
rsfs.royalsocietypublishing.org
Research
Cite this article: Yamaguchi R, Iwasa Y. 2013

First passage time to allopatric speciation.

Interface Focus 3: 20130026.

http://dx.doi.org/10.1098/rsfs.2013.0026

One contribution of 11 to a Theme Issue

‘Modelling biological evolution: recent

progress, current challenges and future

direction’.

Subject Areas:
biomathematics, computational biology

Keywords:
allopatric speciation, waiting time,

genetic drift, neutral loci, rare migration

Author for correspondence:
Ryo Yamaguchi

e-mail: ryamaguchi@bio-math10.biology.

kyushu-u.ac.jp
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
First passage time to allopatric speciation
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Faculty of Sciences, Department of Biology, Kyushu University, Fukuoka 812-8581, Japan

Allopatric speciation is a mechanism to evolve reproductive isolation; it is

caused by the accumulation of genetic differences between populations

while they are geographically isolated. Here, we studied a simple stochastic

model for the time until speciation caused by geographical isolation in frag-

mented populations that experience recurrent but infrequent migration

between subpopulations. We assumed that mating incompatibility is control-

led by a number of loci that behave as neutral characters in the accumulation

of novel mutations within each population. Genetic distance between popu-

lations was defined as the number of incompatibility-controlling loci that

differ between them. Genetic distance increases through the separate accu-

mulation of mutations in different populations, but decreases after a

successful migration event followed by genetic mixing between migrants

and residents. We calculated the time to allopatric speciation, which occurs

when the genetic distance exceeds a specified threshold. If the number of inva-

sive individuals relative to the resident population is not very large, diffusion

approximation provides an accurate prediction. There is an intermediate opti-

mal rate of migration that maximizes the rate of species creation by recurrent

invasion and diversification. We also examined cases that involved more than

two populations.
1. Introduction
Species diversity is determined by the balance between speciation and extinc-

tion. The mechanism of speciation has been a central topic of evolutionary

sciences. However, questions that are rarely asked include how the speed at

which novel species are created depends on the life history of the organism,

geographical structure, habitat stability, mating system, species interactions, etc.

One of the simplest mechanisms that can lead to the creation of novel

species is allopatric speciation [1,2]. If two or more populations of the same

species are isolated geographically, they will accumulate different mutations

and become quite different from each other after many generations. When indi-

viduals from these populations encounter each other, they may no longer be

able to perform proper sexual reproduction if they have become too different.

Then, the two populations can be considered different species. Allopatric

speciation is regarded as a major process for species creation [3,4].

However, very few theoretical studies have examined the process of allopa-

tric speciation because it tends to be regarded as ‘theoretically trivial’ [5,6]. As a

consequence, almost all of the theoretical studies of speciation conducted

within the last few decades have focused on sympatric speciation in which

species diverge spontaneously as a result of adaptation to different niches,

habitats or mate choice [7–15].

Nei et al. [16] studied a simple population genetics model for allopatric

speciation. They assumed that the possibility of sexual reproduction for a pair

of individuals was controlled by one or two loci. For example, suppose that

there are three alleles (labelled 1, 2 and 3) in a single compatibility-controlling

locus. All homozygotes (A1A1, A2A2 and A3A3) are viable and have the same fit-

ness. Heterozygotes A1A2 and A2A3 are also viable. But heterozygotes A1A3 are

not viable (they have zero fitness). Initially, the two populations are both com-

posed of A2A2 only. One population might experience mutation to A1, and

ultimately be replaced by A1A1, which takes place through neutral evolution

because their heterozygotes A1A2 have the same fitness as the homozygotes.
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Similarly, the other population might be replaced by A3A3 by

neutral evolution. After these changes, the two populations

are no longer compatible with each other because any breeding

between individuals from different populations ends in repro-

ductive failure. Nei et al. [16] also studied a two-locus version of

this model (cf. [17]). A simple two-locus model for incompat-

ibility was proposed earlier by Dobzhansky [18] and Muller

[19], where the original genotype is aabb and is replaced by

AAbb in one population, which is possible because Aabb is

viable. In the second population, the original population

is dominated by aabb and is replaced by aaBB, where the

evolution is also neutral as aaBb is viable. However, the

two populations do not cross each other because offspring

between AAbb and aaBB are AaBb, which is non-viable.

Many theoretical works on allopatric speciation have studied

various extensions of these simple models (cf. [20–23]).

Orr & Orr [24] studied the effect of population size on the

waiting time until two populations would be considered differ-

ent species, assuming the Dobzhansky model. They concluded

that the waiting time to speciation caused by genetic drift

was independent of the sizes of the populations. Gavrilets &

Hastings [25] concluded that the founder effect promotes

speciation, based on the Dobzhansky model. They measured

the degree of reproductive isolation in terms of the proportion

of non-viable hybrids when randomly chosen pairs from the

two populations are crossed.

In these studies, it was assumed that no migration

occurred between the populations when calculating the

time to speciation. Gavrilets [26] extended the model to incor-

porate recurrent migration between two populations. He

examined several models, including selection to the local

environment for each population. If we focus on the case

without selection, Gavrilets [26] assumed that the incompat-

ibility was controlled by multiple loci. As a population is

monomorphic with respect to these loci, the state of a popu-

lation is characterized by the ‘distance’ i between two

populations, which indicates the number of incompatibility-

controlling loci that differ between them. When Kþ1 loci

are different (K is a ‘threshold’ specifying the genetic architec-

ture of reproductive isolation), the two populations become

different species. Gavrilets calculated the waiting time

assuming a birth-and-death process in which the distance i
could increase by increments of one at a rate that was equal

to the mutation rate. He also modelled the effect of migration

between two populations as a decrease in distance i at a rate

that was proportional to the product of the current distance i
and the migration rate.

The time to speciation should increase as the migration

between populations becomes larger. In the complete absence

of migration, two populations will become different species in

the shortest period of time. However, no additional species

will be created by this mechanism. If instead there is infrequent

but recurrent migration between islands, the populations on the

islands will become different species during the intervals

between migration events, and the next migration (colonization)

by one of the species will cause both islands to contain the same

species in addition to another species. This may be followed by

genetic differentiation. Repeated events of migration and gen-

etic differentiation that occur on different islands will increase

the number of novel species recurrently. Endler [27] reviewed

empirical studies and concluded that the most general

mode of speciation is parapatric speciation, in which different

populations are isolated but not perfectly. Avise [28] also
concluded that the geographical structure of most species is

consistent with a meta-population, being composed of many

local populations that are connected by infrequent migration

(see also [29] for mathematical modelling of speciation and

diversification in a meta-population).

In the work reported in this paper, we examined a simple

stochastic model that determined the time until speciation as

a result of geographical isolation in fragmented populations

that experience recurrent but infrequent migration among

them. We assumed that mating incompatibility was controlled

by a number of loci that behave as neutral characters in the

accumulation of novel mutations within each population [30].

Genetic distance between populations was defined as the

number of incompatibility-controlling loci that differ between

two populations. Genetic distance increases through the

accumulation of mutations, which occurs separately in differ-

ent populations, but is reduced after a successful migration

event followed by genetic mixing of migrants and residents

(cf. [31]). We calculated the time to allopatric speciation,

which occurred when the genetic distance exceeded a threshold

[32]. If the number of immigrating individuals relative to the

resident population is not very large, diffusion approximation

provides an accurate prediction. There is an intermediate opti-

mal rate of migration that maximizes the rate of species creation

by recurrent invasion and diversification. We also examined

cases that included more than two populations.
2. Dynamics of genetic distance between
populations

Consider two populations of a sexual haploid species with non-

overlapping generations. The populations live on two islands or

island-like habitats. For simplicity, we assume that the two

populations are of the same size, N. Successful migration of indi-

viduals between populations occurs very infrequently. Most

migration attempts result in failure. However, when an attempt

is successful, a certain number of individuals (instead of a single

individual) from one population arrive in the other population.

We assume that the possibility of successful mating

between immigrants and residents is controlled by differences

in a set of l loci that control incompatibility. To be specific, the

possibility of interbreeding between two individuals is deter-

mined by the number of loci that differ between them,

denoted by x. Two individuals cannot reproduce sexually if x
exceeds a threshold value xc. By contrast, they can mate and

produce offspring if x is less than xc.

We assume that the size of each population N is clearly

smaller than the inverse of the mutation rate u for these incom-

patibility-controlling loci (weak mutation limit). Under this

assumption, each population is monomorphic most of the

time with respect to these loci, except for relatively short

periods of replacement following a successful migration

event (e.g. [33–42]; see [43] for review). Then, we can define

the genetic distance between the two populations in terms of

the number of incompatibility-controlling loci that differ

between them. If a population is polymorphic with respect to

these loci, then we can use the average genetic distance

between the two populations [44].

Between successive migration events, the genetic differ-

ences between the two populations increase owing to the

accumulation of different mutations in different populations.

Hence, their genetic distance, or the degree of genetic
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differentiation, increases with time. With population size N,

the mutation rate per loci u and the neutrality of the

mutations in the process of their accumulation, the rate of

accumulation of novel mutations is k ¼ ul. The time required

for fixation is of the order of N generations [45], which is

much shorter than the time scale on which the speciation pro-

cess is occurring. As each population would accumulate

novel mutations independently, the rate of divergence is 2k.

Note that the average genetic distance increases only if

the replacement of an allele occurs at a locus for which the

two populations have the same allele. If replacement occurs

in one population at a locus for which the two populations

have different fixed alleles, the change does not increase

their genetic distance. Hence, the rate of increase in genetic

distance owing to replacement by novel mutations should

slow down as the distance between two populations

increases. Considering this effect, the mean rate of divergence

per generation is given by the following equation:

dx
dt
¼ 2k 1� x

l

� �
ð2:1Þ

between successive migration events.

The timing of successful migrations from one population

to the other follows a Poisson point process at a rate m per

generation. Here m is very small because the interval between

successful invasions is very long.

From the assumption of incompatibility, if immigrants and

residents have different alleles at x loci, and if x is greater than

the threshold xc, then the immigrants and residents do not mix

sexually and they should be treated as different species.

By contrast, if x is smaller than the threshold xc, then indi-

viduals from the two populations can freely exchange their

genomes through sexual reproduction. According to the sto-

chastic theory of population genetics for neutral loci, a

population eventually becomes monomorphic where one

allele dominates and the other goes extinct. The probability

of fixation for two alleles is proportional to their initial fre-

quencies [46,47]. If the population size of the immigrants is

N’ and the population size of the residents is N, then immedi-

ately after the invasion, there are x loci that are polymorphic,

where immigrants and residents have different alleles. After

some number of generations, which is of the order of N
[45], the population again becomes monomorphic, and the

expectation of loci that show the immigrant allele is equal

to the fraction of immigrants 1 ¼ N0=ðN þN0Þ. We here

assume that the loci are unlinked for simplicity. If the loci

behave independently, the number of loci that still differ

after the fixation process follows a binomial distribution

Bðxbefore; 1Þ: This quantity is equal to the decrease in the

distance: xbefore 2 xafter. Considering the situation in which

the number of loci controlling the incompatibility is very

large, the distance after mixing is well approximated by the

mean value. Hence, we have the genetic distance after one

successful migration event as

xafter ¼ xbefore � ð1� 1Þ: ð2:2Þ

Normally, 1 ¼ N0=ðN þN0Þ is much smaller than 1.

The model that we explored in this paper was the stochastic

dynamics of genetic distance x, which was given by equa-

tions (2.1) and (2.2). We focus on the situation in which the

number of loci controlling the incompatibility is large (l and

xc are large). In addition, concerning the magnitude of rate par-

ameters, we assume: 0 , m� ul� 1/N � 1� 1. Successful
migrations are less frequent than mutation accumulation. We

here focus on the stochasticity caused by the random timing

of successful migration events, while we treat other processes

as deterministic: namely, the increase of the genetic distance

between populations, equation (2.1), and the reduction of the

distance after successful migration events, equation (2.2). We

name this the ‘population-based model’. In the following, we

study several different approximations of the population-

based model. We also ran direct computer simulations of an

individual-based model of population genetic dynamics,

which is described in appendix A. As will be explained

later, most of the conclusions of the simplified stochastic

dynamics of genetic distance model and the individual-based

model were very similar, although the latter model required

considerably more computational time to run.
3. Evolutionary trajectories
Figure 1 provides an example of changes in the genetic distance

between two populations with time. Among several curves in

figure 1, the black curve, labelled population-based model, was

generated by direct computer simulations of the stochastic

model. Grey curves and the broken line are for the individ-

ual-based model and the deterministic model, which is

explained later. The black curve indicates that genetic distance

increases with time and the rate of increase slows down and

eventually converges to a final level (cf. [48–51]) around

which it continues to fluctuate. This fluctuation is caused by

the stochasticity of the timing of successful migration events.

Two different threshold levels are indicated by horizontal

lines. Open circles show the time at which genetic distance

first reaches the threshold level. The two populations are no

longer compatible and when migrants from one population

arrive in the other population they cannot mate successfully.

Hence, we regard the two populations as two separate

species. We can consider that speciation occurs at t when

the genetic distance x reaches the threshold xc, which is indi-

cated by open circles in figure 1. Here, we focus on t, the time

of this first passage to speciation.

After genetic distance exceeds the threshold, migrants

from one population can immigrate to the other population

and they may quickly evolve mating isolation mechanisms

to avoid reproductive interference [52–54].

If the threshold to speciation xc is below the equilibrium,

the first passage time to speciation is rather short. If the

threshold xc is above the equilibrium level, stochastic fluctu-

ations above equilibrium in the genetic difference allow the

threshold to be reached in finite time.

In the following section, we analyse the stochastic model

of genetic distance by introducing approximations and com-

pare the results with direct computer simulations and an

individual-based model of the corresponding population

genetic process.

3.1. Deterministic approximation
For the two islands population-based model, under approxi-

mations that the migration rate m is large and the impact of

migration 1 is small, we can approximate the decrease in gen-

etic distance as a deterministic process. Then, the ordinary

differential equation for genetic distance is given by

dx
dt
¼ 2k 1� x

l

� �
� 2m1x; ð3:1Þ
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where t is time measured in terms of generations. Here, we

neglect terms of the order of m2 because m is assumed to

be small.

In figure 1, the dashed curve indicates the change in

genetic distance predicted by the deterministic model. It

increases smoothly with time and converges to a final level.

Given the initial condition x(0) ¼ 0, the solution of equation

(3.1) is

xðtÞ ¼ k
k/lþm1

1� exp �2t
k
l
þm1

� �� �� 	
: ð3:2Þ

At equilibrium, the mean genetic distance x� is

x� ¼ k
k/lþm1

; ð3:3Þ

which increases with the rate of mutation accumulation k
but decreases with the migration rate m and the impact of

migration events e. The time until speciation is

t ¼ x�

2k
ln

x�

x� � xc
; if xc , x� ð3:4aÞ

and

t ¼ 1; if xc � x�: ð3:4bÞ

Equation (3.4b) implies that speciation never occurs if the

threshold genetic distance is greater than the saturation

level in the deterministic model.
3.2. Diffusion approximation
Note that the stochastic model for genetic distance is a

Markov process, which implies that once the value of x at

time t is known, the behaviour of the model after t becomes

independent of any additional information from the past tra-

jectory. If, in addition, the trajectory is continuous with a

probability of one, the model is equivalent to a diffusion pro-

cess [55,56]. In the present model, there is a discontinuous

decline in x after every successful migration event, as is
shown by equation (2.2). Hence, the diffusion approximation

is accurate if the magnitude of each drop is small—that is the

impact of invasion 1 is not large.

The change that occurs in a short time interval of length

Dt is given as follows:

Dx ¼ x(tþ Dt)� xðtÞ

¼
2k 1� x

l

� �
Dt; with probability 1� 2mDt;

�1xþ 2k 1� x
l

� �
Dt; with probability 2mDt:

8><
>: ð3:5Þ

Then, the mean rate of increase in x, MðxÞ ¼
lim
Dt!0

E Dxjx]/Dt½ , and the rate of variance generation,

V(x) ¼ lim
Dt!0

Var Dxjx]/Dt½ , are given by

MðxÞ ¼ 2k 1� x
l

� �
� 2m1x ð3:6aÞ

and

VðxÞ ¼ 2m12x2: ð3:6bÞ

The probability density function of genetic distance is

defined by

pðx; tÞDx ¼ Pr½x , xðtÞ , xþ Dx�; ð3:7aÞ

which satisfies the following forward equation (or Fokker–

Planck equation):

@p
@t
¼ � @

@x
{MðxÞp}þ 1

2

@2

@2x
{VðxÞp}: ð3:7bÞ

The stationary distribution p̂ðxÞ at equilibrium can be derived

from @p/@t ¼ 0, which is

p̂ðxÞ ¼ C
x2ðaþ1Þ exp � 2ax�

x

� �
; ð3:8Þ

where C is a normalization constant that makes
Ð1

0 p̂ðxÞdx ¼ 1

hold. Here a is a constant given by a ¼ (k/lþm1)/m12:
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Figure 2 shows the distribution predicted by equation

(3.8) and the histogram of genetic distance from the direct

computer simulation using a population-based model. The

two distributions have the same mean genetic distance but

differ in variance. If the impact of migration event 1 is not

very large (say less than 0.1), the diffusion approximation is

quite accurate. However, when 1 is larger, the distribution

from the diffusion approximation becomes deformed and

has a fat tail to the right.
4. Average time to speciation
Speciation between two subpopulations occurs when the

genetic distance between them reaches the threshold xc. If

the genetic distance x is smaller than the threshold, immi-

grants can mate with residents without any disadvantage.

On the other hand, if genetic distance x exceeds the threshold,

individuals from different subpopulations cannot mate. The

speciation threshold xc may differ between species; moreover,

here we assumed that all of the neutral loci contributed

equally to reproductive isolation. The initial value of genetic

distance is x0 and the probability that the genetic distance

from x0 reaches the threshold xc within time t is given

by uðx; tÞ ¼ Pr x hits xc before time tjxð0Þ ¼ x0:]½ . The initial

and boundary conditions are uðx; 0Þ ¼ 0 ð0 � x , xcÞ and

uðxc; tÞ ¼ 1 (t . 0), respectively. These conditions satisfy the

backward equation

@u
@t
¼MðxÞ @u

@x
þ 1

2
VðxÞ @

2u
@2x

: ð4:1Þ
Solving the above equation (see appendix B for the deri-

vation), we finally obtain the average time to speciation T,

as follows:

T ¼
ðxc

x0

LðxÞdx; ð4:2aÞ

where

LðxÞ ¼ 1

m12
x2að2ax�Þ�ð2aþ1Þ

G 2aþ 1;
2ax�

x

� �
exp

2ax�

x

� �
ð4:2bÞ

and Gðb;wÞ is an upper incomplete gamma function

G(b;w) ¼
Ð1

w yb�1e�ydy.

The deterministic approximation predicts that speciation

will never occur if the equilibrium value x* given by equation

(3.3) is smaller than the threshold xc. In reality, owing to sto-

chastic fluctuations, the genetic distance becomes higher than

x* by chance and might reach xc within a finite period of time.

The diffusion approximation can take this into consideration.

It predicts that the mean time to speciation is finite even

when xc . x*.

Figure 3 shows the average time to speciation T from the

initial genetic distance under four different thresholds. The

four groups of curves represent the different threshold

values xc. Within each group, curves show the predictions

from the diffusion approximation and from the deterministic

approximation. Solid symbols indicate the results from direct

computer simulations using a population-based model,

where different symbols indicate the results for different

threshold levels. When the speciation threshold was below

the equilibrium level (xc , x*), all of the values were similar,

which suggests that the deterministic model was simple but

provided relatively accurate predictions. However, when the

speciation threshold was above or equal to the equilibrium

level (xc � x*), the deterministic model predicted that specia-

tion was impossible, as is shown by equation (3.4a,b), but

the direct computer simulation (filled symbols) provided a
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threshold at a finite time, which was not very different from the

prediction using the diffusion approximation (solid curve).

In contrast to these results, the individual-based model pro-

duced a shorter estimated time to speciation in all cases, as is

indicated by the open symbols that are located below the

others. Intuitively, the individual-based model shows greater

stochastic fluctuations in genetic distance, which reduces the

time to reach the threshold relative to the population-based

model that showed weaker stochasticity.

Figure 4 shows the average time to speciation, where the

horizontal axis is the threshold level for speciation xc. The

average waiting time increased with the threshold level, but

the results of the computer simulation of the population-

based model were close to the predictions of the diffusion

approximation. The deterministic model was able to predict

divergence time at equilibrium.
5. Migration between two populations affects
their genetic distances with other populations

Migration between two populations can affect the genetic dis-

tance between one of them and another population. This

effect is quite important when considering the effect of

migration when there are more than two populations.

Suppose that there are three islands (A, B and C ), all of

which are connected with each other equally. There exist

six directions of migration and three genetic distances xij pro-

vided that i; j [ fA;B;Cg, i = j and xij ¼ xji. For this model,

the reduction in genetic distance because of migration from

island A to B is described by the two following formulae:

xafter
AB ¼ xbefore

AB � ð1� 1Þ ð5:1aÞ

and

xafter
BC ¼ xbefore

BC � ð1� 1Þ þ 1xbefore
AC : ð5:1bÞ

Equation (5.1a) is the same as equation (2.2), which means that

there is a direct effect of migration and it invariably reduces
genetic distance. However, equation (5.1b) is peculiar to situ-

ations when there are three or more islands. This equation

represents indirect effects on genetic distance that are con-

nected with the migrating population; the effect is caused by

changes in the genetic composition of the migrating popu-

lation. In this case, after migration, the population on the

island B now shares a fraction (1) of alleles with the residents

of A on average. Hence, the genetic distance caused by this

event is calculated by comparing the relationship between B
and C. This effect sometimes causes a reduction in genetic dis-

tance and at other times it causes an increase. This rule can be

applied to situations with different numbers of islands and

different structures among them because we can decompose

all of the island structures into closed relationships among

two or three (a triangle) islands.

5.1. Reduction in variance in genetic distance and
increased waiting time

Here, we consider a situation in which there are more than two

populations that are connected to each other by migration

events. It is clear that the average waiting time is strongly depen-

dent on the value of genetic distance and the threshold for

speciation. Therefore, using a population-based model we simu-

lated dynamics in genetic distance for different numbers and

structures of subpopulations. We considered Wright’s island

model [57] in which there are n populations, each of which is

connected by migration with all of the other populations. The

graph of connections among the populations forms a ‘complete

graph’ with equal migration rates and migration impacts.

Figure 5a shows the distribution of genetic distance at equili-

brium with the number of islands by sampling a random pair

of populations and then calculating their genetic distances.

As the number of islands increases, the average genetic distance

between islands remains unchanged, but the variance between

pairs of islands decreases. This result might be caused by cancel-

lation between direct and indirect effects on genetic distance,

which intensifies when the number of islands increases.

The variance in a stationary distribution of genetic distance

is important when considering the average waiting time to spe-

ciation, when the threshold is higher than the equilibrium

value. In such situations, we can intuitively expect a large var-

iance to lead to a high potential for speciation. This pattern was

shown in the distribution of average waiting times to first spe-

ciation with an increasing number of islands under the

assumption that all of the islands had the same genetic distance

at equilibrium (figure 5). Later we will discuss the relationship

between waiting time to speciation and the number of islands

in more detail. A stationary distribution of genetic distance that

has low variance requires a longer period of time to undergo

speciation when the threshold is larger than the equilibrium

value. Note that the distribution of waiting times has a heavy

tail towards longer times because some populations seem

simply unable to reach the threshold through chance migration

events. This pattern is not observed when the threshold is

lower than the equilibrium value.
6. Discussion
In this paper, we present a simple model of allopatric speciation

in which the possibility of sexual reproduction is controlled by

the number of loci. Suppose that two individuals have different
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alleles at x loci that control incompatibility. They cannot engage

in successful sexual reproduction if x exceeds a threshold value

xc, but they mate and breed without problems if x is smaller

than xc. Assuming that incompatibility-controlling loci are

monomorphic within populations, we can define the genetic dis-

tance between populations. Genetic distance increases with time

through the accumulation of mutations, but decreases when

migration from one population to the other occurs. When suc-

cessful migration events occur very infrequently but many

individuals immigrate during each successful migration event,

the stochasticity of the migration events causes genetic distance

to fluctuate and the time until speciation can be obtained from

stochastic process calculations.
6.1. Dynamics of genetic distance
The distance between two populations tends to increase

rapidly when the distance is short, but the rate of increase

tends to slow and eventually saturate. There are two reasons

for this saturation. First, there is a maximum number of loci l
and the speed of the increase in genetic distance between two

populations slows down as the number of loci with alleles

that are common to both populations becomes smaller.

Second, successful migrations should cause a drop in genetic

distance with a magnitude that is proportional to the gene-

tic distance immediately before the migration event. The

process of saturation can even be represented by the simplest

deterministic model, equation (3.2). The equilibrium level x*

is given by equation (3.3).
If the threshold for speciation is below the equilibrium,

speciation occurs rather quickly and the waiting time can

be accurately predicted by the deterministic model, equation

(3.4) (figure 3). By contrast, if the threshold for speciation is

above the equilibrium level x*, then the time to speciation

is critically dependent on the magnitude of the fluctuations.

In fact, in the absence of fluctuations, speciation will not

occur. By contrast, in the stochastic model, which we

termed a ‘population-based model’, owing to stochasticity

in the timing of migration, genetic distance fluctuates after

it reaches the equilibrium and it can cross the speciation

threshold after a finite period of time. The mean time to spe-

ciation in this stochastic model can be accurately calculated

using a diffusion approximation, as shown in figures 3 and 4.

In the model that considered population processes, which

we termed an ‘individual-based model’, in figures 1, 3 and 4,

genetic distance fluctuated with a greater variance than in the

corresponding population-based model. This was caused by

stochasticity in the mutation accumulation process and sto-

chasticity in the fixation fraction after migration events,

which were neglected in the simple population-based model.

As figures 3 and 4 show, the individual-based model

resulted in shorter times to speciation than the population-

based model with corresponding parameters.

We believe that the population-based model is worthy of

study by itself. First, even if the individual-based model is a

true one, the corresponding population-based model can be a

reasonably accurate approximation when the number of loci con-

trolling incompatibility is sufficiently large owing to the law of
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large numbers. Traditionally most theoretical models of specia-

tion, such as Dobzhansky’s and Nei et al.’s models, assumed

that the incompatibility is controlled by a small number of

loci (such as one or two); in this paper, we study the opposite

case with a large number of loci controlling incompatibility.

Second, a useful approach of analysing a given model’s prop-

erty is to first study a simplified version, and then to

compare the original complex model with the simplified

model. In a similar manner, we do believe that it is worth

studying the population-based model and its property carefully,

and then study the individual-based model which includes

additional stochasticity by comparing their difference and

similarity. Third, the population-based model represents an

idea that different populations while separated accumulate

the difference with time at a constant rate. Accumulation of

neutral mutations is one of the candidate processes causing

this increase in the distance, but it is also possible that dif-

ferent populations may change their genetic structure by

experiencing different environment, which is not covered

by the individual-based model.

6.2. Three or more populations
We also studied a case in which more than two populations

were connected by migration. Figure 5a shows the stationary

distribution of genetic distance x. We can see that the mean

distance remains unchanged as the number of populations

increases. However, the variance of genetic distance becomes

smaller. If we think of a pair of populations, each population

is connected with many others through migration, and

migration events that occur through these additional bonds

would have impacts that could increase or decrease the gen-

etic distance between the focal pair of populations. Figure 5b
shows the earliest time for one of the bonds to reach the

threshold xc. As there are multiple bonds, the graph actually

includes n(n 2 1)/2 bonds in total and when one of these

many bonds reaches the threshold xc, it is counted as the

event of interest. If the genetic distances for the different

bonds are independent of each other and they have the

same probability distribution, then the average time to the

first event in any one bond that exceeds the threshold

should become shorter as the number of populations

increases. In fact, the average time increases over time.

If we focus on any one of the bonds and estimate the time

until it reaches the threshold, the estimate should be much

longer as the number of populations increases. This is

owing to the smaller variance in genetic distance, as indicated

in figure 5a.

Figure 5c,d shows the waiting time until n islands are split

into two groups between which no bond has a genetic dis-

tance that is shorter than the threshold. The waiting time

clearly increases with the number of populations.

From these simulations, increases in the number of popu-

lations would make it more difficult to complete speciation.

This suggests a relationship between biodiversity and the spatial

structure of the habitats, which may give testable hypotheses.

6.3. Optimal migration rate for species creation
Migration events reduced the genetic distance between popu-

lations, and hence the time to speciation increased with the

migration rate m. By contrast, after genetic distance reaches

the threshold, we must wait for the next successful coloni-

zation event to observe the creation of a novel species. The
waiting time to the next colonization event is longer when

the migration rate is smaller. We may ask, ‘What is the poss-

ible rate of species creation in multiple populations between

which there are recurrent migration events and where genetic

divergence between two populations occurs through the

accumulation of mutations in incompatibility loci?’ We sus-

pect that there is an intermediate optimal migration rate

between two islands that achieves the maximum rate of

species creation.

In figure 6, the dashed line shows the mean time interval

for migration events between two islands and the dashed-

and-dotted line indicates the waiting time to first speciation

starting from two populations that have a genetic distance

of zero. The horizontal axis is the migration rate m. The

bars indicate the number of species that are created between

two islands after 10 000 generations have passed (see appen-

dix C for details of the simulation). The initial condition for

the two islands is that there is only one species that is

common to both immediately after geographical isolation.

We can clearly see that the rate of creation of novel species by

this mechanism occurs most frequently around an intermedi-

ate rate of migration m. If the migration rate is too low, the

waiting time until the next migration event that results in the

two islands having populations of the same species is longer.

By contrast, if the migration rate is too fast, genetic divergence

slows down and it takes longer for the genetic distance to reach

the speciation threshold. The optimal rate of migration that

achieves the maximum chance of species creation was close

to the rate that was predicted by the shortest sum of waiting

time to migration and speciation.

Incompatibility may be achieved by postzygotic

mechanisms (e.g. lower viability of hybrids), by prezygo-

tic mechanisms (e.g. mate choice) or both [58]. Most models

of allopatric speciation that have calculated waiting time to

speciation can be interpreted in any of these situations,

although they explain the results in terms of the lower viabi-

lity of hybrids [16]. Our discussion of the rate of species

creation (e.g. figure 6) is valid for prezygotic mechanisms.

However, if a prezygotic mechanism is not effective and a

postzygotic mechanism is important, then a newly arrived

population would suffer severe reproductive interference by

the resident species, which could result in the extinction

of the invader. Yamaguchi & Iwasa [54] analysed quick
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evolution in prezygotic isolation (the evolution of female mate

choice to avoid mating with males from different species)

and discussed the possibility of extinction caused by reproduc-

tive interference. This idea is supported by the observation

that the degree of prezygotic isolation is stronger between

sympatric species than between allopatric species [59,60].

In this paper, we considered a case in which incompati-

bility was controlled by multiple loci and could be treated

as a quantitative trait. By contrast, most theoretical studies

of allopatric speciation have assumed a small number of

incompatibility loci [16,18,24,25], except for Gavrilets [26].

Coyne & Orr [61] reviewed studies of the number of genes

that controls incompatibility (or isolation mechanism) and

concluded that the number of incompatibility-controlling

loci ranges from few to many.

Although most theoretical studies of allopatric speciation

have assumed that no migration occurs between populations,

Gavrilets [26] studied a case that involved some migration as

parapatric speciation without local adaptation. He assumed

that migration caused a stochastic decrease in the genetic dis-

tance between populations. As he adopted a birth-and-death

process, genetic distance could decrease in only single steps.

However, migrants from one population and residents in

another should differ in a number of loci, and it is possible

for multiple loci to fix in a population, which would result

in a population with substitutions at multiple loci.

6.4. Future work
As shown in figure 1, the population-based model had a smaller

variance than the individual-based model. There are two

reasons for this difference. First, the mutation accumulation

process was treated as a deterministic increase in genetic dis-

tance. However, the time points for replacements should

occur as a Poisson point process; therefore there is variance in

terms of the number of replacements that occurred within a

fixed length of time. Second, after a successful migration

event that is followed by genetic mixing between migrants

and residents, there is stochasticity concerning which of the

two alleles will become fixed. If different segregating loci

evolve completely independently, the number of different

loci after migration xafter is a stochastic variable that follows a

binomial distribution with mean (1 2 1)xbefore and variance

(1 2 1)1xbefore. The maximum recombination rate per genera-

tion is one-half, and there might be some correlation between

different loci concerning which one will eventually be fixed.

This could further increase the variance after migration events.

This represents an interesting future theoretical problem.
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Appendix A
Consider two populations, each of which is composed of N
individuals of a species that is sexual and haploid. Each indi-

vidual has l loci that are not linked (i.e. located on different

chromosomes). During sexual reproduction, two individuals

are paired and each offspring has a genome that includes one

copy of an allele from each of the two parents at the corre-

sponding locus. During sexual reproduction, there is also a

chance of mutation. The mutation rate per locus per
generation is u. When a mutation occurs in a locus, it is a

novel mutant that is different from any other alleles that

have been created before.

In the initial population, all of the individuals in the two

subpopulations have the same allele for all loci. The total

mutation rate per individual per generation is k ¼ lu, and

the total number of mutants in a population per generation is

Nlu. As mutants are neutral within a population, the fixation

probability is 1/N.

We define xab, the genetic distance between individuals a

and b, as the number of loci that have different alleles

between these two haploid individuals. It should satisfy

0 � xab � l.
If each population is close to monomorphic, we can define

the genetic distance between these populations in terms of the

average value of xab, where a and b are randomly chosen from

each population. The average value of xab when a and b are

chosen from the same population is the within-population

distance, which indicates the degree of polymorphism.

During a migration event, N’ individuals from population i
successfully arrive in population j. These immigrants are ran-

domly selected from population i and participate in mating

in population j. The selected immigrants are removed from

population i. We adopted a Wright–Fisher model [57,62] for

random sampling in each generation. The number of offspring

was kept at a constant N during every generation.
Appendix B
We define the average waiting time to speciation:

T ¼
ð1

0

t
@u
@t

dt: ðB 1Þ

Then, from equation (4.1) with the initial condition u(x, 0) ¼ 0

(0� x , xc) and boundary condition u(xc, t) ¼ 1 (t . 0), we

can derive the following ordinary differential equation:

1þMðxÞdT
dx
þ 1

2
VðxÞd

2T
d2x
¼ 0: ðB 2Þ

Here, we use the replacement LðxÞ ¼ �dT/dx for equation (B 2)

and the equation becomes

dL
dx
¼ � 2MðxÞ

VðxÞ LðxÞ þ 2

VðxÞ : ðB 3Þ

In addition, if we write RðxÞ ¼ 2MðxÞ/VðxÞ and multiply both

sides by e
Ð

RðxÞdx, we obtain

d

dx
LðxÞe

Ð
RðxÞdx

� �
¼ 2

VðxÞ e
Ð

RðxÞdx: ðB 4Þ

The solution with Lð0Þ ¼ 0, which comes from the assumption

that the average waiting time to speciation T does not change

with slight increases in initial genetic distance from 0, is

LðxÞ ¼
ðx

0

2

VðyÞ e
�
Ð x

y
ð2MðzÞ=VðzÞÞdz

dy: ðB 5Þ

Next, we substitute x�¼ k/(k/lþm1) and a ¼ðk/lþm1Þ=m12

into equation (B 5). In addition, let us replace the lower limit

of the outer integration with 0¼ d to allow us to obtain

LðxÞ ¼ x2a

m12
e2ax�=x

ðx

d

1

y2(aþ1)
e�2ax�=xdy: ðB 6Þ
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Using the variable transformation 2ax�/y ¼ h, the domain of

integration is changed. Hence, equation (B 6) becomes

LðxÞ ¼ x2a

m12
e2ax�=x 1

2ax�

ð2ax�=d

2ax�=x

1

y2a e�hdh: ðB 7Þ

Taking the limit when d! 0, equation (B 7) becomes

equation (5.1) in the text.
ishing.org
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Appendix C
Consider two populations of a haploid and sexual species

with non-overlapping generations. These populations live

on two islands or island-like habitats. Initially, both islands

include the same species and the genetic distance between

them is x0 ¼ 0. The genetic distance increases under the

rules of equations (2.1) and (2.2). After some number of
generations passes, the genetic distance exceeds the threshold

(x . xc). Then, we treat the two populations as different

species. Subsequently, migrants from a population on one

island successfully arrive on the other island. As the latter

island does not contain the same species as the migrant, the

migrants do not mix with the residents. The migrants

become established as a new population. Then, we redefine

the genetic distance between the two islands as the difference

between the new population on the second island and the

original population on the first island and the same process

proceeds as before. We assume that there is no extinction

because after the genetic distance exceeds the threshold,

immigrants that move from one island to the other quickly

evolve mating isolation mechanisms to avoid reproductive

interference [54]. Hence, we can count the number of species

that are created by this mechanism whenever the distance

between two populations reaches the threshold.
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