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A vast theoretical literature has explored the evolutionary dynamics of para-

site virulence. The classic result from this modelling work is that, assuming a

saturating transmission–virulence trade-off, there is a single evolutionary

optimum where the parasite optimizes the epidemiological R0. However,

there are an increasing number of models that have shown how ecological

and epidemiological feedbacks to evolution can instead result in the creation

and maintenance of multiple parasite strains. Here, we fully explore one

such example, where recovered hosts have a limited ‘immune range’ result-

ing in partial cross-immunity to parasite strains that they have not

previously encountered. Taking an adaptive dynamics approach, we show

that, provided this immune range is not too wide, high levels of diversity

can evolve and be maintained through multiple branching events. We

argue that our model provides a more realistic picture of disease dynamics

in vertebrate host populations and may be a key explanatory factor in the

high levels of parasite diversity seen in natural systems.
1. Introduction
One of the most important applications of modelling biological evolution has

been to infectious disease dynamics. As well as seeking to understand factors

that select for highly virulent parasites, a key focus of theoretical work has

been to explore the processes that may create and maintain the diversity of

parasite strains that are seen in host populations. Classical models of host–

parasite evolution, principally using the gene-for-gene and matching-allele

frameworks, have found the potential for diversity through the evolutionary

cycling of strains owing to the tight genetic specificities required for infection

[1–5]. Since the pioneering work in the 1970s and 1980s of Anderson and

May (e.g. [6]), who applied the classic ‘susceptible–infected–recovered’ (SIR)

epidemiological model [7] to natural, dynamic populations, modern evolution-

ary studies have often focused on how ecological and epidemiological processes

impact selection. These studies have largely been based upon the transmission–

virulence trade-off theory, which assumes that any increase in transmission

requires faster within-host growth, which in turn causes more damage to the

host (see [8] for a recent review). Assuming a saturating transmission–virulence

trade-off, the theory shows that the parasite is subjected to a competitive exclu-

sion principle, with the parasite strain that maximizes the epidemiological R0

(the number of secondary infections in a nearly disease-free population)

always outcompeting any other strain [9,10]. As such, it is predicted that epide-

miological processes alone cannot create long-term coexistence of parasite

strains. However, this prediction is based on the assumption that recovered

and immune hosts are perfectly protected from all future parasite strains;

hence, any mutation, no matter how large, in the parasite strain has no effect

on immune hosts. In reality, we may expect that hosts will have a limited

‘immune range’ giving only partial cross-immunity to parasites with different

antigenic structures; hence, new mutant (or rare) strains may be able to infect

hosts which are immune to the existing resident (or common) type. Prime
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examples of this include influenza [11] and whooping cough

[12]. Furthermore, it has been argued that cross-immunity

can account for the coexistence of multiple strains (of varying

virulence levels) of dengue virus in East Asia [13], where

partial immunity is the cause of the varying outbreaks of

different strains at different times through the year. It is there-

fore important to explore how partial cross-immunity, or

‘immune range’, impacts selection on parasites.

More generally, the role of ecological and epidemiological

processes in shaping selection pressures in ecological popu-

lations is now central to many evolutionary studies through

the framework of adaptive dynamics (e.g. [14–17]). This theor-

etical framework assumes that rare mutants, with small

differences in phenotypic trait values, attempt to invade into

an environment created by the current resident. If the mutant

is successful it will grow in size to either replace or coexist

with the resident. Through repeated substitutions and inva-

sions, populations will evolve their phenotypes through trait

space according to the local selection gradient. One of the

most discussed outcomes from adaptive dynamics models is

that of evolutionary branching. In such a case, populations

are attracted to a certain ‘singular’ trait value, but once there

find that it is a fitness minimum and that they can be invaded

by all nearby types [17]. This gives rise to disruptive selection

and the creation of two coexisting types (on either side of the

singular point) that will then continue to coevolve. Such branch-

ing requires there to be more than one ‘feedback environment’,

such that evolution of the trait in question alters the underlying

population dynamics through at least two distinct processes

[17–19]. Models have now identified a considerable range of

eco-evolutionary scenarios that can create two or more coexist-

ing strains through a process of evolutionary branching, in

particular in host defence mechanisms to parasitism [20–23].

That parasite evolution optimizes R0 is perhaps one of the

most well-known results in evolutionary theory. However,

this result has been increasingly challenged in recent years

by models that include more epidemiological and ecological

detail than the baseline SIR model. These have identified a

number of processes which may alter selection on the parasite

to prevent optimization and instead lead to evolutionary

branching. These processes include:

— Superinfection. In fact, in one of the first models addressing

parasite evolution [24] it was found that two strains of a

parasite could stably coexist within a host population for

some limited parameter range when a virulent strain is

able to take over infections from an avirulent strain. This

model was later extended to a fully dynamic evolutionary

model [25], confirming that evolutionary branching could

occur from an initially monomorphic population.

— Density-dependent host mortality. Models have traditionally

assumed that density dependence acts on host reproduction,

which does not impact (explicitly) on parasite fitness (in par-

ticular it does not appear in R0). However, if it is instead

assumed to act on host mortality, this creates a second feed-

back environment for the parasite and, for certain trade-off

assumptions, can allow for evolutionary branching in para-

site virulence [26–28] (see also [29] for an example of

branching where virulence is density dependent).

— Specialism on coexisting host strains. Gudelj et al. [30]

studied a model where parasite strains could specialize

on already coexisting host strains. This in effect creates

two niches for parasitism, and therefore again allows
for evolutionary branching. A similar effect was shown

where hosts and parasites could coevolve their respective

resistance and infection ‘ranges’ [31]. They found the

potential for multiple branching events leading to high

levels of diversity in both hosts and parasites as well as

for evolutionary cycles.

— Preferential predation of infected hosts. Morozov & Best [32]

analysed a model where hosts are at risk not only of para-

sitism but also of predation. If hosts infected with more

virulent parasites are subjected to higher rates of predation,

this can also promote branching in parasite virulence.

Here we shall explore, in detail, a further process which

has been shown to allow for coexistence of parasite strains,

namely partial cross-immunity. Adaptive immunity to infec-

tion is a vital aspect of the epidemiological dynamics of

vertebrate hosts. After infection with a certain strain of dis-

ease, long-lasting memory cells are produced that are able

to recognize specific antigenic configurations of previously

encountered pathogens. If the host is then exposed to that

strain again, it is able to launch a quick and efficient

immune response to effectively prevent further infection.

This is incorporated into the SIR epidemiological model

through the transition from the infected to the recovered com-

partment, with the assumption that recovered hosts are

perfectly protected from infection. From an evolutionary per-

spective, immune memory may not be expected to alter

selection on parasite virulence because it does not impact

on R0. However, this would implicitly assume that once

hosts have developed immunity to a particular parasite

strain, they are also immune to all other strains, suggesting

a perfect ‘immune range’. In reality, however, the acquired

immune memory developed by hosts may be highly specific

(e.g. in dengue virus [13]). Thus, while parasite strains with

very similar antigenic configurations may be recognized by

the hosts’ immune systems, those emerging from larger

mutations are likely to escape the hosts’ recognition systems.

A number of studies have explored the role of cross-immunity

in long-term epidemiological dynamics, in particular in

whether immunity gained from one strain can provide immu-

nity to a strain in the future (e.g. following year). The focus of

these models has largely been to understand the population

dynamics of two competing strains and the conditions for

stable coexistence of strains to occur in, for example, whooping

cough [12] and influenza [11]. Other studies have focused

explicitly on the evolutionary turnover of influenza strains,

showing that invasion of the second strain to coexistence is

possible where there is partial cross-immunity [33,34]. How-

ever, more long-term evolutionary studies are needed to

understand the creation and maintenance of wider diversity

of parasite strains.

Here, we shall thoroughly explore the role that partial

cross-immunity (through the hosts’ ‘immune range’) has on

the evolution of diversity in parasite virulence through evol-

utionary branching. Extending the work of previous studies

examining single invasion events in populations of fixed

size [33,34], we examine a fully dynamic eco-evolutionary

model over a much longer time scale, investigating whether

a greater range of parasite strains is possible. Taking an adap-

tive dynamics approach, we analyse an SIR-type model

which allows for varying population sizes and explore how

epidemiological feedbacks may lead to the creation of diver-

sity in parasite strains through evolutionary branching.
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2. Modelling and results
2.1. Baseline model: perfect immune range
For comparison, we begin by first fully examining the classic

case of parasite evolution within an SIRS epidemiological

framework, assuming a perfect host immune range, with the

resident dynamics given by

dSr

dt
¼ ða� qNrÞðSr þ fIr þ RrÞ � bSr � bðarÞSrIr þ dRr; ð2:1Þ

dIr

dt
¼ bðarÞSrIr � ðbþ ar þ gÞIr ð2:2Þ

and
dRr

dt
¼ gIr � ðbþ dÞRr: ð2:3Þ

All hosts reproduce at rate a, which is reduced owing to

crowding by qN, where N is the total population size. Infected

hosts may be partially sterilized by factor f (where f can take

values between 0 and 1). All hosts suffer background mortality

rate b, with infected hosts suffering additional mortality, or

virulence, at rate a. Transmission of disease is a mass-action

density-dependent process with parameter b. Infected hosts

recover from infection at rate g to full immunity, but this

immunity wanes at rate d. The subscripts denote whether a

trait/density relates to the resident, r, or mutant, m. These epi-

demiological dynamics result in a unique, stable endemic

equilibrium whenever

R0 ¼
bþ ar þ g

br

� �
a� b

q

� �
. 1:

We shall base our evolutionary analysis within the frame-

work of adaptive dynamics [17], analysing the success of

small, rare mutants attempting to invade a resident equili-

brium. In this initial study, our aim is to investigate how

partial cross-immunity may lead to the creation and mainten-

ance of diversity in parasite strains within a host population.

We therefore begin by assuming that each parasite type

varies in its transmission–virulence strategy, following the

classic trade-off theory of parasite evolution such that trans-

mission is a saturating function of virulence, with b0(a) . 0

and b00(a) , 0. Additionally, we shall assume that each para-

site type differs in its antigenicity. For analytical tractability

in this initial work, we further assume that antigenicity

varies along just a single axis and that there is a simple

one-to-one link between antigenicity and transmission–

virulence strategy, meaning that all strains can in fact be

identified by their virulence rate. We acknowledge the bio-

logical simplifications made here, but these are required to

gain a significant amount of analytical insight into our key

question. Assuming that host immunity is perfect, such that

mutant parasites are unable to infect resident immune

hosts, an invading mutant parasite (at low density) would

initially have dynamics

dIm

dt
¼ bðamÞSrIm � ðbþ am þ gÞIm: ð2:4Þ

The fitness of the parasite is then defined as

rðam;arÞ ¼ bðamÞSr � ðbþ am þ gÞ: ð2:5Þ

Assuming small mutation steps, the parasite will evolve

virulence in the direction of the local selection gradient,
½@r/@am�am¼ar
until a singular strategy, a*, is reached where

@r
@am

����
am¼ar¼a�

¼ b0ða�ÞS�r � 1 ¼ 0; ð2:6Þ

with

S�r ¼
bþ a� þ g

bða�Þ : ð2:7Þ

The stability of this singular point, a*, depends on two

conditions: evolutionary stability (ES; is the point locally

invadable?) and convergence stability (CS; is the point locally

attracting?). The point is ES provided

@2r
@a2

m

����
am¼ar¼a�

¼ b00ða�ÞS�r , 0: ð2:8Þ

CS depends on the sum of ES and mutual invasibility (MI),

which here evaluates to

@2r
@am@ar

����
am¼ar¼a�

¼ 0; ð2:9Þ

meaning that the CS condition is also simply

@2r
@a2

m

þ @2r
@am@ar

� �
am¼ar¼a�

¼ b00ða�ÞS�r , 0: ð2:10Þ

In this baseline case, then, the evolutionary behaviour

depends entirely upon the trade-off curvature, b00(a). Under

the standard assumption that the trade-off always has nega-

tive curvature (i.e. transmission is a saturating function of

virulence), it is clear that the singular strategy will always

be both ES and CS and is therefore an uninvadable attractor

of evolution or a continuously stable strategy (CSS). It is

straightforward to show that this singular point corresponds

to where R0 is maximized. Were we to assume that the curva-

ture could be positive, then in this case the strategy would be

an invadable repeller. For evolutionary branching to occur, it

is required that the singular point be attracting (CS) but

invadable (not ES). In fact, it will suffice to show that the

MI condition is satisfied (i.e. MI , 0) for branching to be

possible, as suitable trade-offs could always be chosen to

satisfy the stability conditions [31,35,36]. Here, because

MI ¼ 0, clearly branching cannot occur.

2.2. Limited immune range
We now extend the model to include a limited host immune

range. We assume a one-dimensional ‘antigenic space’ [34],

with the immune range purely determined by the difference

between the parasite strains’ virulence rates. As such, a

mutant parasite strain, whether it is one of lower or higher

virulence than the resident, is now able to (partially) escape

the host’s immune defences, which have been specifically

adapted to the current resident parasite. We therefore now

allow mutant parasites to gain some infections from resident

immune hosts. The epidemiological model for a (monomor-

phic) resident parasite strain is identical to that in (2.1)–

(2.3). However, the dynamics for an invading mutant parasite

(at low density) would now be

dIm

dt
¼ bðamÞSrIm þ sðam;arÞbðamÞRrIm � ðbþ am þ gÞIm:

ð2:11Þ

The function s(am,ar) represents the immune range of the

host and is assumed to be zero when the immune host is



(a) (b)1.0

0.8

s

am am

0.6

0.4

0.2

0 00.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Examples of the ‘immune range’ function. (a) Different shapes ofs(am,ar), as in equation (2.12), for varying r (ar ¼ 0.5; solid line:r ¼ 0.25; dashed line: r ¼
1). (b) An example immune range of a host that has immunity to multiple parasite strains, withs(am,aA) ¼ minfs(am,a1),. . .,s(am,an)g as in equation (2.29) (a1 ¼

0.3, a2 ¼ 0.5, a3 ¼ 0.9, r ¼ 0.25).
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challenged by the parasite that it was previously infected by (i.e.

atam¼ ar). In other words, an immune host cannot be reinfected

by the same parasite type. We assume that the host’s immune

range, and thus the infection success of mutant parasite types

against immune hosts, is a function of how different the

mutant is from the resident, using a Gaussian-type function

sðam;arÞ ¼ 1� e�ððam�arÞ=rÞ2 : ð2:12Þ

As shown in figure 1a, this continuous function given by

(2.12) results in zero infection when the mutant and resident

are identical, with the level of infection tending to b(am) as

the two strains become more different (i.e. as s(am, ar)! 1).

Here the parameter r defines the host’s immune range,

where a higher value implies a wider range of parasite strains

to which the host is immune (figure 1a).

Before continuing, we should mention here some notational

details. For convenience, we shall assume the following

notation when dealing with derivatives of s(am, ar):

smðam;arÞjr ¼
@sðam;arÞ

@am

����
am¼ar

and smrðam;arÞjr ¼
@2sðam;arÞ
@am@ar

����
am¼ar

:

9>>>>=
>>>>;

ð2:13Þ

We also collect together some important aspects of

s(am, ar) here

sðam;arÞjr¼ 0;

smðam;arÞjr¼srðam;arÞjr¼ 0

and smmðam;arÞjr¼srrðam;arÞjr¼�smrðam;arÞjr¼
2

r2
. 0:

9>>>>>=
>>>>>;

ð2:14Þ

The fitness for this model becomes

r ¼ bðamÞ½Sr þ sðam;arÞRr� � ½am þ bþ g�: ð2:15Þ

However, when evaluated at am ¼ ar, owing to the

relations in (2.14) we find again that

@r
@am

����
am¼ar

¼ b0ðarÞSr � 1; ð2:16Þ

with Sr still given by (2.7). Thus, the selection gradient at any

point, and therefore the location of any singular points, is
unaffected by s(am,ar), the ability of mutant parasites to

infect resident immunes. This is owing to the assumption of

small mutations, required by the framework of adaptive

dynamics, as the amount of infection from immune hosts

remains negligible.

While the location of the singular point is not affected by

this alteration, the stability conditions at that point are. In

particular, the ES condition becomes

@2r
@a2

m

����
am¼a¼a�

¼ b00ða�ÞS�r þ bða�ÞR�rsmmðam;arÞjr

¼ b00ða�ÞS�r þ
2bða�ÞR�r

r2
: ð2:17Þ

This term is larger than that in the previous model (equation

(2.8)), and hence depending on the immune range the ES

status of the singular strategy could be changed.

In particular, we note that for narrow ranges (r small) the

immune range term will dominate and the singular strategy

would always be invadable by any mutant; this is further

emphasized by the fact that decreasing r increases fitness

(2.15) of any invader.

The MI condition is no longer zero, but now becomes

@2r
@am@ar

����
am¼ar¼a�

¼ bða�ÞRrs
mrðam;arÞjr

¼ � 2bða�ÞRr

r2
, 0; ð2:18Þ

which, being negative, gives the potential for evolutionary

branching.

Finally, the full CS condition remains

@2r
@a2

m

þ @2r
@am@ar

� �
am¼ar¼a�

¼ b00ða�ÞS�r ; ð2:19Þ

as in the previous model (equation (2.10)), and we particu-

larly draw attention to the fact that it still does not depend

on immune range or indeed immune period, unlike the ES

and MI conditions. It is important to note, then, that the

transmission–virulence trade-off must still be saturating

(i.e. b00(a) , 0) for a singular point to be attracting but that

so long as the immune range is narrow enough (r small)

any saturating trade-off may yield a branching point.

It is clear from these conditions, therefore, that while

immune range does not affect the location of a parasite’s
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Figure 2. Pairwise invasion plots for parasite evolution for varying r. Resident trait values are along the horizontal axis and mutant values are along the vertical
axis. For each resident – mutant pair, if the mutant’s fitness is positive there is black shading and if it is negative there is white shading. Evolution will proceed
by small mutational steps up or down the main diagonal until a zero-isocline is crossed, and there is an evolutionarily singular strategy. (a) A CSS at the singular
point; (b – d ) evolutionary branching points. Parameter values: a ¼ 2, q ¼ 0.1, f ¼ 0.1, b ¼ 0.5, g ¼ 0.5, d ¼ 0.1 and b(a) ¼ 4 2 2(1 2 a)/(1 þ 2a).
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singular strategy, it does change the stability properties. As we

show in the pairwise invasion plots (PIPs) in figure 2, by alter-

ing the immune range, and the parameter r in particular, we

may therefore transform a CSS into a branching point (A!
B). Reducing the range still further (B! C! D) results in a

larger proportion of mutants being able to invade their resi-

dents. As r! 0, all mutants are able to fully infect immune

hosts; however, all resident hosts are protected from being

replaced and going extinct (as they will also have positive fit-

ness when rare). Assuming non-negligible mutations, we

therefore reach a point where any mutant will always invade

its resident, resulting in immediate coexistence. These differing

behaviours can also be seen from the outcomes of evolutionary

simulations (see appendix A for a description of the simulation

procedure). Figure 3a corresponds to the PIP of figure 2a and

shows the population evolving to the CSS and then remaining

there. Figure 3b–d corresponds to the PIPs of figure 2b–d and

shows that the population evolves to the singular strategy

but then branches into two coexisting strains that then continue

to coevolve. For reasons discussed above, as r decreases,

coexistence between the mutant and resident strains becomes

more likely, and hence the branching event occurs sooner

(before a reaches the singular point), and eventually, as in

three dimensions, it occurs immediately.

Clearly, the MI and ES terms also depend on the size of

the resident immune population, with greater densities of R
(recovered hosts) leading to a greater range of trade-off

shapes yielding evolutionary branching. This will depend

to varying extents on all of the parameters in our model,

with a key dependence being on the rate of waning immu-

nity, d. Intuitively, we would expect R to be a decreasing

function of d (if immunity wanes quickly, few hosts will

ever be immune), and although we may note that Rr ¼ gIr/

(b þ d), because I is itself a function of d this is of limited
analytical insight. Numerical investigation does indeed

suggest that R is a decreasing function of d, meaning that

lower values of d will make the ES term more positive and

the MI term more negative, increasing the potential for evol-

utionary branching, as seen in the PIPs in figure 5. We also

note that because S (susceptible hosts) is independent of d,

the location of the singular point is again unaffected.
2.3. Two-strain system
If the parasite evolves to an evolutionary branching point, it

will undergo disruptive selection and emerge as two coexist-

ing strains on either side of the singular point. The two-strain

resident dynamics of this system then become

_S ¼ ða� qNÞðSþ f
X

I þ
X

RÞ � bS� S½b1ðI1S þ I1RÞ

þ b2ðI2S þ I2RÞ� þ dðR1 þ R2Þ; ð2:20Þ
_I1S ¼ b1ðI1S þ I1RÞS� ða1 þ bþ gÞI1S; ð2:21Þ
_I1R ¼ sða1;a2Þb1ðI1S þ I1RÞR2 � ða1 þ bþ gÞI1R; ð2:22Þ
_I2S ¼ b2ðI2S þ I2RÞS� ða2 þ bþ gÞI2S; ð2:23Þ
_I2R ¼ sða2;a1Þb2ðI2S þ I2RÞR1 � ða2 þ bþ gÞI2R; ð2:24Þ
_R1 ¼ gI1S � sða2;a1Þb2ðI2S þ I2RÞR1 � ðbþ dÞR1

þ 0:5dRA; ð2:25Þ
_R2 ¼ gI2S � sða1;a2Þb1ðI2S þ I2RÞR2 � ðbþ dÞR2

þ 0:5dRA ð2:26Þ
and _RA ¼ gðI1R þ I2RÞ � ðbþ dÞRA: ð2:27Þ

The parameters retain their meanings from the previous

model. There are now four infected types, where I1S is a

host infected with parasite strain 1 that was susceptible

to both strains, while I1R was recovered and immune from

strain 2. There are two recovered and immune types to
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each strain and RA denotes a recovered host immune to both

(all) parasite strains. We note that we have assumed that fully

immune hosts are equally likely to lose their immunity to

either strain. We also note here that smi(am, aj)ji ¼ 0, for i
= j,m as this should lead to cancellations in the derivatives.

The fitness of a mutant from either strain is given by

ri ¼ bðamÞ½Sþ sðam;aiÞRi þ sðam;ajÞRj

þ sðam;aAÞRA� � ½bþ am þ g�: ð2:28Þ

The term, s(am, aA)RA, represents a mutant parasite strain

attempting to infect a host that is immune to both existing

resident strains. We shall assume that in an n-strain system

sðam;aAÞ ¼ min {sðam;a1Þ;sðam;a2Þ; . . . ;sðam;anÞ};
ð2:29Þ

such that the host’s local immune range always holds true

(figure 1b). We note that other forms for this function could

be used, though our simulation results suggest that this

choice has a very minor quantitative effect on the outcomes.

The selection gradients are therefore

@ri

@am

����
am¼ai

¼ b0ðaiÞ½Sþ sðai;ajÞRj�

þ bðaiÞRjs
mðam;ajÞji � 1; ð2:30Þ

for each strain i. (Here, we make the reasonable assumption that

given a mutation arising from resident strain i then locally

minfs(am, a1),(am, a2),. . .,s(am, an)g ¼ s(am, ai).) This produ-

ces a two-dimensional coevolutionary system, with co-singular
strategies occurring where the selection gradients of both

strains are simultaneously zero. The stability of such a co-

singular point requires similar conditions to above, namely

(a) Is the strategy ES for each strain? (b) Is the strategy MI for

each strain? (c) Is the strategy coevolutionary convergent?

Condition (c) now depends on the eigenvalues from a 2 � 2

Jacobian matrix. We note that MI is now a stability condition

in its own right. As for either strain to be able to branch

again it is required that it must have MI , 0, and that the

trade-off curvature can always be chosen to satisfy the other

conditions [31,35,36], we therefore limit our analysis to deter-

mining the sign of this condition. After some work, we find

this condition reduces to (appendix B)

@2ri

@am@ai

����
am¼ai¼a�j

¼b0ða�i ÞRjs
mðam;ajÞji þ bða�i ÞR0jsmðam;ajÞji

þ bða�i ÞðRi þ RAÞsmiðam;aiÞji , 0:

ð2:31Þ

The sign of the first two terms will depend on whether strain j
has higher or lower virulence than the mutant of strain i. How-

ever, the final term is again a multiple of 22b(a*)/r2, which

will dominate for r small. Once more, then, wherever an

attracting co-singular point exists, by choosing the curvature

of the immune range to be high enough it will be possible for

MI , 0, and therefore to see further branching.

We can consider the coevolutionary behaviour of the phase

space of the two strains by building upon our PIPs from figure 2.

Firstly, we can identify the region of coexistence for the two
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Figure 4. Dynamics of the two-strain system for varying r. The main plots show
the coexistence region after branching, created by folding the PIPs from figure 2 over
their main diagonal and shading areas of MI. The red lines show the isoclines of
strain 1 and the blue lines show the isoclines of strain 2, with the arrows indicating
the direction of selection. Where the two isoclines cross there is a coevolutionary
singular strategy, with the independent behaviour of each strain shown by the
inset PIPs (in (a) and (c)). Parameter values are as of figure 2, with r as marked.
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strains by ‘folding’ the PIP along its main diagonal [17]. Coexis-

tence can occur where regions of positive invasion fitness

overlap upon this folding (as here both strains could invade

the other when rare). In figure 4a, we have performed this on

the PIP from figure 2d, with shaded regions denoting coexistence

and the white circle identifying the initial branching point. After

branching, we can examine the coevolutionary trajectory

through this coexistence region (we can focus on just one side

of the main diagonal, as the two cases are symmetric). We can

then find the isoclines for each strain by solving equations
(2.30) numerically for each strain pair and finding the zero con-

tours. These isoclines are overlaid as the lines on figure 4a. Here

we see a very large coexistence region, with the two strains

initially diverging away after branching (i.e. trajectories head

northwest, with strain 1 to lower values and strain 2 to higher

values). The two isoclines are shown to cross at (a1, a2) �
(0.21, 0.84), indicating a co-singular point. We demonstrate the

behaviour in the insets by numerically plotting PIPs for each

strain nearby the co-singular point, assuming the other is at its

co-singular point. These show that the point is attracting for

both strains, forming a CSS for strain 1 but a further branching

point for strain 2. We would therefore expect the parasite to

branch once more to form a three-strain system. This is con-

firmed by the evolutionary simulations in figure 3d. Extending

the model to greater numbers of strains becomes computation-

ally expensive. However, from the results of previous work we

can conclude that, by showing the potential to branch to three

coexisting strains, we expect there to be no limit to the level of

diversity that can evolve [31,37,38].

As suggested above, we find that the potential for multiple

branching in this system depends strongly on the immune

range function (i.e. r). In figure 4b,c, we explore the impact of

varying r. Figure 4b shows the coexistence plot for higher r

(r ¼ 1; cf. figure 2c), which shows that no further co-singular

point occurs within the parameter range. In this case, we

would expect to see strain 2 maximize virulence and strain 1

adopt a CSS at a1 � 0.2. This is demonstrated by the simulation

in figure 3c. Figure 4c shows the coexistence plot for lower r

(r ¼ 0.25), which now shows a co-singular point, which is a

branching point for both strains (insets figure 4c; we would

expect here just one of the two strains to branch, as demon-

strated by the simulation in figure 3e). This ties to previous

work [37] on branching in competition models, and [31] on

branching in host–parasite coevolutionary models, with the

steepness of such a function increasing the degree of branching

and eventual coexistence. Furthermore, in the case of the

first branching, as r decreases there is an increase in the possi-

bility of coexistence, and hence branching occurred earlier

(figure 3b–d ); this is echoed for the second branching event,

in that as r decreases the second branching event takes place

sooner (figure 3d– f ) and we would expect this to be true

for the third branching event and beyond. We also note that

the process of branching ‘slows down’ the overall evolutionary

dynamics, such that we see less extreme parasite types at a set

time point when more than one branching has occurred (in

fact, evolution will necessarily slow down as it approaches a

singular point as the selection gradient approaches zero).
3. Discussion
The classic result from the evolutionary theory of parasite viru-

lence is that, assuming a saturating transmission–virulence

trade-off, there is a single evolutionary optimum where R0 is

maximized [9,10]. However, the theory has long identified

instances where coexistence of parasite strains within a host

population owing to ecological/epidemiological feedbacks

can occur. Here, we have thoroughly explored a model of par-

tial cross-immunity, where a host’s immune memory is less

effective against parasite strains that are dissimilar to those it

has previously been infected by. We have shown that, provided

the immune range of the host is sufficiently limited, high levels
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of coexistence can, and are very likely to, emerge through

multiple evolutionary branching events.

Specificity is one of the most fundamental aspects of the

vertebrate adaptive immune system. It is therefore inap-

propriate to assume that hosts infected with any parasite

strain will be immune to all future mutant variants that

may arise and partial cross-immunity should be considered.

Previous studies have often found that parasite genotypes

will cycle when there is cross-immunity, but it has also been

shown that an invading strain can grow to coexist with a pre-

existing strain [33,34]. We have extended these results to a

fully dynamic framework, showing that, subject to the assump-

tions of adaptive dynamics [17], high levels of diversity may

evolve. We note that our results show that evolutionary

branching occurs for immune range functions that are not

especially steep (and hence hosts have a wide immune range)

such that in fact nearby mutants gain only very small levels

of infection. In addition, as the immune range function

becomes steeper (and hence hosts have a narrow immune

range), then evolutionary branching not only becomes more

likely but also occurs more quickly, increasing the probability

of diversity. Our model therefore provides evidence that partial

cross-immunity may be a key explanatory factor in the high

levels of parasite diversity seen in natural systems.

Models based within an evolutionary ecology frame-

work have largely assumed that mutations lead to small

phenotypic changes, for example with a parasite mutant

gaining a small increase in transmission potential (and a cor-

respondingly small increase in virulence). This is in contrast

to the ‘all-or-nothing’ infection assumption of the classic

gene-for-gene and matching-allele models where parasites

either can or cannot infect host strains depending on their

genetic configurations [1,5]. A recent direction of theoretical

work has been to approximate such an ‘all-or-nothing’ func-

tion in an evolutionary ecology setting. For example, Best

et al. [31] showed that if hosts coevolve the ‘range’ of para-

sites that they are resistant to, and parasites the ‘range’ of

hosts that they can infect, then widespread static diversity,
as well as coevolutionary cycles, may result. Similarly,

Boots et al. [38] focused purely on host evolution and

found that if infection was more common among related

individuals again high levels of coexistence could emerge.

Here, we have applied a similar function to parasite evol-

ution, assuming that the host has a limited immune range

that mutant parasites can partially evade. The effect of

these functions is to create a considerable advantage for

rare mutants over residents, leading to negative frequency

dependence, and thus the potential for the creation of high

levels of diversity. From an environmental feedback per-

spective, the effect is to make parasite fitness depend not

only on the number of susceptible hosts, as in R0 maximiza-

tion, but also on the number of recovered hosts. Either way,

it is clear that the epidemiological feedbacks generated by

the host’s immune range allow for far greater diversity in

parasite virulence than that predicted by classic theory.

For tractability, we have assumed a simple one-dimensional

‘antigenic space’ [34], where the degree of cross-immunity may

be described solely by the difference between the virulence rates

of mutant and resident parasite strains. In reality, antigenic

space is likely to have multiple dimensions depending on a

range of chemical factors. It is also far from clear that antigenic

differences can be translated to differences in virulence and

transmission in such a straightforward way. We would suppose

that increasing the number of potential differences between

strains could only create more potential feedbacks to parasite

evolution, and therefore increase the potential level of diversity.

Such a model is likely to be highly intractable for even low num-

bers of coexisting strains, however, but further work in this area

may yield important insights.

In our Introduction, we outlined the variety of processes

identified by mathematical models that can lead to coexistence

of parasite strains in host populations, rather than simply the

type that maximizes R0. An interesting avenue for further

study would be to identify tests that would allow us to dis-

criminate between these different processes using empirical

data. Such a task would not be straightforward, because
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multiple processes are likely to exist in many natural and

laboratory populations. However, we might hope to be able

to discriminate between ecological (density dependence/

predation) and epidemiological (superinfection/specialism/

cross-immunity) causes of coexistence in specific systems.

The importance of the epidemiological R0 to parasite

evolution is not in doubt. However, our key message is that

the classic result of parasite evolution, that there is a single

optimal parasite strain, does not always hold true as there

are a variety of ecological and epidemiological processes

that can encourage the creation and maintenance of diversity

in parasite virulence. Furthermore, we have shown that, for

small immune ranges (high specificity to immunity), patho-

gen diversity is not only possible but almost certain.
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Appendix A. Simulation details
(1) Start with a monomorphic population, with trait value a

(taken as 0.5 in all simulations).

(2) Run the ODE model for time tf. If any of the final den-

sities are below a (low) threshold, then set them to

zero. For each positive parasite population and host den-

sity, record the final density values and define them as

Nres. (If there is more than one parasite strain, label

them Nres1, Nres2, etc.)

(3) Label the existing strain as ares. (If there is more than one

strain, label them ares1, ares2, etc.)

(4) When multiple parasite strains are present, choose which

parasite strain gives rise to a mutation based on relative

population sizes of hosts infected with each parasite

(i.e. the probability that parasite i gives rise to a mutation

is ‘total number of hosts infected with parasite i/total

number of infected hosts’).

(5) Create a mutant strain by drawing a number at random

from a normal distribution with mean ares and standard

deviation smut (taken as 0.01 in all simulations). Label

this value as amut. If there is more than one parasite

strain present, randomly select from which strain the

mutation will occur (with appropriate bias for population

size—i.e. the larger the population, the more likely it is

the mutation will come from that population).

(6) Add equations for this mutant parasite type to the exist-

ing equations, creating an (n þ 1)-strain model (where n
is the number of trait values, i.e. 1 mutant and n resident

values). For the initial densities, we take ares to have

densities Nres and amut to have ‘low’ density.

(7) Repeat from step 2.
Appendix B. Mutual invasibility result
in two-strain system
Let us set X ¼ S þ s(ai, aj)Rj. The fitness gradient of a strain i
can then be written as

@ri

@am

����
am¼ai

¼ b0ðamÞX þ bðamÞRjs
mðam;ajÞji � 1; ðB 1Þ

which for a (co)-singular point requires

b0ðaiÞ ¼
1� bðaiÞRjs

mðam;ajÞji
X

: ðB 2Þ

When evaluated at the singular point, am ¼ ai ¼ a�i , the MI

condition will be

@2ri

@am@ai

����
am¼ai¼a�i

¼ b0ða�i ÞX0 þ bða�i Þ½Ris
miðam;aiÞji

þ R0js
mðam;ajÞji þ RAs

miðam;aAÞji� , 0:

ðB 3Þ

As s(am, aA) ¼minfs(am, a1), s(am, a2)g, then locally we

can write this as

@2ri

@am@ai

����
am¼ai¼a�i

¼ b0ða�i ÞX0 þ bða�i Þ½ðRi þ RAÞsmiðam;aiÞji

þ R0js
mðam;ajÞji , 0:

By considering equations (2.21) and (2.22), we find that

dIi

dt
¼ bðaiÞXIi � ðai þ bþ gÞ; ðB 4Þ

giving the equilibrium condition

X ¼ ai þ bþ g

bðaiÞ
; ðB 5Þ

and, therefore,

X0 ¼ 1

bðaiÞ
� b0ðaiÞ

ai þ bþ g

b2ðaiÞ
¼ 1

bðaiÞ
ð1� b0ðaiÞXÞ: ðB 6Þ

Substituting the singular point condition of (B 2) into

(B 6) gives

X0 ¼ Rjs
mðam;ajÞji: ðB 7Þ

Thus, the MI condition becomes

@2ri

@am@ai

����
am¼ai¼a�i

¼b0ða�i ÞRjs
mðam;ajÞji þ bða�i ÞR0jsmðam;ajÞji

þ bða�i ÞðRi þ RAÞsmiðam;aiÞji , 0:

ðB 8Þ
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