tumour,
one of the phenotypes is the most aggressive and also the most abundant, particularly in (b) and (c). All parameters used in the simulations are identical with the
exception of the different microenvironments.
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types of insights would be difficult to produce with only exper-

imental and clinical data. Further research by the same group led

to a carefully parametrized version of the HDC model [34].

Using measurements of different cancer cell lines typically

used in research laboratories across the world, the new model

allowed them to study the effect of seeding in vitro different com-

binations of phenotypes in a number of microenvironments and

made the surprising prediction that aggressive tumour cells

have evolved to become essentially microenvironmentally

independent (producing their own niche as required).

An extra strength of IBMs is that they can be combined with

other mathematical tools such as networks and EGT in order to

complement each other’s strength. As an example of the latter,

Basanta et al. [35] explored the emergence of motility in a

tumour made of, essentially, proliferative cells using both

EGT (box 1) and a CA-based IBM. While the EGT implemen-

tation focused on the analysis of role of the cell–cell

interactions in the evolutionary timescale (steady state), the

CA provided insights into the role of space. Networks and

IBM can also be combined, as shown by Gerlee & Anderson

[36], so as to bridge the scales between the cellular level (the

IBM) and the pathway level (the network). This allows for a

model in which the behaviour of a cell is controlled by path-

ways (network nodes or vertices) and their interactions

(network edges) as well as by the interactions with nearby

cells and their microenvironment (CA lattice site).
3. Discussion
Traditionally, the ecological perspective is firmly grounded

at the scale of the phenotype and essentially ignores
anything below this scale. It tends to be more encompassing

at that scale and embraces all the different players of the eco-

system. In contrast with this perspective, the cancer biology

view is very much centred on the genetic and molecular

scales for which there is a wealth of data. While this pro-

vides a solid foundation to work from for cancer

ecologists, these data are unbalanced due to the poorly

quantified phenotypic scale. This imbalance is the result of

the dominance and success of reductionism in cancer

research. Reductionism is undoubtedly responsible for the

exquisite level of understanding of many of the genes and

pathways that are involved in tumour initiation and pro-

gression in a variety of organs. Both of these approaches

have limitations but also have their own strengths that in

fact complement one another. Ideally, we want to unify

this biological-gene-centric view with the ecological-pheno-

type-centric view; however, experimentally this is difficult

if not impossible without the aid of theoretical approaches

such as the ones discussed above. In fact, there already

exist IBMs that explicitly try to bridge the genotypic and

phenotypic scales by incorporating elements of EGT and net-

work theory [37,38].

The ecosystem view is, ultimately, a holistic one that sees

cancer progression as a process that emerges from the inter-

actions between multiple cellular species and interactions

with the tumour microenvironment. An ecosystem perspec-

tive presents us with intriguing implications. One is that

cancer is an evolutionary driven escape from homoeostasis.

It also casts aspects of cancer progression under a different

light: are metastatic cells the ones that represent the best and

most adapted cells at the primary site? Or, on the contrary,

does metastasis and invasion represent the only alternative
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for less successful phenotypes, capable of escaping the pri-

mary site but unable to compete with better adapted ones

locally? Could it be only a by-product of tumour cells

acquiring the abilities to move and detach from the main

body of the tumour? Is it the result of cooperation or com-

petition? Regardless of the answers to these questions, an

ecological interpretation of cancer would predict that metas-

tasis will occur at sites in which the tumour cells will have a

better chance of survival and colonization. This will depend

not only on the distance from the primary site or on the

availability of lymphatic or blood vessels for physical

connectivity [39] but also on the suitability of the new site

for colonization. Metastatic cells are already likely to be

reasonably adapted to specific environmental conditions.

A secondary site that somewhat resembles key features of

the primary one while providing the metastatic cells with

nutrients and room for growth will always be a more

probable target for a secondary tumour.

One might ask, what would a cancer ecosystem look like?

Unsurprisingly, it will contain tumour cells, epithelial cells,

nutrients and growth factors. Less intuitively, it will also

include immune and endothelial cells, nerves, different stro-

mal phenotypes as well as epithelial cells in carcinomas.

Figure 6 shows one example of an ecosystem for bone metas-

tasis; though a simplification it already gives information in a

purely visual way about the different types of interactions

that are occurring. By adding weights to the interactions,

we can use the theoretical tools discussed above to investigate

how a new tumour disrupts homoeostasis (initiation), devel-

ops (growth), responds to perturbations (treatment), evolves

over time (progression) and how it may best be controlled

or destroyed. The key point is that the ecosystem perspective

places the emphasis on interactions and their consequences.

A better understanding of these interactions could be used

to hinder and even potentially reverse tumour progression.

Tissue homoeostasis disruption due to alterations in the

tissue ecosystem could, potentially, be reversed via
renormalization of the tumour microenvironment [40]. For

instance, it is known that normal stromal cells can inhibit pro-

gression towards malignancy in certain carcinomas [14].

Regaining homoeostasis might not mean tumour eradication

but instead may represent a new state where we live with

cancer more like a chronic disease, kept in check by a combi-

nation of drugs that change in response to changes in the

tumour or its microenvironment.

The timing for an ecosystemic view of cancer could not

be better: with the development of high-throughput auto-

mated microscopy the ability to gather substantial amounts

of cellular information is becoming a reality. With this new

information the cancer ecosystem is becoming more com-

plete and therefore theoretical oncologists will have a

better understanding of the key phenotypic strategies and

mechanisms of interaction that tumour cells and other rel-

evant cells employ. Clearly, this means we are more likely

to be successful at producing models that are both holistic

(taking into account the multiple scales at which cancer

takes place) and quantitative (in which model parameters

and predictions can be compared with experiments), that is

qolistic approaches [41].

The heart of the matter is that an ecological view of

tumours does not invalidate but complements and builds

upon decades of cancer research and undoubtedly this will

lead to a better understanding of the biology of cancer and

to new and improved therapies. If we may use the old ana-

logy but framed slightly differently: we need to properly

understand the trees (e.g. every leaf, twig and branch)

before we can understand the forest but we cannot afford

to ignore the forest because the trees are so interesting on

their own.

We thank Jacob Scott and Arturo Araujo for the help with the
figures in this paper. The work in this grant has partly been
funded by DoD 12-16803-99-01, NIH U01 10-16381-01-01 and NIH
U54 10-15885-03-03.
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