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Coevolutionary diversification creates
nested-modular structure in phage –
bacteria interaction networks

Stephen J. Beckett and Hywel T. P. Williams

Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK

Phage and their bacterial hosts are the most diverse and abundant biological

entities in the oceans, where their interactions have a major impact on

marine ecology and ecosystem function. The structure of interaction networks

for natural phage–bacteria communities offers insight into their coevolution-

ary origin. At small phylogenetic scales, observed communities typically show

a nested structure, in which both hosts and phages can be ranked by their

range of resistance and infectivity, respectively. A qualitatively different

multi-scale structure is seen at larger phylogenetic scales; a natural assemblage

sampled from the Atlantic Ocean displays large-scale modularity and local

nestedness within each module. Here, we show that such ‘nested-modular’

interaction networks can be produced by a simple model of host–phage coe-

volution in which infection depends on genetic matching. Negative frequency-

dependent selection causes diversification of hosts (to escape phages) and

phages (to track their evolving hosts). This creates a diverse community of

bacteria and phage, maintained by kill-the-winner ecological dynamics.

When the resulting communities are visualized as bipartite networks of

who infects whom, they show the nested-modular structure characteristic of

the Atlantic sample. The statistical significance and strength of this observation

varies depending on whether the interaction networks take into account the

density of the interacting strains, with implications for interpretation of inter-

action networks constructed by different methods. Our results suggest that the

apparently complex community structures associated with marine bacteria

and phage may arise from relatively simple coevolutionary origins.
1. Introduction
Bacteriophage and their bacterial hosts are the most abundant and diverse

replicating entities in the oceans, playing central roles in marine ecology and

ecosystem processes [1–7]. Fast replication and high mutation rates mean that

bacteria and phage can evolve—and coevolve—rapidly [8–11], suggesting

that coevolution will influence both ecological dynamics and ecosystem

processes. Yet, the basic mode of bacteria–phage coevolution is unclear. Exper-

imental studies have demonstrated adaptation of resistance and infectivity

ranges over just a few generations of laboratory coevolution [8,9,12,13], often

interpreted as a coevolutionary ‘arms race’ in which hosts evolve to expand

their range of resistance, while phages evolve to expand their host range. Uncon-

strained arms races are predicted to result in low diversity [14], with a single

dominant host/phage strain, or perhaps two dominant host types if there is a

trade-off between resistance and resource competition [8]. However, the short

time intervals involved mean that the experimental coevolution data can be

ambiguous and may sometimes also be consistent with a ‘fluctuating selection’

mode of coevolution in which infection is highly specific, so that hosts are more

resistant to contemporary phages than ancestral or future strains [15]. Fluctuating

selection dynamics are consistent with aquatic viral ecology models predicting

kill-the-winner dynamics [16,17], whereby the most successful hosts (in terms of

resource competition) are prevented from becoming dominant by increased viral

predation. In kill-the-winner ecological dynamics, density-dependent predation
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Figure 1. Nested-modular interaction structure of 215 phage strains and 286
bacteria strains sampled from the Atlantic Ocean (adapted from [23]). The
plot shows which phage strains can infect which host strains from the dataset
presented by Moebus & Nattkemper [25]. Flores et al. [23] re-sorted the
interaction matrix to maximize modularity and within-module nestedness.
Here, we additionally highlight identified modules by shading; interactions
falling outside any module are shown in white. We also add two inset sche-
matics illustrating perfectly modular and perfectly nested matrix structures.
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by specialized viruses imposes negative frequency-dependent

selection pressure on hosts, favouring rare phenotypes. Such

dynamics are believed to support the maintenance of diverse

communities of marine bacteria and phage [18,19]. Recent

genomic studies give empirical support for high natural diver-

sity of marine bacteria and phage, with high specificity of

infection and rapid coevolution [11,18,20,21]. Thus, despite

much progress in experimental coevolution and marine

microbial genomics, substantial uncertainties remain about

the basic mode of phage–bacteria coevolution.

A complementary source of data about coevolution lies in

the structure of natural phage–bacteria communities. Some

recent data compilations have depicted phage–bacteria com-

munities as bipartite networks representing which phage

strains were observed to infect which bacteria strains [22–24].

Statistical analyses of these ‘phage–bacteria infection

networks’ (most often given in the form of binary matrices of

presence(1)–absence(0) of pairwise infection) have so far

focused on the matrix metrics of ‘nestedness’ and ‘modularity’

(see inset in figure 1). Nestedness is a measure of the extent to

which the non-zero elements of each row (or column) in the

matrix are a subset of the non-zero elements in the subsequent

rows (or columns). In a perfectly nested matrix, the entries in

each row (column) are a strict subset of the entries in the next

row (column); thus, each row (column) is nested inside the

next row (column). In terms of phage–bacteria interaction,

nestedness relates to the differentiation of strains along a
gradient from specialist (small range) to generalist (large

range). Here ‘range’ refers, for bacteria, to the number of

phage strains against which it is resistant, and, for phages, to

the number of bacterial strains it can infect. A perfectly

nested pattern is one in which the hosts and phages are each

ranked along the specialist–generalist gradient such that the

specialist strategies are subsets of the more generalized strat-

egies. A modular network structure occurs when nodes can

be partitioned into subsets such that most connections occur

within rather than between the different subsets. For bacteria

and phage, modularity can be interpreted as a specialized

interaction structure, without transitivity (i.e. where strains

cannot be ranked by increasing range), in which distinct clus-

ters of phage strains preferentially infect distinct clusters of

bacterial strains.

Assuming that natural interactions between phage and bac-

teria are ultimately the product of coevolution, phage–bacteria

interaction network structures may offer insight into the coevo-

lutionary processes that produced them. At small phylogenetic

scales, these networks typically show higher than expected

nestedness and lower than expected modularity [22]. High

nestedness is consistent with an arms race mode of coevolu-

tion, where hosts and phages evolve to increase their range

of resistance/infectivity. However, the largest reported cross-

infection assay involved 774 bacterial strains and 298 phage

strains isolated from multiple geographically dispersed sites

across the Atlantic Ocean [25]. Although no explicit genotyp-

ing was conducted in this study, it is likely that this dataset

spans a broad phylogenetic scale. Reanalysis of interactions

between 286 host strains and 215 phage strains from this data-

set [23] found that the resulting network showed large-scale

modularity, with local nestedness within each module. This

is visualized in figure 1, in which bacteria (rows) and phage

(columns) were ordered (following [23]) to maximize statistical

modularity and within-module nestedness. Here, we highlight

the identified modules by shading; interactions falling outside

any identified module are shown in white. We also add two

inset schematics illustrating perfectly modular and perfectly

nested matrix structures. It is difficult to explain this ‘nested-

modular’ pattern as the result solely of arms race coevolution;

the lack of global nestedness and the presence of distinct mod-

ules suggests that some additional mechanism is needed. While

models of coevolution based on high specificity of infection

often predict diversification [14]—and might thus be invoked

to explain formation of distinct modules—such models do not

explain the presence of within-module nestedness.

Here, we explore a simple model of coevolution based on

genetic matching [26–28], which we dub the ‘relaxed lock-

and-key model’. The model is mechanistically justified by refer-

ence to coadaptation of (for example) phage tail-fibres and host

surface receptors [29]. We show that relaxed lock-and-key co-

evolution is sufficient to produce the core structural features of

observed phage–bacteria communities: stable high diver-

sity of bacteria and phage, modularity at large phylogenetic

scales and nestedness at small phylogenetic scales. Furthermore,

we show that the strength and statistical significance of the

observed nested-modular pattern depends on how the inter-

action networks are formed. Here, we contrast interaction

networks based on the potential adsorption rate of each phage

strain on each host strain with interaction networks based on

the actual infection rate measured in an ecological context. Our

findings highlight difficulties with comparison of interaction

networks constructed by these different methods.



Table 1. Model parameters and variable definitions. Variables can change during a simulation. Numerical values are parameters fixed for the duration of a
simulation. Range values are deterministically calculated from other variables/parameters.

symbol description value unit

R resource concentration variable mg ml21

Ni density of host strain i variable cells ml21

Vj density of phage strain j variable virions ml21

Ninit initial host density 4.6�104 cells ml21

Vinit initial phage density 8.1�105 virions ml21

v chemostat dilution rate 0.0033 min21

R0 resource supply concentration 2.2 mg ml21

1 resource conversion rate 2.6�1026 mg cell21

g maximum resource uptake rate 0.0123 mg min21

K half-saturation constant 4 mg ml21

di growth scaling for host hi range [dmin,dmax] scalar

dmin minimum growth scaling factor 0.8 scalar

dmax maximum growth scaling factor 1.2 scalar

f maximum adsorption rate 0.104�1028 ml(min virion)21

uij adsorption scaling for vj on hi range [0,f ] scalar

b burst size 71 virions cell21

hi genotype of bacteria i range [0,1] scalar

vj genotype of phage j range [0,1] scalar

ĥi resistance phenotype of bacteria i range [0,1] scalar

v̂j infection phenotype of phage j range [0,1] scalar

hinit initial bacteria genotype 0.2 scalar

vinit initial phage genotype 0.2 scalar

S specificity of phage 100 scalar

mN host mutation rate 1026 cell21

mV phage mutation rate 1025 virion21

sN s.d. of host mutation range 0.01 scalar

sV s.d. of phage mutation range 0.01 scalar

MN bacterial mutation size random variable scalar

MV phage mutation size random variable scalar

Dt integration time step 10 min

T simulation duration 5�107 min

r resolution of genotype diversity 0.001 scalar

L chemostat volume 1 ml
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In §2, we present the relaxed lock-and-key coevolution model

in the ecological context of a multi-strain chemostat. This is fol-

lowed by presentation of results showing the co-diversification

of bacteria and phage, the construction of associated adsorption

rate and infection rate interaction networks and analyses of

network properties over time. Finally, we discuss the relevance

of the relaxed lock-and-key model for understanding natural

phage–bacteria communities.
2. Model
We model bacteria–phage coevolution by adding mutation

to numerical simulations of a multi-strain chemostat. Later

we describe the ecological model, the coevolutionary model
(including how the infection rate is calculated for a given pair

of bacteria and phage strains), and methods used to analyse

phage–bacteria interaction networks. A description of the par-

ameters used is given in table 1. The model has been analysed

previously [27,28]; model sensitivity to key parameters is given

in [28]. It is derived from a similar model [26] (with the principal

difference being in how the evolutionary dynamics are evalu-

ated), which in turn derives from an earlier single-strain

ecological model of bacteria–phage growth in a chemostat [30].
2.1. Multi-strain chemostat model
The ecological model represents the interactions between

multiple strains of bacteria and phage in a single-resource

chemostat. Resource concentration R and densities of the
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ith strain of bacteria Ni and the jth strain of phage Vj are

governed by the system of equations as follows:

dR
dt
¼ �vðR� R0Þ �

X
i

1
gdiRNi

Rþ K
;

dNi

dt
¼ �vNi þ

gdiRNi

Rþ K
�
X

j

fuijNiVj

and
dVj

dt
¼ �vVj þ

X
i

bfuijNiVj:

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:1Þ

Resource concentration is affected by the chemostat wash-

out rate v, the supply concentration R0, and uptake by all

bacterial strains. Bacterial resource uptake is governed by

Monod kinetics [31] with half-saturation rate K and maximum

uptake rate g, adjusted for each bacterial strain i by a geneti-

cally encoded scaling coefficient di. Bacterial strain density is a

function of washout, population growth and lysis. Resource

uptake is converted directly into bacterial population growth

via resource conversion constant 1. Each bacterial strain is

potentially susceptible to infection by every strain of phage,

depending on genetic match. Phage strain density is determined

by washout and the sum of production on all available hosts.

Adsorption of phage j to host i is the product of the maximum

adsorption rate f and a scaling coefficient uij. Every adsorption

event leads to infection and instantaneous cell lysis (we assume

no latent period) creating new phages with burst size b.
2.2. Relaxed lock-and-key coevolution model
We model evolution in the multi-strain ecological model by

adding a mutation process that introduces new variants of

existing bacteria and phage strains. Uncompetitive strains are

eventually removed by chemostat dilution. Thus, we have a

simple model in which bacteria and phage phenotypes can

evolve by natural selection. We do not separate the evolution-

ary and ecological time scales, but instead assume a fixed

probability of mutation per new cell/phage and allow evol-

utionary dynamics to play out in our numerical simulations.

We ran our simulations for 5 � 107 min, sufficient for the

dynamics to reach a quasi-stable equilibrium. This time scale

is chosen to allow a relatively slow evolutionary dynamic in

the context of faster ecological dynamics and is not intended

to accurately reflect analogous time scales in natural systems.

Bacterial h and phage v genotypes are modelled as single

values in the range [0,1] (binned at resolution r ¼ 0.001). Bac-

teria and phage have mutation rates mN and mV, respectively,

applied stochastically for each new cell/phage. Mutation cre-

ates a single cell/phage with a genotype created by adding a

normal deviate to the parental genotype, with standard devi-

ation (mutation range) of sN or sV for bacteria and phage,

respectively. If the density of any population falls below

1 cell ml21 or 1 virion ml21 (possible because of the continu-

ous nature of the mathematical abstraction), that population

is assumed to be lost and is removed from the system. Any

simulations where genotypes reached the edges of the per-

mitted range [0,1] were discarded; however, parameters

were chosen to ensure that this did not occur.

The relaxed lock-and-key coevolution model is created by

enforcing a dependence of the adsorption rate on the genetic

similarity of host and phage. The relative adsorption rate uij

of phage j on host i is given by

uij ¼ e�Sðĥi�v̂jÞ2 ; ð2:2Þ
where ĥi is the bacterial resistance strategy for the ith host

encoded by genotype hi, v̂j is the phage infectivity strategy

for the jth phage encoded by genotype vj and S represents

infection specificity. This function has Gaussian form,

with specificity governing the width of the infection curve,

i.e. high specificity indicates narrow host range, while low

specificity indicates wide host range. Hence the closer the

numerical values of strategies ĥi and v̂j are, the greater

the rate of adsorption between host i and phage j.
Bacterial genotype also specifies a growth-rate scaling trait d,

where each bacterial genotype hi maps to a growth rate di. Here,

we impose a simple growth rate fitness landscape with a singu-

lar peak of dmax ¼ 1.2 at h ¼ 0.5, falling linearly to a minimum of

dmin ¼ 0.8 at the edges of the range (i.e. for h ¼ 0 and h ¼ 1). The

growth rate trait d is a coefficient that affects population growth

rate by scaling the rate of resource uptake by bacteria (see

equation (2.1)). It is important to note that there are no inherent

differences in bacterial resistance (that is, all bacteria have the

same size of range of resistance); thus, there are no costs of

resistance and no explicit trade-offs between growth rate and

infection rate. Ecological trade-offs between bacterial growth

and susceptibility to infection can emerge [28], but these

depend on the density and composition of the contemporary

phage and bacterial communities.
2.3. Infection network analysis
Interactions between bacteria and phage strains (i.e. who

infects whom) can be represented as a network [24]. Such

networks are bipartite graphs with interactions between two

types of node (bacteria and phage). We use two forms of

interaction network to visualize our model phage–bacteria

communities. The first type is formed from the adsorption

rate fuij of phage j on host i, which gives a pairwise interaction

matrix for all strains present in the community irrespective of

their abundance. The second type of interaction network is

formed from the actual infection rates for phage j on host i in

the current ecological context, calculated as fuijNiVj from the

adsorption rate and the current densities of each strain,

giving a more ecologically relevant measure of interaction.

As both adsorption rate and infection rate are quantitative

metrics, we create binary interaction matrices by applying

threshold filters. The resulting binary matrices consist of 1s

where the pairwise interaction is strong and 0s elsewhere. The

binary matrices can be analysed using standard metrics for

nestedness and modularity. They can also be compared with

reported interaction networks, which are typically given in

binary form. We used the package BiWeb [32], which uses the

LP-BRIM algorithm to find the partition that best maximizes

Barber’s modularity (Qb) for bipartite networks [33,34]. Since

the LP-BRIM sorting algorithm is sensitive to initialization, we

repeated the modularity assessment five times for each measure-

ment, taking the maximum score returned. We measured

nestedness using the deterministic NODF (nestedness metric

based on overlap and decreasing fill) algorithm [35], which

returns a score in the range [0,100] (where 100 indicates a per-

fectly nested structure). NODF normalizes for matrix size,

allowing matrices of differing sizes to be compared.

To quantify the statistical significance of the nestedness

(NODF) and modularity (Barber’s Qb) scores measured for

a particular binary matrix, we calculate statistical significance p
as the likelihood of achieving a score greater than or equal to

the score for the input matrix in a sample of M matrices from a
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are highlighted. The fastest growing bacteria genotype is located at h ¼ 0.5.
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null distribution of random matrices. Where this method returns

p¼ 0 we conservatively assign p , 1/M. We use a null model in

which matrix size (number of rows and columns) and fill

(number of 1s) are conserved, but where adjacency (position

of 1s) is randomly reassigned. Thus, we maintain the numbers

of host and phage strains, and the total number of host–phage

interactions, but reassign the pattern of who infects whom. We

estimate the null distribution using a sample of M matrices

generated using a stochastic algorithm with pseudo-random

numbers. For significance of NODF scores, we create the

sample in two sets, adding matrices to both sets until the mean

NODF scores for both sets converge within a tolerance bound

of 0.01. The sample used to estimate the null distribution is

then formed as the union of both sets. Thus for NODF, the

sample size M varies according to how many null matrices are

needed to achieve convergence of the means, with a minimum

sample of 500 null matrices computed in each case. This

method gives reliable estimation of the underlying distribution

while retaining computational efficiency. For the modularity

scores, we used M ¼ 100, assigning each null matrix the highest

Barber’s modularity score from five random initializations of the

LP-BRIM algorithm. A free software package including these

methods is currently in preparation [36].

The cross-section of the community at time t ¼ 3.5 � 10 is examined in
figure 3. Horizontal dotted lines indicate time points for which interaction
matrices are presented in figures 4 and 5.
3. Results
In previous work [28], we have shown that, in the absence of

phage, resource limitation leads to competitive exclusion

of slow-growing bacteria by fast-growing bacteria. Faster grow-

ing populations draw down resource concentration to a limiting

level at which slower growing populations cannot be sustained

against losses from washout and are lost from the community.

Thus, in the absence of phage, bacteria evolve to the fastest

growing genotype permitted by the simple unimodal growth

rate fitness landscape (here located at h¼ 0.5; see §2.2). In the

presence of phage, host evolution is affected by the additional

coevolutionary selection pressures imposed by phage predation.

The relaxed lock-and-key coevolution model robustly

produces diversification of bacteria and phage. Figure 2

shows a simulation run initialized with a single bacterial

strain and perfect-match phage strain (with h ¼ v ¼ 0.2). In

the first stage (until t � 0.5 � 107 min), bacteria evolve to

increase growth rates, while phage evolve to track their hosts

through genotypic space. Once the bacteria reach the maximum

growth rate genotype at h ¼ 0.5, they can no longer improve fit-

ness by increasing growth rate (and would remain at this fitness

peak indefinitely in the absence of phage [28]). However, phage

create a strong selective pressure for host diversification owing

to density-dependent predation, which favours host mutants

with a lower genetic match to dominant phage strains. This

causes an evolutionary branching event to occur between

t � 0.6 � 107 min and t � 1.1 � 107 min. Further evolutionary

branching events occur until t � 2.5 � 107 min. After this

period of coevolutionary diversification, the distribution of

strains settles down to a quasi-stable state for the remainder

of the simulation. At this stage, there are five clearly identifia-

ble clusters of similar genotypes for both bacteria and phage,

where each cluster (hereafter, ‘species’) represents an ecologi-

cally similar (but genetically diverse) sub-population. Each

phage species is attracted towards its two flanking host species,

while each host species is repelled by its flanking phage species;

this process of attraction and repulsion sometimes results in
transient oscillatory dynamics (this effect is clearly seen for

t � 2 2 3 � 107 min).

Figure 3 visualizes the community structure for a time slice

from the simulation taken at t ¼ 3.5 � 107 min. There are 64

bacterial strains and 97 phage strains present in the commu-

nity. Densities of the different strains vary widely and are

unevenly distributed, but five clearly identifiable species of

similar genotypes in both the bacteria (figure 3c) and phage

(figure 3d) populations are visible. For ease of reference, we

label the host species H1–H5 and the phage species P1–P5.

We visualize interactions between phage and bacterial

strains by plotting the (density-independent) adsorption

rate matrix (figure 3a) and the (density-weighted) infection

rate matrix (figure 3b). These matrices represent a snapshot of

the coevolving interactions between phage and bacteria—note

that the matrices include all strains that are present, but do not

cover the whole genetic space (i.e. absent strains are not plotted).

Each host species interacts strongly with a single phage species,

as indicated by the modular structure apparent in the adsorption

rate matrix (e.g. P1 is specialized on H1, P2 on H2, and so on).

However, there are also weaker interactions with adjacent

phage species (e.g. H2 is also weakly affected by P1 and P3).

The infection rate matrix gives a different view of the commu-

nity; whereas the adsorption rate shows a potential interaction,

the infection rate shows the interaction in terms of actual mor-

tality of the host caused by the phage in the ecological

interaction. The infection rate matrix shows that most of the

potential interactions shown in the adsorption rate matrix

are ecologically insignificant, since only a few strains in each

species are present at sufficient density for a strong interaction

to occur. Also there is a many–many interaction structure,

with each bacterial strain infected by multiple phage strains,

and each phage infecting multiple bacteria. Interestingly, the

infection rate matrix also suggests a degree of modularity,

though module membership appears different from that seen

in the adsorption rate matrix.
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Figures 4 and 5 show how the adsorption rate and infection

rate interaction networks, respectively, change over time as

bacteria and phage coevolve. Initially, there is low diversity

and the matrices are small, but over time matrix size increases

as hosts and phages diversify. At later time points, matrix size

reduces somewhat, reflecting an overall drop in diversity as

competition excludes weaker strains and the system converges

to a quasi-stable state. Matrix sizes show trends in strain diver-

sity, with host diversity rising to a stable level of around 60–65

strains and phage diversity initially rising, then falling, during

the course of the simulation. This trend is reflected at smal-

ler scale in the sizes of the modules in the adsorption rate

matrix. Modular interaction structure is always apparent in the

adsorption rate matrix, though the number of modules varies

over time. Structure in the infection rate matrix is harder to dis-

cern visually, though some modularity seems to be apparent at

later time points.

We converted our quantitative interaction matrices into

binary matrices using a threshold filter (see §2.3), to give

matrices suitable for comparison with reported phage–

bacteria interaction networks [22,23]. The resulting binary

networks are a coarse-grained representation of the under-

lying data, but can be used with the LP-BRIM and NODF

algorithms to quantify modularity and nestedness, respect-

ively. Figure 6 shows the effect of different thresholds. The

size and fill of the resulting binary matrix depends on

the threshold used. The importance of choosing an appro-

priate threshold is well illustrated by the adsorption rate

matrices, where choosing too low or too high a threshold

results in binary matrices that do not capture the modular

structure apparent in the raw data; setting too low a threshold

gives overlapping modules, setting too high a threshold may

result in loss of some modules. For the remainder of the

analysis, we use an adsorption rate threshold of 0.8f and
an infection rate threshold of 0.0083 cells (ml min)21, which

typically gave good agreement with visual interpretation of

the raw data. The results presented below for adsorption

rate matrices are weakly sensitive (but qualitatively robust)

to the choice of threshold (data not shown). Results for

infection rate matrices are robust to choice of threshold.

The order of rows and columns in the binary matrices can be

permuted without changing the underlying network structure.

Figure 7 shows binary networks formed from the adsorption

rate and infection rate matrices for the time slice (t ¼ 3.5 �
107 min), as shown in figure 3. Different row and column re-

orderings are applied in each panel. Figure 7a(ii),b(ii) shows a

random re-ordering that removes the phylogenetic ordering

that arises from model formulation (whereby hosts and

phages are ordered by genotype), thus representing how

unsorted results of an experimental infection assay might

appear. Figure 7a(iii),b(iii) is sorted to maximize modularity

using the LP-BRIM algorithm, with identified modules high-

lighted by shading. Figure 7a(iv),b(iv) is sorted to maximize

nestedness using the NODF algorithm.

For the same case study, we used binary interaction

matrices to study the temporal dynamics of nestedness (from

the NODF algorithm) and modularity (using Barber’s modu-

larity score returned by the LP-BRIM algorithm). Figure 8

shows the mean values across an ensemble of 10 simulations

with identical parameters. The ensemble runs differ only in

the pseudo-random numbers used in the stochastic mutation

process. This stochastic variation leads to different timing

and order of evolutionary branching events, but the quasi-

steady state reached is similar in all simulations (data not

shown). Host strain diversity rises over time before levelling

off, while phage strain diversity is highest during the diversi-

fication phase and decreases as quasi-steady state is

approached.
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Figure 8b(i)(ii) shows that the interaction structure

shown by adsorption rate matrices converges on five clearly

identifiable modules that are well detected by the LP-BRIM

algorithm. Module identification is less reliable early in the

simulation, when the algorithm sometimes produces false

positives (e.g. by identifying ‘modules within modules’),

giving large variances in module number early in the simu-

lations. Fewer modules are detected in the infection rate

matrices and there is greater variance in the number detected

throughout the simulations. Barber’s modularity metric is

significantly higher for the adsorption rate matrices than for

the infection rate matrices throughout the simulations, con-

firming the visual suggestion (figure 3) of a stronger

modular structure for this form of interaction. We also per-

formed significance tests against Barber’s modularity for

the adsorption rate and infection rate matrices for all simu-

lations at t ¼ 2.5 � 107 min and t ¼ 5 � 107 min, finding that

modularity for all matrices tested was significant at a level

of p , 0.01.

Figure 8c(i)(ii),d(i)(ii) shows time series for nested-

ness (measured by NODF) and statistical significance of

nestedness (here we assume statistical significance at a level

of p , 0.05). Global nestedness of the whole adsorption rate
matrix is typically low and rarely statistically significant. By

contrast, global nestedness of the whole infection rate

matrix is relatively higher and (after the initial diversifica-

tion phase of the coevolutionary dynamics) almost always

statistically significant.

For each simulation, we also calculated nestedness

for the modules identified by the LP-BRIM algorithm.

Figure 8c(i)(ii),d(i)(ii) shows the mean within-module NODF

score across all modules detected in a particular simulation,

as well as the proportion of modules which were statistically

nested. Mean within-module nestedness is typically higher

than global nestedness for both forms of interaction matrix.

Mean within-module nestedness of adsorption rate matrices

is typically low and statistically insignificant for most of

the time series, but rises and shows a higher frequency

of statistical significance approaching the mid-point of the

simulation runs, when phage diversity is the highest. Visual

inspection of the adsorption rate matrices showed that a

large proportion of identified modules were completely filled

(all 1s). These cases give NODF ¼ 0 at a significance level of

p ¼ 1. For the remaining minority of non-filled modules,

mean within-module nestedness was typically strong and

statisticially significant. Mean within-module nestedness of

infection rate matrices is typically high and in most cases

statistically significant.
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Overall, there is a mixed signal from our statistical compari-

son of binary interaction networks formed from adsorption

rates and from infection rates. Both forms of interaction

network show a multi-scale nested-modular interaction struc-

ture to some extent. For adsorption rate matrices, global

modularity is very strong while within-module nestedness is

often weak and statistically insignificant; however, there is a

minority of modules which are strongly and significantly

nested during the middle section of the simulations when

phage diversity is highest. For infection rate matrices, global

modularity is weaker, but identified modules are typically sig-

nificantly nested. Interestingly, the infection rate matrices are

also typically significantly globally nested.
4. Discussion
Here, we have shown that a parsimonious ‘relaxed lock-and-

key’ coevolution model based on genetic matching is sufficient

to reproduce several core structural features of observed natural

communities of bacteria and phage. Negative frequency-

dependent selection from phage drives host diversification,

which is then mirrored by phage diversification to track their

hosts. At steady state, a diverse community of hosts and

phages is maintained by kill-the-winner ecological dynamics.
Two forms of phage–bacteria interaction network representing

the coevolved communities show similar multi-scale structural

patterns to those observed for natural communities; modularity

at large phylogenetic scales and nestedness at smaller scales.

We have aimed with our theoretical study to show that

a very simple coevolutionary model can produce nested-

modular structures and have selected the chemostat formalism

as one of the simplest models in which coevolutionary

dynamics can be studied. We do not rule out the possibility

that other processes, including spatial structure or multiple

resources, might affect observed natural patterns. However,

such processes lie beyond the scope of our current study,

which aims to show what might occur as a result of coevolution

alone, in the absence of any other (possibly confounding)

additional processes. We believe that the most useful models

are often the simplest and argue that the use of the chemostat

formalism does not affect the generality of our results.

An important caveat is that there is currently only a single

dataset [23,25] showing the macroscale nested-modular

interaction structure that the relaxed lock-and-key model pro-

duces. Thus, it is possible that we are over-estimating the

importance of this dataset and hence misjudging the capa-

bility of the relaxed lock-and-key model to explain natural

community structures. However, there are multiple obser-

vations of stable high diversity in natural phage–bacteria
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communities (e.g. [3,5,18,20]), as well as many examples of

nested interaction networks at smaller phylogenetic scales

[22]. At larger phylogenetic scales, there are good arguments

to support the specificity of infection needed to produce a

modular network structure; for example, phage target par-

ticular receptors which may only be present in a small

number of bacterial lineages, limiting their potential host

range [18,29]. Thus, we cautiously suggest that the nested-

modular structure should be robust at large phylogenetic

scales and propose that additional large-scale cross-infection

studies would be a fruitful area for further research.

In the adsorption rate matrices, the nested-modular pattern is

most clearly observed when the system is still in the transient

diversification phase, i.e. before the system reaches an evolution-

ary steady state and while the species in the system are still

adapting. This section of the coevolutionary dynamics is also

where the phage diversity is highest. Since the adsorption rate

network includes interactions irrespective of the density of the

bacteria–phage strains involved, it probably includes many

interactions between low-density strains which are in process

of being out-competed and excluded from the system by fitter

mutants. This may have implications for observations of natural

communities, where overlapping ecological and evolutionary

time scales for bacteria and phage [10,11] imply that many natu-

ral communities may not be at evolutionary steady state. We

hypothesize that nested-modular structures in density-indepen-

dent interaction networks will be most obvious when overall

adaptation rates within the community are high; for example,

in communities adapting to a changed or dynamic environment.

A note of caution must be raised about the methodological

grounding for comparisons of model output to empirical obser-

vations. The two forms of interaction network that we studied

(based either on adsorption rates or on infection rates) showed

different statistical features. In this study, adsorption rate

networks showed higher global modularity and lower within-

module nestedness, whereas infection rate networks showed

lower global modularity and higher within-module nestedness.

While both forms of interaction network studied here showed

broadly similar multi-scale structure, in general the fit to empiri-

cal data will depend both on which form of model network was

chosen and also on the method by which the empirical network

was produced. With theoretical models, all information is

accessible—thus our model networks accurately reflect the full

diversity of the model community. However, methods for the

more difficult task of constructing interaction networks for natu-

ral communities inevitably introduce different kinds of bias

into the network structure that is output. A common experimen-

tal method for determining interaction networks for natural

phage–bacteria communities appears to be to collect a sample

from the natural environment, isolate as manystrains as possible,

then use a plaque assay to test for infection of each potential host

by each phage. However, sampling inevitably carries a bias

towards collecting only the more numerous strains, of which

only a small fraction will be cultivable [37,38]. Thus, while

empirical studies reporting natural interaction networks may

aim to present a complete record of all strains present in the

community (i.e. to produce something similar to our model

adsorption rate networks), they may actually (without any fail-

ure of the experimental method) be presenting networks more

akin to our infection rate networks, which include only inter-

actions between abundant strains. Thus, it is not clear which of

our binary interaction networks should be compared with the

networks reported for natural communities.
Another methodological issue surrounds the comparison

of weighted and binary interaction networks; here, we have

converted quantitative networks to binary networks to aid

comparison with empirical data. Infectivity assays commonly

measure only the presence or the absence of infection, rather

than the messier rate/affinity data that indicate the quantitative

strength of interactions, which are harder to measure [24,39,40].

Thus, empirical data are often given in binary form and ana-

lysed using statistical tools developed for binary matrices.

Conversion of quantitative data into binary form loses infor-

mation and inevitably introduces bias that will accentuate

some features and mask others. A challenge for empirical

researchers is to develop methods for measuring interaction

strengths between phage and bacterial strains, rather than

just the presence or the absence of interaction [40]. A challenge

for theoretical researchers is to develop better statistical

tools for analysing the weighted phage–bacteria interaction

networks that will thereby be produced.

The original kill-the-winner model of aquatic virus ecology

[16] describes one-to-one interactions between viruses and bac-

teria, such that no cross-infections occur. In that scenario,

specialized infection leads to negative density-dependent pre-

dation from viruses, which favours rare bacteria phenotypes

and acts to maintain diversity. This contradicts available data

for real phage–bacteria systems [22,23]. The relaxed lock-

and-key model allows for cross-infection based on genetic

similarity, while producing a stable diverse community main-

tained by kill-the-winner dynamics. Observations of natural

kill-the-winner dynamics [19] are thus consistent with the

relaxed lock-and-key model. We note that several alternative

coevolution models are unlikely to capture nested-modular

interaction structures and kill-the-winner ecological dynamics.

Gene-for-gene genetic models are consistent with arms race

dynamics [41] and transitive range expansion, but do not

permit stable high diversity without the addition of explicit

trade-offs [14] (and even then diversity is typically limited to

dimorphism [8]). Matching-alleles genetic models can drive

diversification [14,41], but do not produce the modular

structure or within-module nestedness.

There remain other mechanisms that will affect the inter-

actions between bacteria and phage and several of these

could potentially produce high diversity and nested-modular

network structures. The relaxed lock-and-key model is per-

haps most easily interpreted as representing coevolution of

phage tail-fibres and bacterial cell-surface receptors. However,

the real infection process is multi-stepped and coevolution

may occur at different stages, including initial adsorption to

extracellular surface receptors [42] and also subsequent intra-

cellular defence mechanisms [29,43–46]. Additionally, our

model does not take into account non-mutational processes

of genetic variation, such as gene loss and horizontal gene

transfer [18,40], or the possible role of environmental hetero-

geneity and/or spatial localization [23]. Any of these factors

can affect natural community structures and could in principle

have produced the patterns created here by coevolution.

The strength of the relaxed lock-and-key model is by appeal

to Occam’s razor; it offers a parsimonious and sufficient

explanation of multiple observed phenomena.
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