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One of the powerful tools of adaptive dynamics is its so-called canonical

equation (CE), a differential equation describing how the prevailing trait

vector changes over evolutionary time. The derivation of the CE is based on

two simplifying assumptions, separation of population dynamical and muta-

tional time scales and small mutational steps. (It may appear that these two

conditions rarely go together. However, for small step sizes the time-scale sep-

aration need not be very strict.) The CE was derived in 1996, with mathematical

rigour being added in 2003. Both papers consider only well-mixed clonal popu-

lations with the simplest possible life histories. In 2008, the CE’s reach was

heuristically extended to locally well-mixed populations with general life his-

tories. We, again heuristically, extend it further to Mendelian diploids and

haplo-diploids. Away from strict time-scale separation the CE does an even

better approximation job in the Mendelian than in the clonal case owing to

gene substitutions occurring effectively in parallel, which obviates slowing

down by clonal interference.
1. Introduction
For context, it is useful to distinguish between micro-, meso- and macro-evolution.

The term micro-evolution customarily refers to changes in gene frequencies on a

population dynamical time-scale. We will refer to the evolution of quantitative

traits through the repeated substitution of novel mutants, including the splitting

of the evolutionary path into separate evolutionary lines, as meso-evolution. The

term macro-evolution then becomes restricted to larger scale changes such as

anatomical innovations, where one cannot even speak in terms of a fixed set of traits.

Adaptive dynamics (AD) was devised as a mathematical framework for

dealing with meso-evolution in ‘realistic’ ecological settings. It differs from

more classical approaches to modelling evolutionary change, which generally

assume constant fitnesses, by its focus on the population dynamical basis for

those fitnesses, and hence on their inevitable change over evolutionary time. Of

course, the greater realism at the ecological end is brought about by making differ-

ent simplifying assumptions, this time genetically unrealistic ones. The main

simplification is (i) separation of the population dynamical and mutational time
scales. In order to concentrate on ecological aspects, unencumbered by the com-

plexities of the genetic architecture and genotype to phenotype map, most AD

research moreover assumes (ii) clonal inheritance.
One of the powerful tools of AD is its so-called canonical equation (CE), a differ-

ential equation describing how the prevailing trait vector changes over evolutionary

time. The derivation of the CE is based on a subsequent further simplifying assump-

tion: (iii) small mutational steps. As the speed at which a mutant substitutes is

proportional to its effect, conditions (i) and (iii) will only rarely be met together.

In §5, we give arguments why for small step sizes the time-scale separation need

not be very strict.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2013.0025&domain=pdf&date_stamp=2013-10-25
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The CE was first derived in [1] for well-mixed clonal

populations with the simplest possible life histories. This was

underpinned by a level of rigour sufficient to satisfy hard

probabilists in [2] and [3]. The initial results were extended

in [4] to, possibly spatially distributed, locally well-mixed

populations with general life histories, with [5] giving a pro-

babilistically rigorous underpinning for the case of simple

age dependence. In this paper, we describe the extension

to Mendelian diploids and haplo-diploids, once again on a

physicist level of rigour. As it turns out, the CE for the simplest

and most complex life histories differs only in a scalar factor

summarizing how the intricacies of the life history feed through

to the invasion probabilities of advantageous mutants. Mende-

lian diploidy brings in an additional factor 2, owing to the

doubling of the number of mutant alleles per individual over

a substitution.

Collet et al. [6] also derives a CE for Mendelian diploids,

with full rigour. However, this in essence is a CE for a single

locus trait, selected by a two-tiered ecology, within and

between diploid bodies, the latter with the simplest possible

life history. ([6] also lists the early applications of AD to

Mendelian models.) We consider general life histories and

phenotypic traits that are underlain by many loci.

In §2, we give a general heuristic derivation of the CE for

clonal and for haploid and diploid Mendelian populations.

In §3, we work out the details, and in §4 we consider haplo-

diploids. The technicalities can be found in a suite of appendices.

In the final §5, we discuss the strengths and weaknesses of the CE

as a tool for evolutionary understanding.
2. Deriving the canonical equation for the
textbook genetic scenarios

Mathematically, the CE is derived by taking two subsequent

limits: (i) letting the system size K (and hence the average popu-

lation size �n) go to infinity (to make the community dynamics

deterministic) and the mutation probability per birth event 1

go to zero in such a manner that (a) 1K ln(K)! 0 (to make

the time for a substitution shorter than the time between

mutations) and (b) 1K exp(aK)! 1 for sufficiently small

positive a (to keep the population from going extinct on

the time scale of the trait changes), followed by (ii) letting the

mutational step sizes go to zero, all the while keeping

the trait changes in view by rescaling time. Biologically, the

CE is best seen as an approximation. From that perspective, it

is expedient to express the result in the original time scale so

that the basic biological parameters are kept in view.

Under the assumptions that K is large, 1K ln(K ) is small

and 1K exp(aK) is large for a sufficiently small positive a,

that mutations are unbiased and that the environment as per-

ceived by the individuals does not fluctuate (note that this

implies a non-fluctuating resident population), the rate of

change of a trait vector X can in the clonal case be expressed

approximately as

dX
dt
¼

[rate at which mutants are produced]�
[average over the mutation distribution of

ðeffect of mutation� linear approximation for its

invasion probabilityÞ�

8>>>><
>>>>:

¼ 1�n
Ts

� �
� Tr

s 2
e

C @T
1 sðXjXÞ

� �
; ð2:1Þ
with s(YjX) the invasion fitness of Y mutants in the environ-

ment generated by X residents (see [7,8]), @1s the derivative of

s for its first argument, a row vector, and @T
1 s the correspond-

ing column vector, Ts the mean survival time of the residents,

Tr their average age at reproduction, s2
e a measure for the

variability of their lifetime offspring production (detailed in

§3) and C the covariance matrix of the mutational steps. (In

the AD literature, the quantity @T
1 sðXjXÞ is known as the

selection gradient.)

The first term in square brackets after the second equals

sign in (2.1) comes from multiplying the probability of a

mutation per birth by the population birth rate, b ¼ �n/Ts, a

formula derived from the consistency relation �n ¼ bTs (the

average number of particles in a ‘reservoir’ equals the average

entrance rate multiplied by the average residence time).

The second term comes from combining three approxi-

mation formulae to calculate the probability p that a mutant

invades into the resident population, all coming from a branch-

ing process approximation for the invasion phase of the mutant

dynamics, followed by averaging the product of the result-

ing expression and the mutational effect Z :¼ Y� X over the

distribution g of Z.

ðiÞ p ¼ 2 lnðR0Þ
s2

e

� �
þ
þOðlnðR0Þ2); ð2:2Þ

with ðxÞþ :¼ x if x � 0 and ðxÞþ :¼ 0 if x � 0, and R0 the aver-

age lifetime offspring number of the mutant. (Note that the

general R0 concept allows for multiple birth states as, for

example, in spatially distributed populations [9].) Equation

(2.2) is derived through a perturbation expansion from an

equation for the invasion probabilities of a branching process

([10–18], appendix B).

ðiiÞ lnðR0ðYjXÞÞ ¼ @1R0ðXjXÞZþO(jjZjj2): ð2:3Þ

Equation (2.3) follows from R0(XjX) ¼ 1.

ðiiiÞ s ¼ lnðR0Þ
Tr

þO( lnðR0Þ2): ð2:4Þ

Equation (2.4) is derived through a perturbation expansion

from the characteristic equation for the Malthusian parameter

of a branching process ([4,19,20], appendix A). (Note that

dim(R0)¼ 1 and dim(s) ¼ 1/time.) Together (i)–(iii) result in

p ¼ 2Tr

s2
e

@1sðXjXÞZ
� �

þ
þO(jjZjj2). ð2:5Þ

When multiplying (2.5) by the mutational effect, it pays first to

take transposes to make use ofð
ZðZT@T

1 sðXjXÞÞþgðZÞdZ ¼ 1
2C@

T
1 sðXjXÞ: ð2:6Þ

Equation (2.6) follows from the facts that for unbiased mutational

effects
Ð

ZZTg(Z)dZ ¼ C and that the ( )þ means that we effec-

tively integrate over only the half space where @1s(XjX)Z . 0.

In the derivation of (2.6), we have used the very strong

interpretation of ‘unbiased’ that Z not only has mean zero but

also is distributed symmetrically around that mean. Relaxing

these assumptions gives an expression with considerably less

appeal [1–3]. As relaxing them would make the following argu-

ments less easy to follow while their essence stays the same,

we have chosen to stick to the time-honoured simplification.

Moreover, in writing down (2.1), we have tacitly assumed

that an invading mutant that makes it through the stochastic

boundary layer, where its population dynamics can be
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approximated by a branching process, also makes it to a full

substitution. This ‘invasion implies substitution’ rule pre-

sumably holds good for small mutational steps, away from

population dynamical bifurcation points and evolutionarily

singular strategies (characterized by @1s(XjX) ¼ 0). A hard

proof is available for the case where the community dynamics

allows a finite dimensional representation [21–23]. However, it

looks as if with the right mathematical expertise the rule should

be extendable to the required generality by combining the

approaches in [24] and [25,26].

The two terms in square brackets in (2.1) connect to the

simplifying assumptions in the following manner. The first

term is contingent on the time-scale separation assumption.

Only when substitutions do not interfere does the speed of

trait movement become proportional to the number of invasion

attempts per time unit. The derivation of the second term is con-

tingent on the smallness of the mutational steps and also on the

time-scale separation to produce the constant environment

underlying the branching process calculations (which assume

fixed probability distributions for the lifetime offspring num-

bers). More in particular, time-scale separation means that in

between the negligibly short substitution events the environ-

ment is stationary and resident populations are genetically

homogeneous. (More about the latter, seemingly unrealistic,

consequence in §5.)

We now consider the Mendelian case. For chromosomal

sex determination, we focus on the autosomes, deferring

the allosomal contributions to §4.

Thanks to the genetic homogeneity of the residents, the

argument in (2.1) extends seamlessly to haploids. The only

difference from the clonal case is that thinking genetics

points one to the concept of genotype to phenotype map

and mutations that occur on multiple loci. However, when

substitutions occur singly the latter multiplicity becomes

phenotypically inconsequential.

Moving on to diploids, we first take a closer look

at genotype to phenotype maps. The prevalent view in

Evo-Devo nowadays is that the trait changes that AD

attempts to model are mostly caused not by changes in the

coding regions of genes but at their regulatory regions

(e.g. [27,28]). The latter determine the activity of the genes

in different parts of the body, at different times during devel-

opment and under different micro-environmental conditions.

This scenario allows us to look at the genotype as a sequence

of vectors ðUa1
;Ua2
Þ of expression levels, with a (ai) a place-

holder for the name of (an allele on) a generic locus. The

genotype to phenotype map F transforms this sequence

into phenotypic traits. It is from this perspective that one

should judge the assumption of smallness of mutational

steps: the influence of any specific regulatory site among its

many colleagues tends to be relatively minor. And it is this

perspective that allows us to assume that (iv) genotype to
phenotype maps are smooth.

Lemma ([29], A. Pugliese 1996, personal communication).

When there are no parental effects, smooth genotype to phenotype
maps are locally additive, i.e. if at a the expression vector Ua

mutates to UA, then

Fð� � � ; UA;UA; � � �Þ �F ð� � � ; Ua;Ua; � � �Þ
¼ 2ðFð� � � ; Ua;UA; � � �Þ �F ð� � � ; Ua;Ua; � � �ÞÞ

þO(jjUA �Uajj2): ð2:7Þ
Proof. Without parental effects

@Fð� � � ; Ua;UA; � � �Þ
@Ua

����
UA¼Ua

¼ @Fð� � � ; Ua;UA; � � �Þ
@UA

����
UA¼Ua

¼: F0að� � � ; Ua;Ua; � � �Þ: ð2:8Þ

Hence,

XaA¼Fð� � � ;Ua;Ua; � � �ÞþF0að� � � ;Ua;Ua; � � �ÞðUA�UaÞ

þO(jjUA�Uajj2)

and XAA¼Fð� � � ;Ua;Ua; � � �Þþ2F0að� � � ;Ua;Ua; � � �ÞðUA�UaÞ

þO(jjUA�Uajj2):

9>>>>>=
>>>>>;

ð2:9Þ

B

In diploids, an invading mutant allele A practically

always shares a body with a resident allele a and this aA
reproduces through backcrossing with a resident aa. Hence,

the allele population initially grows as clonally reproducing

aAs (producing aas on the side), and its invasion fitness cor-

responds to the asymptotic average per capita growth of that

clonal population in an environmental background provided

exclusively by, also seemingly clonally reproducing (for homo-

geneous), residents. The invasion implies that substitution

theorem also applies unchanged (thanks to the local additiv-

ity). However, after substitution the population consists of

mutant homozygotes, making the resulting step in phenotype

space twice as large as in the clonal and haploid cases. We thus

conclude that the CE for Mendelian diploids reads

dX
dt
¼ 2�n

Tr

Ts

1

s2
e

1C @T
1 sðXjXÞ: ð2:10Þ

On the right-hand side, we have put first the ecologically deter-

mined number of resident haplotypes (sets of chromosomes

as present in gametes), followed by the life-history statistics

controlling the initial demographic stochasticity of allelic sub-

stitutions, followed by an expression quantifying the per birth

mutational variability generated by the genetic architecture

and genotype to phenotype map, to conclude with the selection

gradient, summarizing the ecology’s current tendency for filter-

ing novel genetic variation. In Metz & Jansen [30], it is argued

that �n times the second group of quantities precisely equals

the effective population size from population genetics.
3. Filling in the details
It may seem that with (2.10) we are done. However, the devil is

in the detail, to wit the calculation of s, Ts, Tr, s
2
e and C. For

background material on the ecological models covered, see

[20,31] for the resident and [32,33] for the invader dynamics.

In principle �n also presents a problem, although only

when the resident population fluctuates. This is even so in

the clonal case as �n is not just a time average but a peculiarly

weighted one (e.g. [34,35]). To keep things simple, we have

confined the argument to non-fluctuating residents.

We first consider R0, although this quantity does not

appear in our (2.1)-derived list. The reason that it does not do

so is that we wanted to write the CE in the form customary

in the literature. However, for most structured populations

R0 is far easier to calculate than s. Therefore we might just as

well in (2.1) and (2.10) drop Tr and replace s with R0.
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R0 equals the dominant eigenvalue of the next-generation

matrix L(YjX) (or operator in the case of infinitely many birth

states; e.g. [9]). For the clonal case, L is constructed by calcu-

lating from a model for the behaviour of individuals how

many offspring in different birth states they produce on

average, dependent on their own birth state.

Given the next-generation matrix, we can introduce

two further quantities for later use: the stationary birth

state distribution, i.e. normalized positive right eigenvector

of L(XjX) going with R0 ¼ 1, U ¼ ðu1 � � � unÞT, 1TU ¼ 1 with

1T: = ð1 � � � 1Þ, and the corresponding reproductive values,

i.e. co-normalized left eigenvector, V ¼ ðv1 � � � vnÞ, VU ¼ 1.

vi equals the expected contribution of a newborn of type i
to future birth rates.

How can we define R0 for evolving sexual diploids? The

first answer is that in hermaphrodites one can just add the

numbers of offspring that individuals father and mother

over their life (i.e. produce through the micro- and macro-

gametic routes) and divide by 2. The factor 1/2 comes from

the fact that in the Mendelian process each allele is only trans-

ferred with that probability. When hermaphrodites are born

stochastically equal (i.e. their birth states have the same prob-

ability distribution),

R0 ¼ 1
2ð f þmÞ; ð3:1Þ

with m and f the average number of offspring fathered or

mothered by a randomly chosen individual. For later use,

we moreover note that for the resident

m ¼ f ¼ 1; ð3:2Þ

as resident densities are supposedly constant and every indi-

vidual has one father and one mother.

Equations (3.1) and (3.2) also hold good for dioecious

organisms, but with a twist. For later use, we note that we

then can rewrite (3.1) and (3.2) by letting pf and pm denote

the fractions of newly produced females and males and fþ
and mþ the average lifetime numbers of offspring begotten

by a female or male. Then f ¼ pffþ and m ¼ pmmþ, so that

R0 ¼ 1
2ð pffþ þ pmmþÞ; ð3:3Þ

and for the residents

fþ ¼
1

pf
and mþ ¼

1

pm
: ð3:4Þ

The above results are not completely trivial, as, in contrast to

hermaphrodites, individuals of dioecious species are born in

different flavours. To account for this, L(YjX) should be properly

extended. If no other birth state distinctions are needed

L ¼ 1
2

‘ff ‘fm

‘mf ‘mm

� �
; ð3:5Þ

with ‘ff, ‘fm the average lifetime numbers of daughters of

a female, male, and ‘mf, ‘mm the corresponding average life-

time numbers of sons, all for mutant heterozygotes in the

environmental and genetic background provided by the resi-

dent. The simplest case is when there is no connection

between the traits and sex determination so that ‘ff¼ pffþ,

‘mf ¼ pmfþ, ‘fm¼ pfmþ and ‘mm¼ pmmþ. Then L has rank one

and R0 ¼ 1/2( pffþ þ pmmþ). Another way of getting the latter

result is by observing that in this case all offspring are born

stochastically equal, with each having the same probability of

being born female. We can then proceed as if sex is determined

after birth and calculate R0 by averaging over the possible
courses of a life. When there is a connection, we end up with

the same formula by defining pm and pf as the asymptotic prob-

abilities of being born male or female, i.e. by choosing for pm

and pf the components of the right eigenvector U of L, and

defining mþ and fþ again as the average numbers of offspring

fathered or mothered over a lifetime given the parental sex,

fþ ¼ ‘ff þ ‘mf, mþ ¼ ‘fm þ ‘mm. By using R0 ¼ 1TLU, we

again get R0 ¼ 1/2( pffþ þ pmmþ). However, only the similarity

of the expression is pleasing as this time it is not explicit, as to

calculate pm and pf one first needs to calculate R0.

Appendix C indicates how the preceding considerations

extend in the presence of additional birth state distinctions.

Next we consider Ts, the quantity that had to be

combined with �n to get the population birth rate.

Ts ¼
ð1

0

a GðaÞ U da; ð3:6Þ

with G ¼ ðg1; . . . ;gmÞ, gi being the probability density of time

until death of a resident born in state i. In the dioecious case,

with all offspring born stochastically equal

Ts ¼ pfTs;f þ pmTs;m: ð3:7Þ

The mean age at reproduction Tr needs more thought as

the offspring may also differ in their birth states. The pertur-

bation expansion for s in appendix A tells us that we should

weight those offspring with their reproductive values.

Tr ¼
ð1

0

a VLðaÞ U da; ð3:8Þ

with L(a) composed of 1/2 times the average per capita par-

enting rates of age a residents split according to the birth

states of offspring and parent. This formula generalizes the

usual definition of the age at reproduction for all offspring

born equal. (Note that
Ð1

0 VLðaÞ Uda ¼ VLðXjXÞU ¼ 1 so

that VL(a)U is a probability density.) When all offspring are

born stochastically equal Tr ¼
Ð1

0 a lðaÞ da ¼ 1
2ðTr;f þ Tr;mÞ

with l ¼ lf þ lm, lf and lm being half the average per
capita mothering and fathering rates of the residents. For

dioecious organisms, lf ¼ pflfþ, lm ¼ pmlmþ with lfþ, lmþ
being half the average female, male parenting rates. Yet,

Tr,fþ ¼ Tr,f, Tr,mþ ¼ Tr,m, thanks to the normalization of lfþ
and lmþ before calculating the mean parenting ages.

s2
e, appearing as a coefficient in the approximation for-

mula for the invasion probability p, is the most complicated

beast. We first give its formula for the clonal case

s2
e: =

X
j

var
X

i

vik i

����� j

 !
uj: ð3:9Þ

Here, the ki are the lifetime numbers of i-offspring of resi-

dents and var(hjj ) means that the variance of the random

quantity h for an individual born in state j. Equation (3.9)

emerges from the perturbation expansion (appendix B).

To calculate s2
e for the Mendelian diploid case, we apply

(3.9) to the alleles. We only consider the case with all

offspring born stochastically equal.

s2
e ¼ 1

4½s
2
f þ 2ðcþ 1Þ þ s2

m�; ð3:10Þ

with s2
f and s2

m the variances of the lifetime offspring

numbers kf and km produced, respectively, through the

macro- and micro-gametic routes, and c their covariance

(appendix D). The 1 inside the inner brackets comes from

the Mendelian sampling of alleles.
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For dioecious organisms, c ¼ 21 (as Ekfkm¼ 0 and

Ekf¼ Ekm¼ 1), and s2
f ¼ ðu2

fþ þ 1� pfÞ/pf, s2
m ¼ ðu2

mþþ
1� pmÞ/pm, ufþ ¼ sfþ/fþ and umþ ¼ smþ/mþ. The latter

result is obtained from the following lemma together with

the observation that Eþkf ¼ fþ and Eþ km ¼ mþ, with Eþ
the expectation conditional on the parental sex.

Lemma. Let the discrete non-negative random variable k be
constructed from a random variable kþ by setting k ¼ kþ with prob-
ability p and k ¼ 0 with probability 1 2 p, then Ek ¼ pEkþ and
var(k) ¼ Ek2 2 (Ek)2 ¼ p[var(kþ) þ (Ekþ)2] 2 ( pEkþ)2. When
moreover Ek ¼ 1 so that Ek1 ¼ p21,

varðkÞ ¼ Ek2 � 1 ¼ p½varðkþÞ þ p�2� � 1

¼ varðkþÞ/(Ekþ)2 þ 1� p
p

: ð3:11Þ

The mutational covariance matrix C is primarily a phe-

nomenological quantity, although in principle it can be

expressed in terms of per locus statistics and the genotype

to phenotype map,

C ¼
X

a

pa

ð
F( � � � ;Ua;Ua þ Za; � � �ÞFT( � � � ;Ua;Ua þ Za; � � �Þ

� gaðZaÞdZa �
X

a

paF
0
a( � � � ;Ua;Ua; � � �Þ

�
ð

ZaZT
a gaðZaÞdZa

� �
F0Ta ( � � � ;Ua;Ua; � � �Þ; ð3:12Þ

with pa the relative frequency with which a mutation occurs

at locus a and ga the probability density of mutational steps

in the allelic trait vector of that locus.

As a final point, we need to say something about the traits

and the concept of phenotype. In general, the phenotypes of

AD should be seen as reaction norms, i.e. maps from micro-

environmental conditions to characteristics of individuals

(another term is conditional strategies). Only in the simplest

cases a reaction norm is degenerate, taking only a single

value. The dioecious case is similar in that the development

of the sexes need not be, and in fact rarely is, equal. Hence,

trait vectors will generally consist of two components, traits

of the male, Xm, and of the female, Xf. In general, the traits

of the two sexes evolve dependently as they are coupled by

their mutational covariances. In the extreme case that the

mutational covariances between male and female traits are

all zero the female and male coevolve as if they are separate

species. At the opposite end of the spectrum Xm ¼ Gm(Xf ), or

Xf ¼ Gf(Xm), and the mutational variation in the male and

female traits is fully correlated. The upshot is that, except in

the fully correlated case, we cannot work with a monolithic

trait vector influencing both macro- and micro-gametic repro-

duction, as in hermaphrodites. Instead, we should take into

account the fact that when the sexes are separate they can

evolve in their own ways.
4. Haplo-diploids: a not uncommon, but
often-neglected, reproductive mode
In addition to the haploid and diploid ones, there exist all

sorts of other lifestyles. One common type is where haploid

and diploid phases alternate (as in, for example, ferns,

mosses and a great variety of algae). It is then necessary, as

in dioecious diploids, to introduce trait vectors for each
separate phase. We can then consider a diploid plus its hap-

loid offspring as a single generalized individual ([36] gives a

relaxed introduction to this useful concept) and apply the

theory of the previous two sections, where for the diploid

phase traits we again have to put in a factor 2.

Still another lifestyle is the so-called haplo-diploid

one, where one sex is diploid and the other haploid (the

supplementary material to [37] lists the many known

haplo-diploid taxa). Although this case can also be treated

through the mental construction of appropriate generalized

individuals, we follow the strategy of §3, and treat the two

sexes as different birth states, as this is simpler and allows

us to illustrate further tricks of the trade.

Although the opposite also occurs, we shall for definiteness

take the hymenopteran situation as reference and assume

that females are diploid. In that case only the female repro-

ductive output needs to be discounted by 1/2. We allow any

physiological structure and only assume that within

each sex all offspring are born equal. The next-generation

matrix then becomes

LðYjXÞ ¼
1
2 ffðYjXÞ mðYjXÞ

1
2 fmðYjXÞ 0

� �
; ð4:1Þ

with ff and fm the average lifetime numbers of female and male

offspring of a female, and m the average lifetime number of

(female) offspring of a male. ff and fm depend only on the

female traits, m only on the male traits.

For the resident ff ¼ 1 (as the density of females is con-

stant) and hence fm ¼ r, the sex ratio at birth (the number of

males born relative to females), and m ¼ r21 (since all females

have a father and one female is born for r males). Hence, the

resident’s next-generation matrix is

LðXjXÞ ¼
1
2 r�1

1
2r 0

� �
; ð4:2Þ

with co-normalized eigenvectors

U ¼ 1

2þ r
2
r

� �
and V ¼ 2þ r

3r
ð r 1 Þ: ð4:3Þ

As is commonly the case in models with more than one

birth state, the resulting expression for R0 does not excel

in transparency. However, we do not need R0 but its deriva-

tive, for which there exists a simple formula given in the

following lemma, derived by differentiating through the

characteristic equation and solving for @R0/@Y (see [38,39]

and in particular [40]).
Lemma. Let PðYjXÞðzÞ :¼ �detðzI� LðYjXÞÞ and QðYjXÞ :¼
PðYjXÞð1Þ, then

@1R0ðXjXÞ ¼ �dPðXjXÞ
dz

ð1Þ
� ��1

½@1QðXjXÞ�: ð4:4Þ

So far, we have listed the additional ideas. The rest is

work, following the route outlined in §§2 and 3.

We begin with the selection gradient

@T
1 R0ðXjXÞ ¼ 1

3ð@
T
1 ffðXjXÞ þ r�1@T

1 fmðXjXÞ þ r@T
1 mðXjXÞÞ

¼ 1
3ð@

T
1 lnð ffÞðXjXÞ

þ @T
1 lnð fmÞðXjXÞ þ @T

1 lnðmÞðXjXÞÞ:
ð4:5Þ
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As we start from R0 instead of s, there is no need for us to cal-

culate Tr, and as Ts has nothing to do with the reproductive

system, (3.7) holds good as for any other sex-differentiated

population. There remains

s 2
e ¼

2þ r
18r

2r2s 2
fjm þ rs 2

fjf þ s 2
mjf þ ð2cjf þ 1þ rÞ

h i
; ð4:6Þ

where the jf, jm in the indices indicates that the quantity is

calculated conditional on the parent being female or male.

There are nicer expressions than (4.6). If you wish, you can

check it by working through appendix E. The term 1 þ r
inside the inner brackets derives from the Mendelian

sampling in the females. Furthermore, for the male traits

the factor 2 in front of �n in (2.10) should be removed.

Lastly, a factor accounting for the reduced number of haplo-

types per individual has to be inserted—for sex-independent

per haplotype mutation frequencies (1 þ (1/2)r)/(1 þ r).

Our arguments for diploids only considered autosomes.

To obtain the full CE in the case of chromosomal sex determi-

nation, it suffices to add the allosomal contributions to the

autosomal one. The contribution of the chromosome occurring

only in the heterogametic sex follows the rules for clonal repro-

duction, that of the chromosome of the homogametic sex

follows those for haplo-diploids.
5. Discussion
Away from evolutionarily singular strategies (where

@1s(XjX) ¼ 0), the time-scale separation assumption com-

bined with the assumption of small mutational steps

guarantees practically permanent genetic homogeneity of

the resident population. More in particular, a population

with sufficiently restricted variability will become homo-

geneous on the time scale of the substitutions, thanks to the

close to additive genetics, and will effectively stay so until

the next substitution. The exceptions to this homogeneity

occur when an evolutionary trajectory comes close to an evolu-

tionarily singular strategy. The reason is that, where everywhere

else we have an approximately linear selection regime, near the

singular strategies the quadratic terms in the local expansion

of the fitness landscape start to dominate, creating epistasis

(non-additivity) at the level of the fitnesses.

Genetic homogeneity of the resident population lies at

the base of the approximations made to reach the CE and

of its easy extension to a Mendelian world. At first sight

this seems a strong argument against the CE’s applicability,

as genetic variability appears to be rampant. There are two

arguments for yet thinking that the CE may often be a fair

description of reality. The first one is that we need mutation

limitation only for genes affecting the trait. The thrust of our

theoretical deductions is not affected by selectively protected

variability that is developmentally and selectively unconnected

to the focal traits or variability on neutral loci subjected to

mutation, drift and draft (hitchhiking with loci under selection).

The only effect that selectively kept variability at unconnected

loci may have is that it makes the lifetime offspring numbers

of the substituting alleles more variable, enlargings2
e. However,

as we treated the components of s2
e as empirical quantities, any

genetic causes of this variability are automatically included.

The second argument has a bearing on variability owing

to a lack of strict time-scale separation. As long as that varia-

bility stays sufficiently limited, it should in Mendelian
populations have little effect on the quality of the CE approxi-

mation. The reason is that the effect of such variability on the

invasion fitness is of higher order in the mutational step size

than the terms retained in the derivation of the CE. (The argu-

ment for the latter statement may be found in [41]. This paper

admittedly only considers unstructured populations. How-

ever, the nature of the argument suggests that with the

right mathematical expertise it should be extendable to

structured ones.) In clonal populations, a lack of mutation

limitation yet presents an obstacle to the quantitative applica-

bility of the CE owing to clonal interference: a substituting

clone may be ousted en route by a better mutant so that

only a fraction of the mutants that invade contribute to

longer run evolutionary change. We may thus expect ‘reality’

to be slower than the CE. Mendelian populations do not

suffer this slowing down as mutants on different loci effec-

tively substitute in parallel without interfering thanks to

recombination (and the approximate additivity coming

from the smallness of mutational effects).

The picture of multiple substituting mutants with small

additive effect may seem close to the one considered by

Lande [42,43]. However, there is a difference as in our picture

only a small and variable number of loci are simultaneously

substituting, with new mutants continually coming and old

ones going. By contrast, the quantitative genetics picture

underlying Lande’s work has its basis in Fisher’s picture of

evolutionary change coming from changes in the allele fre-

quencies on a large number of loci with all alleles present

from the start [44]. (An argument against that picture is that

the genetic differences between, say, a choanoflagellate and a

human are so many that the attendant polymorphism would

contain more genotypes than the number of atoms in the

Earth, invalidating the classical population genetic calcu-

lations.) Of course, Lande did not subscribe to this simplified

picture (e.g. [45,46]), and neither did Fisher, at least not whole-

heartedly [47, chapter IV]. However, the mathematical details

of the connection between the approximations introduced in

Lande’s various papers remains to be worked out.

One of the consequences of having only a few loci substitut-

ing at any one time is that the within-population variance of the

trait fluctuates stochastically and appears to be highly variable

(J. Ripa 2005, personal communication). This notwithstanding

a negative feedback: when the standing variability is high,

mutant alleles will find it more difficult to pass through the

stochastic boundary layer because of the larger fluctuations

in their offspring numbers. Unfortunately, this picture does

not easily lead to explicit expressions, as the fluctuations in

variability occur on a time scale similar to that of the substi-

tutions so that we cannot use our earlier branching process

calculation. However, we surmise that in reality the allelic

reproductive variability coming from co-substituting alleles

can usually be neglected relative to the variability in offspring

numbers caused by alleles not affecting the traits and by micro-

environmental variability such as some individuals running

into a predator and others not.

Although the previous paragraphs may give the impression

that we are quite optimistic about the applicability of the CE,

there is one problem that in applications is usually ignored:

there is no need for C to stay constant. It may perhaps

seem, when the mutations with small and hence additive

effect all occur on different loci, that also their cumulative

effect will be additive. However, this is not the case. This can

be seen by looking at the developmental process as a sequence
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of maps, each of which transforms the genetic information plus

environmental inputs further towards the final phenotype. Even

if linearity were to prevail early on, the accumulated change will

be appreciable, and when the output from those early stages is

fed into a nonlinear map to get to the next stage, approximate lin-

earity is lost and the derivatives ofF that appear in (3.12) change

over evolutionary time.

In principle, it is possible to write down a CE for the

extended trait vector (X, C) to obtain the change in C as corre-

lated response to selection on X. However, going through the

calculations in the manner of (3.12) shows that the expression

for the covariances between the mutational steps in X and C

generically involves higher moments. We should thus see the

CE as the first step in a truncated moment expansion.

All this does not mean that using the CE with fixed C is

never more than a heuristic tool, with no strong connection

to reality. There are scenarios where one may with impunity

assume C to be constant, in particular when investigating

the behaviour of evolutionary trajectories close to evolutio-

narily singular strategies. In a linearized stability analysis

as in [48] or in the analysis of scenarios for initial divergence

close to an adaptive branching point (as defined in [49–51])

as in [4,52–54], only those situations are considered where

the change in X, and hence the associated change in C, is

small. (Such arguments involve two trait scales, a small

one for linearizing the CE and a smaller one for the muta-

tional steps.)
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Appendix A. Approximating a mutant’s
invasion fitness
For the sake of the exposition, we first consider the case of a

single birth state. Then s satisfies the characteristic equation

(Lotka’s equation)

1 ¼
ð1

0

e�salðaÞda or 1 ¼
X1
a¼1

e�salðaÞ ðA 1Þ

depending on whether we are dealing with continuous or

discrete time community dynamics. Here, l(a) is the average

birth rate or ratio at age a, where the average is taken over

whatever stochastic trajectories individuals may follow

during their life.

From here on, we concentrate on the continuous time

case. Rewriting (A 1) by introducing the probability density

‘ of the age at reproduction a, and its cumulant generating

function f,

‘ðaÞ :¼ R�1
0 lðaÞ and fðsÞ :¼ ln

ð1

0

esa‘ðaÞda
� �

; ðA 2Þ

gives

0 ¼ lnðR0Þ þ fð�sÞ: ðA 3Þ
Expanding f as

fð�sÞ ¼
Xn

i¼1

kið�sÞi

i!
þO(snþ1), ðA 4Þ

with ki the ith cumulant, k1 ¼ Ea ¼: Tr, k2 ¼ VarðaÞ ¼: s2,

and solving subsequently for the first- and second-order

terms (on the assumption that jln(R0)j is small) gives

s ¼ lnðR0Þ
Tr

1 +
1

2

s

Tr

� �2

lnðR0Þ þO( lnðR0Þ2)

 !
: ðA 5Þ

Equation (A 5) often performs far better than the estimate

of the error term suggests. The reason is that a similar result

appears for birth kernels with potentially large R0 but

narrow spread. When the ith central moment mi of a scales

like sn, (A 1) can be written as

1 ¼ R0 e�sTr 1þ
Xn

i¼2

ð�rÞimi

i!
þ 1

ðnþ 1Þ! O(snþ1Þ
 !

: ðA 6Þ

Taking logarithms and solving subsequently for first- and

second-order terms gives

s ¼ lnðR0Þ
Tr

1þ 1

2

s

Tr

� �2

lnðR0Þ þOðs3Þ
 !

: ðA 7Þ

The two approximations agree up to their second-order terms

(but not in higher order ones).

For more than one birth state, we introduce L(a) ¼ lij(a),

with lij(a) the average rate at which an individual born

in state j gives birth to offspring in state i. Then s can be

calculated from the characteristic equation

½dominant eigenvalue of ~LðsÞ� ¼ 1; ðA 8Þ

with

~lijðsÞ ¼
ð1

0

e�salijðaÞda; ðA 9Þ

or, equivalently, as the rightmost solution of

detðI� ~LðsÞÞ ¼ 0: ðA 10Þ

Let ld stand for ‘dominant eigenvalue of’ and Z :¼ Y� X be

the mutational step. Then (A 8) can be rewritten as

cðs; ZÞ :¼ ln ld

ð1

0

e�saLða; YjXÞda
� �� �

¼ 0: ðA 11Þ

Expanding c as a function of its first argument gives

cðs; ZÞ ¼ cð0; ZÞ þ @1cð0; ZÞsþOðs2Þ: ðA 12Þ

On the assumption that s ¼ O(jjZjj) for small jjZjj we can

rewrite (A 12) as

0 ¼ cðs; ZÞ ¼ cð0; ZÞ þ @1cð0; ZÞsþOðs2Þ

¼ lnðR0Þ þ @1cð0; 0ÞsþOðjjZjj2Þ: ðA 13Þ

Hence,

s ¼ � lnðR0Þ
@1cð0; 0Þ þOðjjZjj2Þ: ðA 14Þ

It remains to calculate

@1cð0; 0Þ ¼ 1

ldð
Ð1

0 Lða; XjXÞdaÞ
@

@s
ld

ð1

0

e�saLða; XjXÞda
� �����

s¼0

:

ðA 15Þ
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The denominator in the first factor equals R0(XjX) ¼ 1. The

second factor equals (e.g. [55])

� V
@

@s

ð1

0

e�saLða; XjXÞdajs¼0

� �
U

¼ �
ð1

0

aVLða; XjXÞUda ¼ �Tr: ðA 16Þ

Hence,

s ¼ lnðR0Þ
Tr

þOðjjZjj2Þ: ðA 17Þ

In Appendix B of [4] it is moreover proved that when

ln(R0) ¼ O(jjZjj2), as is the case around evolutionarily singu-

lar strategies, it is still possible to use (A 17) with O(jjZjj2)

replaced by O(jjZjj3).
 s
3:20130025
Appendix B. Approximating a mutant’s
invasion probability
Equation (3.9) has a long history, starting with [10,11] for

single birth states, with refinements in [12–14]. The work of

Eshel [15] starts the treatment for multiple birth states, with

refinements in [16–18]. All later papers are rather compli-

cated as they aim at the strongest possible results. However,

when the offspring numbers have third moments a standard

perturbation expansion suffices.

To begin, we consider the case of a single birth state. The

following calculation can be found in any textbook devoting

space to branching processes. Denote the lifetime number of

offspring of a representative individual as k where the under-

lining signifies that k is a random variable, and its so-called

generating function as

gðwÞ :¼ Ewk ¼
X1
k¼0

qkwk; ðB 1Þ

with qk the probability that an individual begets k offspring.

By differentiating one finds for n ¼ 0,1,. . .

dng
dzn ðwÞ ¼ Ek½n�wðk�nÞ; and hence

dng
dzn ð1Þ ¼ Ek½n�; ðB 2Þ

with k½n�: = kðk � 1Þ; . . . ; ðk � nþ 1Þ and k½0� :¼ 1. Ek[n] is

known as the nth factorial moment. Let p denote the prob-

ability of invasion. When an individual is known to beget k
offspring, the chance that its line goes extinct is (1 2 p)k. Hence,

1� p ¼
X1

0

qkð1� pÞk ¼ gð1� pÞ: ðB 3Þ

We know that p¼ 0 for R0 � 1. For small R0 2 1, and hence

small p

1� p ¼ gð1Þ � g0ð1Þpþ 1
2g
00ð1Þp2 þOð p3Þ

¼ 1� R0pþ 1
2ðs

2 þ R2
0 � R0Þp2 þOð p3Þ; ðB 4Þ

s2 :¼ VarðkÞ. Substituting the ansatz p ¼ c(R0 2 1) þ O((R0 2

1)2) and solving for c gives

p ¼
2ðR0 � 1Þþ

s2
þO(ðR0 � 1Þ2)

¼ 2 lnðR0Þ
s2

þO( lnðR0Þ2): ðB 5Þ

The calculation for more than one birth state starts

from the vector of generating functions GðW;ZÞ ¼
ð� � � ; gjðW ;ZÞ; � � �ÞT with

gjðW ;ZÞ ¼ E ð� � �wki�1

i�1 wki
i w

kiþ1

iþ1 � � � j jÞ; ðB 6Þ

j the birth state of the parent. By a similar argument as before

(e.g. [33])

G0ð1;ZÞT ¼ Lm :¼ LðYjXÞ; ðB 7Þ

with 1 :¼ ð1; . . . ; 1ÞT and a prime denoting the derivative for

Z (g0j is thus a row vector with components @g/@zi and G’ a

matrix), and

g00j ð1;ZÞ ¼ E

k1ðk1 � 1Þ k1k2 � � �
k2k1 k2ðk2 � 1Þ � � �

..

. ..
. . .

.

0
BB@

1
CCAj j

0
BB@

1
CCA

¼ Cov(Kjj)� diag(Lmj)þ LmjLT
mj; ðB 8Þ

with

g00j :¼

@2fj
@z2

1

@2fj
@z1@z2

� � �

@2fj
@z2@z1

@2fj
@z2

2

� � �

..

. ..
. . .

.

0
BBBBBBB@

1
CCCCCCCA
;

and Lmj the jth column of Lm.

Let P denote the vector of invasion probabilities depend-

ing on the birth state of the newly arrived mutant. By a

similar argument as before, P can be shown to satisfy

1� P ¼ Gð1� P;ZÞ; ðB 9Þ

[33]. Expanding and making the ansatz that P ¼ CZ þ
O(jjZjj2) gives

Gð1� P;ZÞ ¼ 1� ðLT
r þ DT

LÞPþ 1
2G
00ð1; 0Þ½P;P�

þO(jjZjj3), ðB 10Þ

with Lr :¼ LðXjXÞ, DL :¼ Lm � Lr ¼ O(jjZjj) and g00j ½P;P� :¼
PTg00j P. Collecting the first-order terms gives

P ¼ LT
r P: ðB 11Þ

Hence,

P ¼ kVT; ðB 12Þ

with k ¼ O(jjZjj). Substituting this in the equation that results

from collecting the second-order terms gives

0 ¼ kVDL � k21
2G
00ð1; 0Þ½V;V�; ðB 13Þ

which, on dividing by k and right multiplying with U to get

the projection on the dominant left eigenspace, gives

0 ¼ VDLU � kG00Tð1; 0Þ½V;V�U þþO(jjZjj2). ðB 14Þ

Finally use that VDLU ¼ ln(R0) þ O(jjZjj2) to arrive at

P ¼ 2 lnðR0Þ
G00Tð1; 0Þ½V;V�U VT þO(jjZjj2)

¼ 2 lnðR0ÞP
j varrð

P
i vikij jÞ uj

VT þO(jjZjj2)

¼ 2 lnðR0Þ
s2

e

VT þO(jjZjj2): ðB 15Þ

(The step from the factorial moments in G’’T(1, 0)[V, V ]U to

variances is made by observing that
P

hij vhlr;hjvilr;ijuj�P
hj v2

hlr;hjuj ¼
P

j v2
j uj �

P
h v2

huh ¼ 0.)
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Now suppose that there is no relation between birth state

and mutation propensity. Then the birth state distribution of

a newly appeared mutant is U, and the probability that a

random mutant invades can be approximated as

p ¼ PTU ¼ 2 lnðR0Þ
s2

e

þOðjjZjj2Þ: ðB 16Þ

As in the invasion fitness case, (B 16), with O(jjZjj2)

replaced by O(jjZjj3), also applies near evolutionarily singular

strategies where ln(R0) ¼ O(jjZjj2).
Interface
Focus

3:20130025
Appendix C. Calculating R0 for a population in
two patches with separate sexes
The proper next-generation matrix for this situation is

L ¼ 1
2

‘ff;11 ‘ff;12 ‘fm;11 ‘fm;12

‘ff;21 ‘ff;22 ‘fm;21 ‘fm;22

‘mf;11 ‘mf;12 ‘mm;11 ‘mm;12

‘mf;21 ‘mf;22 ‘mm;21 ‘mm;22

0
BB@

1
CCA; ðC 1Þ

with ‘fm,12 the average lifetime number of female offspring

produced in patch 1 by a mutant male born in patch 2

(through fertilizing resident type females), etc.

Now assume that an individual’s sex is at most dependent

on its birth patch, as is, for example, the case when sex deter-

mination is fully environmental or when fathers have no

influence on the sex of their offspring, mothers let the sex of

their offspring depend at most on where those offspring are

born, and the traits are not connected with sex allocation.

Then L can be written as

L ¼ 1
2

pf;1‘�f;11 pf;1‘�f;12 pf;1‘�m;11 pf;1‘�m;12

pf;2‘�f;21 pf;2‘�f;22 pf;2‘�m;21 pf;2‘�m;22

pm;1‘�f;11 pm;1‘�f;12 pm;1‘�m;11 pm;1‘�m;12

pm;2‘�f;21 pm;2‘�f;22 pm;2‘�m;21 pm;2‘�m;22

0
BB@

1
CCA; ðC 2Þ

with ‘�f;11 ¼ ‘ff;11 þ ‘mf;11, etc. and pf;1 ¼ ‘ff;11=‘�f;11 ¼ ‘ff;12=‘�f;12,

etc., and thus has rank 2. After one generation, the births can

be written as ðpf;1b1 pf;2b2 pm;1b1 pm;2b2 ÞT. From then on

multiplication with L gives

b1

b2

� �
7! 1

2

ð‘�f;11pf;1 þ ‘�m;11pm;1Þb1 þ ð‘�f;12pf;2 þ ‘�m;12pm;2Þb2

ð‘�f;21pf;1 þ ‘�m;21pm;1Þb1 þ ð‘�f;22pf;2 þ ‘�m;22pm;2Þb2

� �
:

ðC 3Þ

Hence, R0 can be calculated as the dominant eigenvalue of

1
2

‘�f;11pf;1 þ ‘�m;11pm;1 ‘�f;12pf;2 þ ‘�m;12pm;2

‘�f;21pf;1 þ ‘�m;21pm;1 ‘�f;22pf;2 þ ‘�m;22pm;2

� �
: ðC 4Þ

When in the general case we write the dominant

eigenvector of L as U ¼ ð pf;1b1 pf;2b2 pm;1b1 pm;2b2ÞT,

with pf;i :¼ uf;i=bi, pm;i :¼ um;i=bi, bi :¼ uf;i þ um;i, multiply-

ing U with L also gives (C 3). Hence, in this case R0 also

corresponds to the dominant eigenvalue of a matrix con-

structed by adding the average numbers of offspring

that individuals father or mother over their life and dividing

by 2. However, in general these quantities are no more than

population averages that can be determined only after

establishing the stable birth state distribution of the full

next-generation operator.
Appendix D. The effective offspring variance for
sexual diploid residents
We only consider the case where except for genetic and poss-

ibly sex differences all individuals are born equal. In sexually

reproducing individuals, an allele is born in either of two

states, with potentially different futures, to wit in a macro-

gamete or micro-gamete. In the simplest case, these states

are randomly allotted, independent of which route put the

parental allele in the parental body. This happens, for example,

in hermaphrodites or when sex is determined environmentally

or by alleles on a different chromosome. We concentrate on that

simplest case. Then s2
e is the variance of the number of allelic

copies reaching the next generation of zygotes from a copy

that has just ended up in a zygote. Let km be the number of

alleles that does so micro-gametically, and kf the number that

does so macro-gametically. Generally, km and kf are dependent.

For example, for a seed, and hence for the two alleles in it, the

size of the plant it engenders is a random variable, with larger

plants usually producing more ovules as well as pollen so that

km and kf are positively correlated. As the extreme opposite,

in dioecious organisms a new zygote will go on to produce

either micro- or macro-gametes, i.e. kmkf ¼ 0. Hence, the start-

ing point of the calculation is the generating function of the

pair (kf, km)

gðwf;wmÞ :¼ E wkf

f wkm
m : ðD 1Þ

The generating function of the number k of aA offspring of an

aA individual reproducing in an aa population background

is then

gAðwÞ ¼ g 1
2þ 1

2w;
1
2þ 1

2w
� �

; ðD 2Þ

with 1
2 þ 1

2w the generating function of the number of A alleles,

0 or 1, in a gamete. For the calculation of s2
e the allele A is sup-

posed to have no phenotypic effect. Hence, at population

dynamical equilibrium both @1g(1, 1) ¼ @2g(1, 1) ¼ 1 because

the number of individuals stays constant over the generations

and each offspring has one father and one mother. Therefore,

Ek ¼ @gAð1Þ ¼ 1
2ð@1gð1; 1Þ þ @2gð1; 1ÞÞ ¼ 1; ðD 3Þ

and

s2
e ¼ Ek2 � ðEkÞ2 ¼ Ek2 � Ek

¼ ð12Þ
2½@2

1gð1; 1Þ þ 2@1@2gð1; 1Þ þ @2
2gð1; 1Þ�

¼ 1
4½s

2
f þ 2ðcþ 1Þ þ s2

m�; ðD 4Þ

with

c ¼ Eðkf � 1Þðkm � 1Þ ¼ Ekfkm � 1 ðD 5Þ

the covariance between macro- and micro-gametically pro-

duced offspring.
Appendix E. The effective offspring variance for
haplo-diploid residents
Following the pattern from appendix D, we first express the

variances and covariances of the allelic offspring numbers

in terms of the variances and covariances of the numbers of

offspring of the resident individuals. Let ga denote the gener-

ating function of the lifetime offspring numbers of a residing

in a female and ending up in female and male children of that

female and let g denote the generating function of those
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numbers of children kf and km irrespective of their genotype,

then

gaðwf;wmÞ ¼ g 1
2þ 1

2wf;
1
2þ 1

2wm

� �
: ðE 1Þ

Differentiating gives, with i, j ¼ f, m,

@igaðwf;wmÞ ¼ 1
2@ig 1

2þ 1
2wf;

1
2þ 1

2wm

� �
and @ijgaðwf;wmÞ ¼ 1

4@ijg 1
2þ 1

2wf;
1
2þ 1

2wm

� �
:

)
ðE 2Þ

Hence

@1gað1; 1Þ ¼ 1
2 ff ¼ 1

2 and @2gað1; 1Þ ¼ 1
2 fm ¼ 1

2r ðE 3Þ

and

@11gað1; 1Þ ¼ 1
4ðEk2

f � EkfÞ ¼ 1
4ððs

2
fjf þ 1Þ � 1Þ ¼ 1

4s
2
fjf;

@12gAð1; 1Þ ¼ 1
4Ekfkm ¼ 1

4ðcjf þ rÞ

and @22gað1; 1Þ ¼ 1
4ðEk2

m � EkmÞ ¼ 1
4ððs

2
mjf þ r2Þ � rÞ:

9>>>=
>>>;
ðE 4Þ

Therefore,

s2
a;fjf ¼ ð14s

2
fjf þ 1

2Þ � 1
4 ¼ 1

4ðs
2
fjf þ 1Þ;

ca ¼ 1
4(cjf þ r)� 1

4r ¼ 1
4cjf

and s2
a;mjf ¼ 1

4ððs
2
mjf þ r2Þ � rÞ þ 1

2r� 1
4r

2 ¼ 1
4ðs

2
mjf þ rÞ;

9>>>=
>>>;
ðE 5Þ

where the jf in the indices of s and c indicates that the

quantities are calculated conditional on the parent being a

female. This gives all the ingredients for calculating s2
e.
First, calculate

var
X

i

vika;i

����� f
 !

¼ 1
4

2þ r
3r

� �2	
r2ðs 2

fjf þ 1Þ þ 2rcjf

þ ðs2
mjf þ rÞ



¼ 1

4

2þ r
3r

� �2	
r2s 2

fjf þ rð2cjf þ 1þ rÞ

þ s2
mjf



and var
X

i

vika;i

�����m
 !

¼ 2þ r
3r

� �2

r2s2
fjm:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ðE 6Þ

Substituting (4.3) and (E 6) in (3.9) gives

s2
e ¼

1

2þ r
2þ r

3r

� �2
1
2ðr

2s 2
fjf þ rð2cjf þ 1þ rÞ þ s 2

mjfÞ þ r3s 2
fjm

h i

¼ 2þ r
18r

2r2s 2
fjm þ rs 2

fjf þ s 2
mjf þ ð2cjf þ 1þ rÞ

h i
:

ðE 8Þ

For good measure we add the formula for the average age

at reproduction

Tr ¼ V
Tr;ff Tr;fm

Tr;mf 0

� �
U

¼ 1
3½2ðTr;ff þ r�1Tr;mfÞ þ rTr;fm�: ðE 9Þ
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Dynamics of adaptation and evolutionary branching.
Phys. Rev. Lett. 78, 2024 – 2027. (doi:10.1103/
PhysRevLett.78.2024)
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