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Evolution can be characterized as a process that shapes and maintains infor-

mation across generations. It is also widely acknowledged that information

may play a pivotal role in many other ecological processes. Most of the ecolo-

gically relevant information (and some important evolutionary information

too) is of a very subjective and analogue kind: individuals use cues that

may carry information useful only to them but not to others. This is a problem

because most information theory has been developed for objective and discrete

information. Can information theory be extended to this theory to incorporate

multiple forms of information, each with its own (physical) carriers and

dynamics? Here, I will not review all the possible roles that information can

play, but rather what conditions an appropriate theory should satisfy. The

most promising starting point is provided by entropy measures of conditional

probabilities (using the so-called Kullback–Leibler divergence), allowing an

assessment of how acquiring information can lead to an increase in fitness.

It is irrelevant (to a certain extent) where the information comes from—

genes, experience or culture—but it is important to realize that information

is not merely subjective but its value should be evaluated in fitness terms,

and it is here that evolutionary theory has an enormous potential. A

number of important stumbling points remain, however; namely, the identifi-

cation of whose fitness it concerns and what role the spatio-temporal dynamics

plays (which is tightly linked to the nature of the physical carriers of the

information and the processes that impact on it).
1. Information is a central concept
That information is a key concept in evolution is obvious, as it is well known

how natural selection is continually shaping genetic information carried by

DNA [1,2]. However, information plays an important role in ecology too; for

instance, optimal foraging theory [3] shows how predators modify their behav-

iour in response to changes in their environment, while at the same time prey

may change their defensive behaviour [4]. In fact, the link between ecology and

evolution often involves information in one form or another. A phenotype can

be seen as the ecological manifestation of genetic information. Natural selection,

on a larger time scale, encodes ecological adaptation into genetic information.

More and more researchers focus on information as a structuring concept

in ecology and evolution, next to the classical ones of matter and energy

[1,5–7]. How information plays an important role in ecology and evolution is

well illustrated by the following examples.
1.1. Behaviour and phenotypic flexibility
It is well known that individuals of many species use information about their

environment to modify their phenotypes. Sometimes the information is rela-

tively easy to identify, such as predator cues inducing defensive phenotypes

[8], but it is likely that in many cases we do not really know what (if anything)

individuals respond to and why. Better ways to assess information use will help

us to better understand the causes and consequences of phenotypic plasticity.
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mailto:minus.van.baalen@ens.fr


rsfs.royalsocietypublishing.org
Interface

Focus
3:20130030

2
1.2. Dual inheritance systems
The avalanche of DNA sequence data that is descending upon

us shows that some vital traits are actually not coded by DNA

but are controlled by epigenetic mechanisms [9]. Because these

traits are nevertheless at least partially transmitted to offspring,

this implies that other forms of information are transmitted

across generations next to that carried by DNA [6,10–12]. Epi-

genetic information, in particular, is often seen as a way that

allows individuals to transmit acquired traits or information

about their environment (e.g. parasites) to their descendants

(often called maternal effects) although the effect may travel

further down the pedigree.

1.3. Game theory
The outcome of games may fundamentally change if players

are allowed to communicate. Bargaining games, for instance,

may lead to higher levels of cooperation than when communi-

cation is not allowed [13,14]. What is a bit surprising, however,

is that the information that is exchanged during the bargaining

bout usually remains implicit [15]. Such bargaining inter-

actions may explain the maintenance of cooperation between

unrelated mutualists such as plants and their rhizosphere

partners [16,17].

1.4. Non-human communication
It is obvious that many organisms communicate, but typi-

cally we do not know their language [18,19]. We may have

an idea what its function is (mate attraction, coordination,

threatening, etc.) but usually we can state very little about

precisely what information is transferred and how it affects

individual decisions [20,21].

1.5. Information-dependent dynamics
Because many organisms respond to environmental cues,

their fitnesses and thus their population dynamics depend

on the information that is available [5]. Ecology is often

seen as the science of fluxes of matter and energy, but it is

becoming clear that fluxes of information may have impor-

tant consequences too. Ecosystems are effectively bathed in

information—visual, auditory and chemical (Schoonhoven

[22] compared the perception of the world by many insects

to the highly sensitive antagonist in the novel Perfume by

Süskind [23])—but how to assess its importance and the eco-

logical consequences is not at all obvious even though it is

clear that the consequences may be many and varied [24].

1.6. Adaptation
An alternative way of defining adaptation is having the

necessary information to solve a given life-history problem

[25]. The dual inheritance problem of assessing multiple

sources of information comes back here in full force: the

necessary information can be genetically or epigenetically

encoded, but also maternally transmitted, acquired individ-

ually or learnt culturally. It may even be a different organism

that provides the information, as is the case for many mutualis-

tic symbioses. There is even a name for this concept: the

ensemble of genetic information formed by a host and its

suite of symbionts is called the ‘microbiome’ [26].

In all these cases, the pivotal interactions are non-trophic

and usually even non-material. Cues produced by and
responded to thus play an essential role in ecology but the

information itself carried or implied by these cues often

remains implicit, at least unquantified. Even in game theore-

tical models that do consider information exchange, the

consequences are typically only inferred from contrasting

the outcome with and without information transfer [27].
2. Why we need to have a biological definition
of information

The concept of information is central in any theory that

attempts to integrate different forms of evolution [6] or even

in many attempts to generalize the concept of adaptation [25].

However, to make the role of information explicit, we need

a way to quantify it, and currently we do not have a satisfac-

tory measure for assessing how much information is created,

transferred and stored in ecosystems. As I discuss below, one

can quantify the information stored in DNA, but this is not

enough. I discuss first, therefore, why, in a biological context,

precisely those aspects need to be incorporated so that stan-

dard information theory is simplified. It is of course also

possible to interpret gene frequencies as probabilities and

assess how entropy measures of these probabilities evolve

over time. Frank [2] shows how it is possible to quantify gen-

etic information this way and that it increases as a consequence

of natural selection, but, as I argue, a biological theory of infor-

mation should be applicable to other forms of information too.

Ideally, one should be able to compare genetic information

with information acquired from other sources.
3. Why entropy-based measures do not suffice
Anyone interested in quantitative aspects of information ends

up studying information theory and its links with entropy,

such as has been developed in thermodynamics and com-

munication theory. However, straightforward application of

standard information theory to ecology and evolution is difficult.

Entropy measures were developed in the 1940s by Shannon

[28] to address the very important issue in radio communi-

cations that any signal carrier will be affected to some extent

by noise, so that there is a limit to the amount of information

that can be transmitted. If the sender and receiver have agreed

upon a common code, this amounts to the questions of how

many bits the message contains and how many extra bits may

have to be added to minimize corruption of the transmitted

message through the noisy channel.

Given that there are four DNA bases, a basepair can be

said to contain two bits of information. Using Shannon’s

equation, the entropy of a stretch of DNA can thus be calcu-

lated easily. Given the fact that the genetic code is redundant,

one can also calculate the entropy of a transcribed stretch in

terms of triplets (amino acids) but this does not fundamen-

tally affect the discrete nature of this form of genetic

information. Frank [2] has used this idea to assess the

dynamics of genetically encoded information.

However, it is now clear that not all information that is trans-

mitted from generation to generation is in the form of DNA

[9,11]. For instance, the effect of some genes depends strongly

on their methylation states, and these methylation states are to

a certain extent heritable [29]. Many other so-called epigenetic

inheritance mechanisms exist [9], and typically the epigenetic
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information is of a much more fuzzy (analogue) nature (methyl-

ation of genes comes often in grades rather than discrete states).

So how do we measure the information content in such parallel

inheritance systems? Day & Bonduriansky [11] have published

a series of papers to study what happens when different

inheritance systems combine. They show that through differen-

tial effects of mutation and transfer mechanisms, the interaction

may have unexpected outcomes. However, their approach is

less well suited to serve as a basis for quantifying information

because it is based on the dynamics of average phenotypes in

the population (traits) rather than in individual (epi-)genotypes.

Shannon’s theory defined the bit as the binary unit of infor-

mation, of fixed but arbitrary value. This concept eventually led

to our capacity to digitize information and, with it, the possi-

bility to design electronic circuitry to handle this. Assuming

information can be coded as arbitrary bits was thus tremen-

dously successful. However, it also prevents application of the

theory to cases where information is not fixed and of universal

value. In the biological reality (but actually the probably most

important part of human life too), information has variable

value, depending on who is detecting it and under what con-

ditions. That is, information is fundamentally subjective and

this subjectivity is not normally taken into account (except in

conditions when shared knowledge can be used to design

more efficient data compression algorithms [30]).
4. Subjectivity
The first necessary extension of information theory is thus that

it needs to incorporate subjectivity, in the sense that the same

cue or signal may mean different things to different receivers

(in general, a cue can be anything detectable, whereas a

signal is produced by a sender with a certain intention). The

Shannon–Weaver theorem states that information reduces

uncertainty but it is often actually unclear to whom or in

respect to what [31]. Although it is asserted by many that

there is a link with entropy, it is rarely pointed out that this

implies that a priori knowledge plays an important role. In a

largely forgotten paper, Bateson [31] developed the crucial

insight that we should compare the entropies of the receiver

with and without the message. Recently, it has been noted

that information has a strong link with regulation, where

‘feed-forward’ information (cues) interacts with historic, or

‘feedback’, information (set points) [32].

Information is fundamentally subjective also in the sense

that it depends on what a receiver can do with it [32–34].

In evolutionary terms, the question is how the perception of

a cue enables an individual to increase its expected fitness.

To assess the impact of information, we thus need to know

(i) what the individual ‘knows’ already and (ii) how it

can use the information provided by the cue to modify its

phenotype or behaviour to increase its fitness.

So to start with, to understand the role of information

one has to appreciate also that prior knowledge plays a crucial

role. This prior knowledge can have many sources: genetically

fixed thresholds, biochemical pathways, hard-wired behaviour,

learnt experiences, culture, etc. But, in every case, a cue should

be evaluated against this background which makes it subjec-

tive, because no individual even from the same species will

have the same knowledge as any other. Bayes’ theorem thus

plays a central role because this is the mathematical construct

one needs to assess for differential knowledge. Given what
you already know, what can you infer from a given cue?

However, to incorporate fitness we need to know not the

actual value (if it exists) but rather the effect it has on expected

fitness. This implies that we need to take the expectation impact

on fitness. And when one takes the expectation, one obtains a

version of the so-called Kullback–Leibler divergence, which is

in essence the entropy of conditional probabilities. It may not

be possible to quantify the ensemble of prior knowledge, but

it should certainly be possible to assess the information content

of a given cue this way.
5. Quantifying information
As an instructive example of how biologically relevant infor-

mation can be quantified, consider the following: an

individual of a given prey species, say a mouse, finds itself

in front of a bush, behind which can be found either some

food or either a fox or a cat, with absolute probabilities p ¼
( pfood, pfox, pcat) ¼ (0.8, 0.1, 0.1). Now suppose it perceives a

certain smell that can only be made by a fox: this cue thus

tells the prey that the probabilities are not p ¼ (0.8, 0.1, 0.1)

but in fact p0 ¼ (0, 1, 0). By taking evasive action, it can there-

fore save its life and increase its fitness from 0 to 1 (it survives

but consumes no food). The fitness value of the information

provided is thus 1; I return to this notion below. Suppose

now, however, that only a less revealing cue is available,

say one that only allows the adjustment of probabilities to

p0 ¼ (0.6, 0.3, 0.1). How much information does the cue contain?

The extent to which the cue provides information is often

linked to the difference between the a priori probabilities p
and the adjusted probabilities p0. In standard information

theory, the information gain provided by the cue is often for-

malized using the so-called Kullback–Leibler divergence [7,30],

DKLð p0jjpÞ ¼
X

x
p0x log2

p0x
px

� �
; ð5:1Þ

which, like information entropy, is measured in bits. (Note that

this quantity is only defined if all px . 0, that is, if the a priori
probabilities do not contain certainties. It is also worth noting

that Kullback–Leibler divergence is not symmetric, and that

the inverse does not even always exist.)

If the cue does not provide any information, p0x ¼ px for all

x and hence DKL is zero. If the cue does provide information,

some outcomes will become more likely (p0x . px), whereas

others become less likely (p0x , px). It is not intuitively obvious

but can be shown that the Kullback–Leibler divergence is

always positive [30].

As an example, the perfect cue in our example contains

log2

1

0:1

� �
� 3:32 ð5:2Þ

bits of information, whereas the imperfect cue only contains

0:6 log2

0:6

0:8

� �
þ 0:3 log2

0:3

0:1

� �
þ 0:1 log2

0:1

0:1

� �
� 0:22 ð5:3Þ

bits.

Mathematically, the Kullback–Leibler divergence allows

us to assess how much arbitrary certainty is gained. But

how is this gain linked to the fitness of our hypothetical

prey animal? If our individual inspects the space behind the

bush without any supplementary information, it will be

dead with probability 0.2, but with probability 0.8 it will
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find some food, good for, say, R offspring. Its expected fitness

is then 0.8 . (R þ 1)þ 0.1 . 0 þ 0.1 . 0 (if by fitness we mean the

expected number of surviving individuals after the inspection

event). An individual that does not explore will survive but

will not reproduce either, so its fitness will be unity. Thus,

only if R . 0.2 (¼1/0.8 2 1) does it pay for our potential

prey to inspect, even if there is a lethal danger lurking.

How does the presence of a revealing cue affect the prey’s

decision and fitness? We have seen that the perfect cue reveal-

ing the presence of a fox allows the prey to save its life and

that represents a fitness value of 1. But what if the cue is

imperfect? Inspect or not? If it goes to inspect, it will now

have an expected fitness of 0.6 . (F þ 1) þ 0.3 . 0 þ 0.1 . 0 (if it

stays put, it will have again an expected fitness of just 1). It

should inspect only if R . 0.666 (¼1/0.6 2 1): it ‘knows’ of

the increased danger so the potential benefit should be larger.
 :20130030
6. Fitness equivalents
Using mainstream evolutionary theory as a starting point,

the value of information is not necessarily its surprise value

(how unlikely it is [30]) but rather how it can be used to

increase fitness. A number of recent studies show how one

can evaluate the value of the information in terms of fitness

[32–34]. These studies show how information in the form

of cues can be used to improve the match between phenotype

and environmental conditions (phenotypic plasticity). A

fundamental consequence is that information can only

increase expected fitness: a cue that would decrease fitness

is simply ignored.

Here, I will discuss how we can use these results to arrive at a

means to quantify information in a way that biologically makes

sense. McNamara & Dall [34] and Donaldson-Matasci et al. [33]

illustrate their analyses using the example of bet-hedging as

a reproductive strategy. Here, I will try to focus more on the

role of the correlation between cue and environment in a more

general setting.

Consider, for instance, an individual of a given species

that perceives a certain cue, denoted by Q (which can attain

a certain number of values Q [ Q). Suppose also that this

individual possesses an a priori body of knowledge (K) of

an unspecified origin which will allow it to achieve a certain

expected lifetime reproductive success (fitness) FK, even in

the absence of extra information. For notational clarity, I

drop the variable K from what follows.

Now assume that the individual has some behavioural

response to cue Q, which I denote RQ, and that this response is

adaptive in that it leads to an increased expected fitness of FRQ .

One can suppose that in a fixed, completely predictable

world the individual (through natural selection) is fully

adapted, and thus possesses all the necessary information

(in its a priori knowledge K), so that it does not even need to

respond to the cue. Things change in fluctuating environments,

however, in particular when individuals are uncertain about

relevant aspects of their environment. Then, the cue may pro-

vide crucial additional (typically more actual) information

allowing an increase in fitness.

Following recent studies [32–34], I suppose that the

environment E fluctuates unpredictably between a number

of states, and that there is a positive correlation between the

environment E (itself undetectable) and a detectable cue Q.

The fitness associated with a response to the cue Q then
depends also on the actual value of the environment, so I

write FRQ;E. We can model the unpredictability of the environ-

ment by assuming that, at any given instant, the value of the

environment and the value of the cue are given by a joint

probability distribution, pE^Q with covE;Q � 0 (so that Q
does provide information about E).

The probability that the state of the environment is E
when the individual perceives cue Q is given by the

conditional probability

pEjQ ¼
pE^Q

pQ
; ð6:1Þ

where pQ is the marginal distribution of Q,

pQ ¼
X
E[E

pQ^E ð6:2Þ

(the sum is over the domain of E, denoted as E).

Thus, the expected fitness increase of an individual that

perceives Q (and responds to it with RQ) is given by

VQ ¼
X

E

pEjQDFRQ;E; ð6:3Þ

where

DFRQ;E ¼ FRQ;E � FE ð6:4Þ

is the fitness increase owing to the response RQ in environ-

ment E. McNamara & Dall [34] call this the ‘reproductive

value’ of the information, but I feel ‘fitness value’ [33] is a

more appropriate term.

Donaldson-Matasci et al. [33] and Rivoire & Leibler [32]

work out the consequences using the concept of ‘mutual

information’ (which measures how much of the entropy is

determined by correlation) but insight can also be gained

by phrasing the problem in terms of the covariance of cue

and environment. We can always write

pE^Q ¼ pEpQ covE;Q;

where the covariance between E and Q is covE,Q (which may be

constant but also depend on E and Q). Then, pEjQ ¼ pEcovE,Q,

and the fitness value (6.3) can be rewritten concisely as

VQ ¼ kcovE;QDFRQ;ElE; ð6:5Þ

where the pointed brackets indicate the average over the

environments ( pE). The expected fitness increase is thus

linked to both the covariance between cue and environment

(covE,Q) and the fitness increase a response permits (DFRQ;E).

If there is no covariance, information value is zero. But,

even if there is a covariance, if there is no associated fitness

increment, information is zero too.

Given that the individual will perceive a range of cue

values (Q [ Q) [33,34], its expected fitness increase will be

�V ¼
X

Q

pQVQ: ð6:6Þ

In standard information theory, the information content of

a particular value of cue Q is simply its ‘surprise value’ [30],

log
1

pQ
; ð6:7Þ

the idea being that the rarer the cue, the more likely it is it will

reveal something about an underlying process. Biological

information content, on the other hand, is linked to fitness

increase VQ, which even if it can be written in simple form,

as in equation (6.5), is a more complicated concept.
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Figure 1. (a,b) From cue to fitness increment. An example (completely hypothetical) of how a cue (Q) may give information about the environment (E) and thus yield an
increased fitness F� ¼ kFRQ;E lE , where the expected fitness of an uninformed individual is �F . The curve drawn in (b) gives the conditional distribution of the environmental
value given a cue Q*. The curves in (a) depict fitness with and without the optimum response (to Q*) to the variation in the environment. The figure illustrates that having
correct information about the environment is sometimes more important (here, the difference between FRQ;E and FE is the largest for low values of E) than at other times
(here, high values of E). Given the covariance, the cue therefore conveys more biological information at low values than at high values. (Online version in colour.)
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Now is there any way to connect the fitness value of a cue

and its surprise value? Let us assume for the moment that the

correlation between cue and environment is perfect, covE,Q ¼ 1.

Then, the value of the cue is directly related to the fitness

increment it allows,

VQ ¼ kDFRQ;ElE; ð6:8Þ

and rarity of the signal itself (i.e. whether pQ is large or small)

plays no role (rarity of the associated environment does).

Rarity may play a role here but only indirectly, via the

covariance between cue and environment and the increase in

fitness that a response allows. Some insight can already be

obtained by inspecting the admittedly completely hypothetical

example in figure 1. To start with, the example shows that

the potential fitness benefit may not always be that big. It

also suggests that values in the centre of the distribution are

not as informative as values in the tails. This way, rarity

may be important. Thus, in the hypothetical example of

figure 1, only the low values of Q are rare and informative.

Note that the curve representing the response only shows

the dependency responsive and non-responsive individuals

on variations in the environment given the response to the

particular cue Q indicated in the graph. If the individual per-

ceives another cue, it may respond differently, which may

change the shape of the associated curve.
7. A priori knowledge
The role of a priori knowledge can be explored using a more

classical approach. Suppose an individual estimates that

some hypothesis H (e.g. ‘There is a predator stalking you!’)

is true with probability pHjK, where K stands again for the

ensemble of a priori knowledge that an individual possesses.

If the individual’s knowledge K is such that the estimate

pHjK corresponds to the true probability, no cue can improve

it (DKL is always zero). Of course in reality no individual pos-

sesses perfect knowledge but we can still state that better

a priori knowledge will reduce the amount of additional

information that is needed.
It is here that it may pay to combine different sources of

information, to arrive at better estimates of the actual state of

the environment. If there is much to be gained, natural selec-

tion may well favour increased capacities for the perception

of cues, even if these are costly.

Then, it may actually pay individuals not only to use a priori
knowledge to assess the value of a given cue, they may also be

selected to update it. Of course an individual cannot typically

modify its genetic information (with the exception of some

genes important in immunological responses) but it can

update other forms of stored information, from implicit to dedi-

cated. An individual’s physiological state contains a memory of

past experiences (a well-fed prey individual will respond differ-

ently to a cue indicating the presence of a predator than a

hungry one), but of course many animals have evolved more

or less sophisticated cognitive capacities for memory manage-

ment. Precisely what ecological conditions and specific

lifestyles select for more sophisticated information use is a

promising area of research.
8. ‘Qui bono?’
This is often asked by the investigator of a crime in old-

fashioned detective novels, as who benefits from the crime

is automatically an important suspect. In a similar way, we

can ask who benefits (‘qui bono’) from a given adaptation,

to identify the evolutionary pressures behind it. This question

is nevertheless often surprisingly difficult to answer [25].

The fact that information is fundamentally subjective

implies that we have to state with respect to whom it is

subjective. That is, whose fitness is it that the information

increases? Often, of course, it is just the individuals of a

given species that use information to increase their individual

fitness. Then, it is typically not so difficult, for us, to assess

what an adaptation is for [35], as we can assess or estimate fit-

ness in the sense of expected number of offspring. However, I

want to stress that, in many cases, the relevant unit is not the

individual, and adaptations benefit structures that are either

smaller (genes) or larger than individuals, such as clones

and symbioses [25,36–38].
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The ability to digest grass is not an adaptation of cattle, for

instance. That is, a cow alone does not have all of the necessary

information to digest cellulose: this information is carried by her

symbionts. The ability to subsist on grass is therefore an adap-

tation benefitting the complex formed by a cow and its suite

of symbionts. In the context of this article, the unit of adaptation

is that which (or who) benefits from having information, but

what this unit is is not always so obvious. Think, for instance,

of the network formed by plants and the soil microflora [39]:

the exchange of nutrients clearly hints at an adaptive function,

but it is very difficult to circumscribe the relevant unit. As vir-

tually everything is formed out of subunits (we also depend

on symbionts for digestion and protection), units of adaptation

will often depend on information from different sources.

Quantitative genetics is an alternative and very common

way to view and model evolution, which focuses on the rate

of change of the mean of a given character [40]. These

approaches are very useful to understand short-term, non-

equilibrium responses to selection but are less suitable for

identifying the appropriate unit of adaptation. Using Price’s

equation is one way to assess the consequences of multi-level

selection on trait evolution [41–43], but it is not so obvious

how to extend this approach to study multi-species complexes.

Emergent structures may function as units of adaptation

even if they are not persistent. For instance, a calf needs to

establish a working relationship with its microbiotic symbionts

in order to be able to digest grass, but this association stops

when the cow dies (and the actual partners may change

during its lifetime too). Plants and rhizosphere organisms typi-

cally establish a mutualistic (but not conflict-free!) interaction

when seeds germinate, which will end with the death of the

plant [16,44]. A colony of social insects is typically founded

by a mated queen and disintegrates when the queen dies.

One can even consider a diploid organism as a temporary

association of two haploid genomes.

When units of adaptation are associations of some form, it

is important to be precise about what ‘fitness’ actually means.

As long as what Maynard Smith & Szathmáry [37] termed a

‘major evolutionary transition’ has not occurred, the complex

does not reproduce as a whole, and therefore we cannot

directly assign a fitness to it. However, there exist methods

to assess the invasion fitness of more loose associations, such

as spatial clusters [45,46] or pairs of symbionts [47]. For such

cases, the invasion fitness of members may be dominated by

the success of the associations they help to form, and in this

sense one can associate a fitness with the association. In line

with kin selection theory, the end result may hinge on a

delicate balance between the interests of different levels.

Danchin and co-workers [6,10,48] advocate a quantitative

genetics approach that permits the assessment of different

information flows in determining phenotype variation. This

is a very promising way to study dual inheritance systems

and epigenetics, provided that the units of adaptation (as in

any population genetics model; see Buss [49]) are well-defined

individuals. When units of adaptation are more short-lived

associations, the approach is more difficult to apply, as the cru-

cial technical notion of ‘heritability’ becomes problematic [25].
9. Information carriers
Presenting his views on Dawkin’s [36] notion of genes as units

of evolution, Williams [50] made the important point that we
should separate the physical manifestation of genes from their

information content. Evolution, Williams argued, takes place

in the information domain, or the ‘codical domain’ as he

called it: information gets transmitted and DNA molecules

eventually perish. What I wish to argue here is that this insight

not only applies to genes, but should also be extended so as to

incorporate all of the evolutionarily relevant forms of infor-

mation: genes but also epigenes, genes from symbionts,

various forms of experience, culture and so forth. In this

information-based view, individuals (units of adaptation) are

merely bundles of information.

This does not mean that physical form becomes irrelevant.

On the contrary, the physical aspects of an information carrier

determine its dynamics, through its capacity for change, storage

and transfer. Different sources and origins of information

may have very different kinds of dynamics indeed: some of

my genes contain very ancient information, whereas my brain

contains extremely recent (and mostly ephemeral) information

[6]. The physics of a given carrier may have an effect on

interpretation of the information it contains.

To us, the physical support of a message contributes to its

meaning because it helps us to interpret it. If we were to

encounter a piece of text in an unknown script, we would

tend to guess its message differently if the text were hewn in

a stone monument than if it were merely scribbled on a piece

of paper. In a biological context, a sequence in DNA does

not mean the same as the equivalent sequence in RNA:

many sequences in DNA are not transcribed and thus poten-

tially irrelevant, whereas an RNA sequence is more likely to

be relevant because it has been transcribed, and therefore

linked to some particular environmental conditions. Danchin

[6] calls the physical manifestation of information its ‘avatar’,

which is a generalization of the concept of phenotype [51].

Genetics is characterized by high-fidelity copying over

long time scales. The mechanism of neo-Darwinian natural

selection ensures that genetic information is generally trust-

worthy, at least for solving life-history problems that do not

change too quickly (are sufficiently predictable). By contrast,

epigenetics is characterized by relatively low-fidelity copying

[9,29], but it allows coordination/transfer of useful infor-

mation among members of complex units of adaptation

(clones, symbioses, etc.) about a more recent past.

Culture, as it is defined by biologists, functions as an

epigenetic system, but more quickly, and it allows horizontal

and oblique transfer of information even within generations

[52,53]. An as yet unexplored aspect of culture (as far as I am

aware) is that it leads to the creation of a collective memory

(a ‘shared library’) that allows individuals to access a body of

information that transcends by far their own memory capacity.
10. Memes
A few words are appropriate on the idea of memes, as this

concept can be said to have started the discussion on the

role of the proper dynamics of information in human culture.

Dawkins [36] suggested that mental structures can have

similar properties, and consequently similar evolutionary

dynamics as genes. Memes mostly spread because they are

useful for their carrier, but sometimes memes’ spread is even

damaging to their human hosts. Notwithstanding popular

appeal (to explain itself the concept did spread rapidly in the

human population, and there are now probably many
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people who use the term without realizing that it comes from

evolutionary theory), the idea that culture is just a question of

memetics hurts important obstacles [54]. In spite of some

claims that, in humans, memes have come to dominate

genes (‘memes keep genes on a leash’ [55]), few evolutionary

biologists believe in the existence of memes as envisaged

by Dawkins.

The most important criticism is that, contrary to genes, as far

as we know there is no universal code for memes, and conse-

quently how they are copied is far from obvious. Claidière &

Sperber [56] argued that, if one wants to follow the dynamics

of information, one has to accept that the same unit of infor-

mation may be embodied (‘encoded’) very differently in

different brains, and actually partly loses its identity if it gets

transmitted, so that one has to follow all potential manifestations

across the stochastic ‘transmission chain’.

If we have a good way to identify and to quantify biologi-

cal information, we also may have a means to go forward

here, as it will allow us to disentangle physical embodiment

(cognitive state) and information content. Whether this will

allow us to track precise defined units of information

(‘memes’) as they spread through a population remains to

be seen, however.
11. Information from different sources
A useful method for quantifying information should be able to

deal with information from different sources and transmitted

by different physical carriers. If these different sources of infor-

mation are concordant, there is no problem, but what to do

when, as will often be the case, different sources of information

conflict? The credibility of the sources should be taken into

account. Genes may specify useful rules of thumb, but they

do not possess information about actual environmental con-

ditions: an individual may very well increase its fitness by

ignoring genetic information (hard-wired behaviour) and

rely on personal experience instead to improve its options.

However, acquired information is not always as credible, in

particular when it depends on the observation of other

individuals (be it of the same or of other species).

The fact that individuals may rely on information from

different sources may provide a new perspective on the

Baldwin effect [57]. The Baldwin effect stipulates that indi-

viduals explore a set of phenotypes to find a good match

with their environment rather than encode all options geneti-

cally: phenotypes result from learning rather than from

phenotypic plasticity. In this former case, individuals need

more information about their environment than in the

latter: phenotypic plasticity needs just a good cue, learning

needs more information in order to assess the potential

fitness returns associated with possible phenotypes.

It can actually also shed light on what might be called the

inverse Baldwin effect, genetic assimilation [58], which occurs

when acquired traits such as learnt behaviours, when repeat-

edly acquired by successive generations, will eventually find

their way into the genome. This allows individuals to avoid

making costly mistakes in the learning process.

Note that both the Baldwin effect and the inverse Baldwin

effect integrate genetic and environmental variation to pro-

duce a phenotype, only in different measures. Both views

merely stress the fact that environmental information is

important.
12. Communication
As discussed earlier, in spite of their singular aspect, individ-

uals are often actually complex associations or ‘units of

adaptation’ [25]. The mere fact that they are participants

means that members have at least partially overlapping inter-

ests, so that they are likely to interpret a particular cue in a

similar way. However, members of an association may also

have diverging (or private) interests that are not shared by

other members [47]. Then, a particular cue may incite a

response that is advantageous to one but detrimental to

other members of the association. In other words, cues may

boost but also weaken an association. (For instance, Axelrod

& Hamilton [59] note that symbiotic bacteria may turn nasty

when they perceive that their host is in bad health.)

The problem thus is that the same cue may mean different

things to different members of the association. This is even

more pertinent when the cues are actually signals emitted

by other individuals in the ecosystem, whose agendas may

be suspicious. Moreover, an individual may even need to

assess how other partners may respond in order to work

out the relevance of the cue [60].

Insight into how information use can be affected by partially

overlapping interests can be obtained by considering models for

the evolution of communication [61–63]. If individuals have

perfectly overlapping interests (both sender and receiver gain

equally by successful communication), then natural selection

can produce elaborate schemes that permit efficient communi-

cation [64], even when initial hurdles have to be overcome

(for instance, encoding and decoding mechanisms have to

evolve in tandem [65]).

Jansen and van Baalen [66,67] found that for intermediate

levels of conflict communication systems may be unstable,

leading to cycles where different cues may acquire and then

lose meaning. These fluctuations result because honest infor-

mation use has a rarity advantage but becomes vulnerable to

exploitation by cheaters when common, which is a form of

negative frequency dependence.

A consequence of these fluctuations is that signals (cues)

have no universal meaning: it all depends on who receives

them and where and when. The signals can mediate coopera-

tive behaviour because population structure means that

cooperators are likely to be surrounded by similar cooperators

(so that to them the cues are predominantly informative).

Cheaters, on the other hand, are surrounded by other cheaters,

so to them the same cue carries much less information. How-

ever, even if, on average, the cue contains more information to

a cooperator than to a cheater, the respective subjective infor-

mation associated with the cue may fluctuate in time too

[66,67]. In a situation where information users have a conflict

of interest, any individual that perceives a signal therefore

has to assess its usefulness or its ‘credibility’ when it implies

a form of communication.

Also the producers of cues may have to take into account

who is listening. Cooperators may want to convey infor-

mation to other cooperators, but there are eavesdroppers

that may benefit without returning favours or worse. In

order to optimize fitness, broadcasters should assess evol-

utionary interests of all parties. These involve not only

other participating individuals, but also the compound indi-

viduals (units of adaptation) they are part of, with their own

evolutionary interests. Cells may be selected to communicate

via hormones when the interest of the multicellular organism
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they are part of predominates. But also in more loose units of

adaptation, such as social insect colonies and bacterial clones,

members may need to communicate to coordinate actions

(e.g. quorum sensing [68,69]).
lsocietypublishing.org
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13. Discussion
By reducing uncertainty, information helps an individual (or

whatever the relevant unit of adaptation may be) to adapt to

its environment. A simple way to quantify the information con-

tent of a given cue is to compare the unit’s knowledge vector

before and after perception using the so-called Kullback–

Leibler divergence. However, this measures information

content only in terms of bits, that is, in terms of the number

of yes-or-no questions the information resolves. In biology,

however, it is more relevant to measure information in terms

of fitness effects, which is not the same [2,33].

Developing an adequate theory of biological information

poses many challenges. As recent studies have shown

[32–34], it is possible to quantify biological information

with a fitness-based approach. These authors focus on how

individuals should use information to improve their bet-

hedging strategies. I would like to argue here that this

approach is more general and applies also at both shorter

(behaviour) and longer (group selection) time scales.

Assuming that evolution corrects mistakes in a species’

genome, MacKay [30] confirms Maynard Smith’s original idea

that through natural selection an asexual species acquires one

bit of information per generation. However, it is not so obvious

with what such a bit corresponds. Moreover, his model does not

take into account the loss of information through mutation, so

this approach serves as a starting point to compare asexual

and sexual reproduction but not to quantify ecologically relevant
information. We can only understand why some alleles are better

than others when we know what they code for and why they

encode an adaptation for a given environment.

It would be nice to have some catchy word, in analogy

with ‘bit’. Shannon [28] defined the bit, short for binary

digit, as a neutral information measure. As biological infor-

mation is linked to fitness, we can coin the term ‘fbit’ for

the notion of a subjective, fitness-equivalent bit. The fbit

would be the equivalent of one offspring gained in the

expected fitness. How fbits are related to Maynard Smith’s

idea [30] that natural selection makes a species acquire one

bit (in the classical sense, measured along the genome)

remains to be elucidated.

Of course, technical advances are very welcome, in par-

ticular to put the notion of the fbit on a sounder theoretical

foundation, but some important conceptual change is neces-

sary too to develop a more encompassing biological theory of

evolution. Two aspects are particularly important. The first is

that units of adaptation do not always coincide with the pre-

conceived notion of individual, and the second (actually

related to the first aspect) is that the information needed to

adapt may come from multiple sources and interact in

complicated ways. The DNA-based view of evolution has

tremendous explanatory power, but it may also have blinded

us to the parallel information streams that are important too.
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63. Lachmann M, Számadó S, Bergstrom CT. 2001 Cost
and conflict in animal signals and human language.
Proc. Natl Acad. Sci. USA 98, 13 189 – 13 194.
(doi:10.1073/pnas.231216498)

64. Nowak MA, Komarova NL, Niyogi P. 2001 Evolution
of universal grammar. Science 291, 114 – 118.
(doi:10.1126/science.291.5501.114)

65. Scott-Phillips TC, Blythe RA, Gardner A, West SA.
2012 How do communication systems emerge?
Proc. R. Soc. B 279, 1943 – 1949. (doi:10.1098/rspb.
2011.2181)

66. van Baalen M, Jansen VAA. 2003 Common language
or Tower of Babel? On the evolutionary dynamics of
signals and their meaning. Proc. R. Soc. Lond. B
270, 69 – 76. (doi:10.1098/rspb.2002.2151)

67. Jansen VAA, van Baalen M. 2006 Altruism through
beard chromodynamics. Nature 440, 663 – 666.
(doi:10.1038/nature04387)

68. Williams P et al. 2000 Quorum sensing and the
population-dependent control of virulence. Phil.
Trans. R. Soc. Lond. B 355, 667 – 680. (doi:10.1098/
rstb.2000.0607)

69. Diggle SD, Griffin AS, Campbell G, West SA. 2007
Cooperation and conflict in quorum-sensing
bacterial populations. Nature 450, 411 – 415.
(doi:10.1038/nature06279)

http://edepot.wur.nl/239594.
http://edepot.wur.nl/239594.
http://edepot.wur.nl/239594.
http://dx.doi.org/10.1016/S0305-1978(99)00106-4
http://dx.doi.org/10.1126/science.1104816
http://dx.doi.org/10.1126/science.1104816
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/nrg2467
http://dx.doi.org/10.2307/2407104
http://dx.doi.org/10.2307/2407104
http://dx.doi.org/10.1007/s10955-011-0166-2
http://dx.doi.org/10.1007/s10955-011-0166-2
http://dx.doi.org/10.1111/j.1600-0706.2009.17781.x
http://dx.doi.org/10.1111/j.1600-0706.2009.17509.x
http://dx.doi.org/10.1111/j.1600-0706.2009.17509.x
http://dx.doi.org/10.1007/s10539-008-9142-x
http://dx.doi.org/10.1007/s10539-008-9142-x
http://dx.doi.org/10.1139/b04-116
http://dx.doi.org/10.1139/b04-116
http://dx.doi.org/10.1146/annurev.es.13.110182.000323
http://dx.doi.org/10.1146/annurev.es.13.110182.000323
http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x
http://dx.doi.org/10.1046/j.1420-9101.2000.00219.x
http://dx.doi.org/10.1111/j.1420-9101.2011.02236.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01538.x
http://dx.doi.org/10.1006/jtbi.1998.0730
http://dx.doi.org/10.1006/jtbi.1998.0730
http://dx.doi.org/10.1111/j.1461-0248.2007.01132.x
http://dx.doi.org/10.1034/j.1600-0706.2001.950203.x
http://dx.doi.org/10.1034/j.1600-0706.2001.950203.x
http://dx.doi.org/10.1126/science.1098254
http://dx.doi.org/10.1126/science.1098254
http://dx.doi.org/10.1007/s11692-011-9141-8
http://dx.doi.org/10.1098/rspb.2009.1615
http://dx.doi.org/10.1098/rspb.2009.1615
http://dx.doi.org/10.1007/s11692-011-9155-2
http://dx.doi.org/10.1111/j.1420-9101.2009.01754.x
http://dx.doi.org/10.1111/j.1420-9101.2009.01754.x
http://dx.doi.org/10.1126/science.7466396
http://dx.doi.org/10.1126/science.7466396
http://dx.doi.org/10.1098/rstb.2002.1065
http://dx.doi.org/10.1073/pnas.95.9.5100
http://dx.doi.org/10.1006/tpbi.1997.1372
http://dx.doi.org/10.1006/tpbi.1997.1372
http://dx.doi.org/10.1073/pnas.231216498
http://dx.doi.org/10.1126/science.291.5501.114
http://dx.doi.org/10.1098/rspb.2011.2181
http://dx.doi.org/10.1098/rspb.2011.2181
http://dx.doi.org/10.1098/rspb.2002.2151
http://dx.doi.org/10.1038/nature04387
http://dx.doi.org/10.1098/rstb.2000.0607
http://dx.doi.org/10.1098/rstb.2000.0607
http://dx.doi.org/10.1038/nature06279

	Biological information: why we need a good measure and the challenges ahead
	Information is a central concept
	Behaviour and phenotypic flexibility
	Dual inheritance systems
	Game theory
	Non-human communication
	Information-dependent dynamics
	Adaptation

	Why we need to have a biological definition of information
	Why entropy-based measures do not suffice
	Subjectivity
	Quantifying information
	Fitness equivalents
	A priori knowledge
	'Qui bono?'
	Information carriers
	Memes
	Information from different sources
	Communication
	Discussion
	Acknowledgements
	References


