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Apart from interacting, prey and predators may also avoid each other by

moving into refuges where they lack food, yet survive by switching to an

energy-saving physiological state. Lotka–Volterra models of predator–

prey interactions ignore this option. Therefore, we have modelled this

game of ‘joining versus opting out’ by extending Lotka–Volterra models

to include portions of populations not in interaction and with different

energy dynamics. Given this setting, the prey’s decisions to join or to opt

out influence those of the predator and vice versa, causing the set of possible

strategies to be complex and large. However, using game theory, we ana-

lysed and published two models showing (i) which strategies are best for

the prey population given the predator’s strategy, and (ii) which are best

for prey and predator populations simultaneously. The predicted best strat-

egies appear to match empirical observations on plant-inhabiting predator

and prey mites. Here, we consider a plausible third model that does not

take energy dynamics into account, but appears to yield contrasting predic-

tions. This supports our assumption to extend Lotka–Volterra models with

‘interaction-dependent’ energy dynamics, but more work is required to

prove that it is essential and that what is best for the population is also

best for the individual.
1. Introduction
Theory on the ecology of food webs is still founded to a considerable extent on

the assumptions underlying a predator–prey model proposed independently

by Lotka (1925) and Volterra (1926) [1–4]. One of these assumptions is that pre-

dators and prey are continuously exposed to each other and therefore interact.

In reality, however, predators and prey also have the option to avoid interacting

with each other. They may then move into refuges where there is no prey or

food and where survival demands a switch to an energy-saving physiological

state, such as diapause.

Diapause has always been thought to emerge solely to overcome the winter

season and to emerge in response to abiotic factors signalling the onset of the

winter season, but it may also emerge in response to food scarcity and/or

the risk of being eaten, as recently shown for the case of predator mites and

fruit-tree red spider mites (Acari: Phytoseiidae, Tetranychidae) [5–12].

Although empirical proof of these diapause-governing principles is limited,

they may well hold generally in ecological interactions.

We have extended Lotka–Volterra predator–prey models in two ways

[13,14]: (i) by splitting the predator population as well as the prey population
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in two portions, one that is joining the interactions and

another that is not; and (ii) by including energy dynamics

that differs between those joining the interactions and those

opting out of the interactions. Using this extended Lotka–

Volterra model, we ask how predators and prey should

best allocate their time between joining the interactions and

avoiding them. This question is not easy, because the best

solution has to be determined from a large set of possible

strategies, and because the strategies can be quite complex

given that the prey’s decisions to join or opt out influence

those of the predators, and vice versa. However, using

game theory, we have shown which strategy is best for the

population of prey [14] and which is best for the population

of prey and the population of predators simultaneously [13].

In this paper, we review these two models, their assumptions

and their predictions, and additionally we present and

analyse a third model that emerges as a plausible simplifica-

tion of the earlier models and that differs from them in that it

does not take energy dynamics into account. Hence, this new

model allows us to ask whether including energy dynamics

in the Lotka–Volterra models, extended as explained earlier,

is essential to the predictions from these models. Moreover,

we can compare the predictions of either of these models

with empirical observations on opting-out strategies in

natural predator–prey systems.

By making good use of optimal control theory and game

theory, we are able to determine what is best for the popu-

lations of predator and prey. Whether these solutions are

also best for the individual predator and prey is not analysed

in this paper and therefore remains to be determined. In our

view, both types of solutions are of scientific interest in their

own right as they show how predominating selection levels

determine what is the best strategy. If the predicted best strat-

egy depends critically on the selection level taken into

account in the models, then this may help us to infer which

selection level dominates in natural systems by comparing

the predicted and empirically observed strategies.

This paper is structured as follows. In §2, we briefly review

what is empirically known about opting-out (diapause) strat-

egies in a well-investigated predator–prey system involving

predator mites (Acari: Phytoseiidae) and their prey, fruit-tree

red spider mites (Acari: Tetranychidae). In §3, we first discuss

the Lotka–Volterra models extended to include energy

dynamics of predators and prey joining or opting out of the

interactions. Then, we propose and analyse a new plausible

model that lacks energy dynamics. Finally, in §4, we compare

the predictions from the models presented and discuss

whether including energy dynamics in the models is essential

to their predictions. Moreover, we compare the strategies pre-

dicted with those empirically observed in plant-inhabiting

predator and prey mites.
2. Observed behaviour of the predator mites and
the fruit-tree red spider mites

Our models were inspired by studies on the use of predator

mites (Acari: Phytoseiidae) for biological pest control of

fruit-tree red spider mites (Acari: Tetranychidae) that feed

on and damage leaves of apple trees [15,16]. Winters (cover-

ing six to seven months) are usually harsh and as such

endanger the survival of prey [15] and (even more so) that

of predators [15,17]. Predator and prey densities in the
following summer season depend on their numbers entering

a state of physiological rest (the so-called diapause state)

during the previous year. The decision to enter diapause

promotes the survival of the individual during winter and

emerges from induction by a combination of sufficiently

long night lengths and low temperatures [7,8]. However,

using another similar spider mite species (more amenable

to experimental treatment), it was shown that the decision

to enter diapause also depends on predator density during

summer [10–12]. From the point of view of the prey mite,

this behaviour makes intuitive sense as it faces a grim

future with increasing predator densities and thus an

increased risk of death: it may then do better by giving up

reproduction, moving away from leaves to twigs and

branches (a refuge from predation, but without food) and

by entering diapause earlier than indicated by the predictors

of season length (night length and temperature). However, if

too many prey mites would make the same decision, then

this could create a negative feedback on the predator mite

population, so that, at some point in time, the prey mites

would profit from the decreased predation risk by terminat-

ing their diapause and returning to the leaves. This leads

us to conclude that the prey’s decision to enter diapause is

part of a game where the predator is the leader, and the

prey needs to find an optimal response to the predator.

Another complicating factor is that an early diapause raises

the demands on the energy storage of the individual prey mite,

which needs to cover a longer period before terminating

diapause at the beginning of the next summer season—the

energy level at diapause termination will determine the repro-

ductive capacity of the prey mite [11]. Thus, the decision to

enter diapause within a year will depend on the current

internal energy store of the prey mite, as this will have far-

reaching consequences for winter survival and reproduction

in the summer season of the next year. Given the negative feed-

back between predator and prey and the complexity of the

decisions that prey mites are faced with, it is virtually imposs-

ible to intuitively pinpoint the most likely strategies that will

emerge from natural selection.

There is less information on the diapause behaviour of the

predator mites. However, the predator mites are much more

flexible in entering diapause or active states, and can switch

among them multiple times during the season. Physiological

decision variables depend on the predator and prey densities

during summer, rather than only on reliable season indicators,

such as night/day length and temperature [5,6].
3. Three models of the predator – prey
interactions

In the remainder of this paper, we will focus on optimal con-

trol and game-theoretical models of interactions between

predatory mites and fruit-tree red spider mites. Using these

methods, we will seek optimal strategies for the populations.

These strategies are supposed to be a result of evolutionary

processes that take place at larger temporal and spatial

scales (e.g. metapopulation scale) than considered in our

time-bounded and spatially unstructured models. The results

that are optimal may or may not be comparable with the

results observed in reality. Throughout this paper, if we

talk about the decisions of predatory mites and/or prey

mites, then we are referring to the decisions taking place in
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the long-term evolutionary process and if we talk about opti-

mal decisions, we mean the decisions that are the result of

this evolutionary process.

In our previous work, we have developed two models of

intra-seasonal interactions between predator mites (Acari: Phy-

toseiidae) and fruit-tree red spider mites (Acari: Tetranychidae).

Both models extend the Lotka–Volterra equations [2,4] and

include energy variables. We compare these two models

with a new model proposed in this paper, which is also an

extension of the Lotka–Volterra equations, but does not

include an energy variable.
uR = 1

uR = 1

uR = 0

uR = 0

uR = 0

t = T

t = T

t = T

t = 0

t = 0

t = 0

t = t2

t = t2

t = t1

Figure 1. Scheme of possible optimal active ratio uR for the prey (uR(t) [
[0,1] for each t [ [0, T ]). Based on the proposed dynamics and the optim-
ization problem, we have shown irreversibility and (largely) monotonicity of
the strategy profile. Note that the optimal strategies do not need to be con-
tinuous corresponding to the singular events in the outcome of the
optimization problem. (Adapted from [14].) (Online version in colour.)

Interface
Focus

3:20130034
3.1. Optimal control model with energy dynamics
This model was introduced and analysed in our previous

article [14]. The predator is assumed to be active the entire

season; the goal is to find the optimal active/diapause ratio

for the prey. The fitness function for the prey models its

survival capability, and is related to the number of the indi-

viduals entering diapause during the summer. Therefore,

the prey mites choose a uR,*(t) [ [0,1] for t [ [0, T ], where

uR;� ¼ arg sup
uRð�Þ

ðT

0

ð1� uRðtÞÞERðtÞRðtÞd t: ð3:1Þ

In (3.1), the constant T denotes the length of the season.

Moreover, with the function uR we denote the strategy for

the prey, namely uR(t), t [ [0,T ]. The decision variable uR(t)
indicates the portion of the prey population being active at

time t : uR(t) [ [0,1], for t [ [0,Tn]. R(t) represents the prey

population at time t. Accordingly, the quantity (1 – uR(t))R(t)
represents the number of the prey individuals in diapause at

time t. Furthermore, the variable ER(t) [ [0,1] represents the

(normalized) energy that is available to an average individual

within the prey population: if ER(t) ¼ 0, then the average indi-

vidual is dead, whereas ER(t) ¼ 1 represents maximal energy

for the average individual.

The system dynamics within each summer season is mod-

elled as follows (here P(t) denotes the predator population at

time t):

dERðtÞ
dt

¼�mð1�uRðtÞÞERðtÞþ duRðtÞ� duRðtÞERðtÞ; ð3:2Þ

dPðtÞ
dt
¼ �aPðtÞ þ bguRðtÞPðtÞRðtÞ ð3:3Þ

and
dRðtÞ

dt
¼�aRðtÞþguRðtÞERðtÞRðtÞ�buRðtÞPðtÞRðtÞ: ð3:4Þ

The quantities a, b, g . 0 and m,d . 0 are given parameters

and except for d can be instantiated based on the field and

laboratory observations of the mites and their interactions.

As parameter d is difficult to estimate, it is kept free, and

the results presented in the article [14] are valid for all

values of d, unless stated differently. Both the number of pre-

dators P(t) and that of prey R(t) decrease at a rate a. In

equation (3.3), the number of predators P(t) increases at a

rate that is proportional to the rate of predation, represented

by the product of the number of actual active prey uR(t)R(t)
and the number of predators P(t) with feeding rate bg. When-

ever active, the prey population in (3.4) decreases—owing to

predation—proportionally to the number of active prey and

number of predators (at rate b), whereas it increases—

owing to feeding and reproduction—proportionally to the

number of prey and the average internal energy (with rate

g). The energy of the prey in (3.2) varies as follows: whenever
active (feeding), it increases proportionally to the distance to

its maximum (1 2 ER(t)) with rate d; on the other hand, when-

ever in diapause, it decreases proportionally to the actual

average energy of the prey (with rate m), as individuals in dia-

pause slowly use their energy.

The optimal strategy of the prey in this model, which

we found by using the Hamilton–Jacobi–Bellman (HJB)

approach combined with the method of singular characteristics

[18–20], follows the following rules (figures 1 and 2):

— in the beginning of the summer season, the prey can be in

any state (all active, all in diapause or anything in

between), whereas at the end of the summer season, all

prey individuals are in diapause;

— if all prey individuals are active in early summer, then the

prey will start entering diapause at a certain point in time

and the proportion of diapausing individuals increases

monotonically. Similarly, if only part of the prey popu-

lation is active in early summer, then all prey end up

being in diapause at one point in time and stay in dia-

pause until the next year. Yet, if all prey individuals are
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t = Tt = 0
uR = 0

uR = 1

more predators

Figure 2. If the number of predators increases (while all other state variables
and parameters stay the same), the prey individuals begin to enter diapause
earlier, but more gradually, balancing between having enough energy to sur-
vive the diapause and escaping predation. Here, uR indicates optimal active
ratio for the prey (uR(t) [ [0,1] for each t [ [0, T ]). (Adapted from [14].)
(Online version in colour.)

t = Tt = 0

uP = 1

uP = 0

Figure 3. The optimal strategy for the predator is to stay active during the entire
summer season. Here, uP indicates optimal active ratio for the predator (uP(t) [
[0,1] for each t [ [0,T ]). (Adapted from [13].) (Online version in colour.)
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in diapause in early summer, then they continue to stay in

diapause until the next year;

— the time (expressed in real time) of diapause onset

depends on the energy of the prey, on predator popu-

lation size, and on the rate of energy utilization, but it is

independent of prey population size (i.e. timing of

diapause does not require quorum sensing);

— if predators are absent from the environment, then all

prey individuals are in diapause later than if the predators

are present (figure 3). Empirical observations on diapause

of fruit-tree red spider mites on apple trees in the field

(M. W. Sabelis & W. P. J. Overmeer 1987–88, unpublished

data) reveal that virtually all individuals become active in

early summer and starting from a certain point in time the

population enters diapause, gradually. Moreover, exper-

imental manipulation of the predator population in the

field showed that the fruit-tree red spider mites enter dia-

pause earlier in the presence of predator mites and once in

diapause they stay in diapause. However, apart from an

effect of predator presence, the density of fruit-tree red

spider mites also had an effect on the time at which

diapause was initiated, suggesting that some form of

quorum sensing (possibly via spider–mite-induced plant

volatiles) takes place; and

— if more predators are present in the environment at the

beginning of the season, then the prey individuals start

entering diapause earlier, but the process of entering dia-

pause is more gradual than if less predators are present;

this effectively yields the previous observation (figure 3).

3.2. Game-theoretical model with energy dynamics
This model was introduced and analysed in Staňková et al.
[13]. It extends the model presented in §3.1 as both predators

and prey can make decisions to be active or in diapause.

Therefore, the summer interactions between the predator

mites and the prey mites can be formulated as a game
played with a finite horizon [0,T ] in which the predator

mites select a uP,*(t) [ [0,1] for t [ [0,T ], where

uP;� ¼ arg sup
uPð�Þ

ðT

0

ð�aPðtÞ þ bduPðtÞEPðtÞPðtÞÞd t; ð3:5Þ

whereas the prey mites choose a uR,*(t) [ [0,1] for t [ [0,T ],

where

uR;� ¼ arg sup
uRð�Þ

ðT

0

ð1� uRðtÞÞERðtÞRðtÞd t; ð3:6Þ

subject to the following system dynamics:

dEP

dt
¼ �acð1� uPÞEP þ euPuRR� auPEP; ð3:7Þ

dER

dt
¼ �dhð1� uRÞER þ fðtÞgðRÞuR � duRER; ð3:8Þ

dP
dt
¼ �aPþ bduPEPP ð3:9Þ

and
dR
dt
¼ �1Rþ duRERR� guPuRPR: ð3:10Þ

In (3.7), a . 0 is the energy decrease rate for the predator

when active, ac (with c [ [0, 1)) is the energy decrease rate for

the predator when in diapause, e is the energy increase rate

for the predator when feeding (here the energy increase is pro-

portional to the number of active fruit-tree red spider mites that

are preyed upon and to the number of active predator mites).

In (3.8), d . 0 is the energy decrease rate for the prey

when active, dh (with h [ [0,1)) is the energy decrease rate

for the prey when in diapause, f (t) is a time-dependent func-

tion characterizing the presence of nutrients for the fruit-tree

red spider mites in the environment ð0 , f ð�Þ � 1Þ, g(Rn) [

[0,1] is a non-increasing function of its variable, which

represents competition among individual fruit-tree red spider

mites—hence f(t)g(Rn)uR is a term representing the increase of

energy in the prey owing to its active state. The number of pred-

ator mites slowly decreases with rate a . 0 and increases

proportionally to their energy and number of active individuals

with rate bd where b . 0, d . 0. The number of fruit-tree red

spider mites decreases with death rate (1 . 0) increases propor-

tionally to their energy and number of active individuals with

rate d . 0 and decreases proportionally to the number of active

predator mites and number of active fruit-tree red spider mites

with rate g . 0. As before, EP and ER refer to the energy levels

of the average predator and prey individual, respectively.

The fitness function for the predator (3.11) reflects the fact

that all predator individuals being alive at the end of the

summer season (independently of whether they are active

or in diapause) have a chance to survive the winter. As in

the previous model, the fitness function for the prey (3.12)

reflects the fact that only the prey individuals that are in dia-

pause at the end of the summer season have chance to

survive the winter, whereas the longer in diapause, they are

and the more internal energy they have, the higher chance

of survival they have.

The problem was solved as a Stackelberg game with the

predator as the leader and the prey as the follower. The opti-

mal behaviour for the predator is shown in figure 3. While it

is optimal for the predator to stay active during the entire

summer season, the behaviour of the prey is the same as in

the optimal control model introduced in §3.1.



uR= 1

uR= 0

uP= 0

uP= 1

t = 0 t = T

Figure 4. Optimal behaviour for the predator and prey in the game-theoretic
model without energy dynamics, with uR and uP denoting the portion of the pred-
ator mites and the prey mites being active, respectively. Behaviour at the end of
the season (on the right-hand side of the dashed line): either the switches
between being active and in diapause happen exactly at the same time for
both predator and prey (see appendix A for discussion on this), but the predator
may also switch before the prey does. This would suggest that the predator reacts
to the behaviour of the prey in reverse time, as opposed to the reaction in the real
time, which we would expect. Behaviour before the end of the season (before the
dashed line): the behaviour here might vary as suggested by the outcomes of
numerical case studies. See appendices A and B for derivation of this result
and numerical case studies. (Online version in colour.)
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3.3. New model: game-theoretical model without
energy dynamics

The similarity in predictions from the two models introduced

in §§ 3.1 and 3.2 is striking. While we assumed that the energy

variable is necessary in order to model the system in question

realistically enough, we decided to validate this by introducing

a game-theoretical model introduced in §3.2 simplified in that

it does not take energy dynamics into account. This model is a

straightforward extension of the classical Lotka–Volterra

model, enriched by the decision variables for the predator

and prey. Moreover, it naturally emerges from the models

introduced in §§3.1 and 3.2. Can such a simpler model yield

similar results as the optimal control model with energy and

the game-theoretical model with energy?

In this new model, we again assume that the predator

mites choose uP,*(t) [ [0,1] for t [ [0,T ], so that

uP;� ¼ arg sup
uPð�Þ

ðT

0

ð�aP uP Pþ bPuPuR PRÞd t; ð3:11Þ

whereas the prey mites choose a portion of individuals

that are active (versus those in diapause) uR,*(t) [ [0,1] for

t [ [0,T ], where

uR;� ¼ arg sup
uRð�Þ

ðT

0

ð1� uRðtÞÞRðtÞd t: ð3:12Þ

The system dynamics appears to be a trivial extension of the

Lotka–Volterra model:

dP
dt
¼ �aP uP Pþ bPuPuR PR ð3:13Þ

and

dR
dt
¼ aRuR R� bRuPuR PR: ð3:14Þ

Here,aP . 0 is the death rate of the predator,aR . 0 is the death

rate of the prey, bP . 0 is the population increase rate for the

predator based on feeding and bR . 0 is the population

decrease rate for the prey owing to predation. Note that if all

predator mites are in diapause, then their number does not

change. If they are active, then they need to feed on active

prey mites in order to increase their number. Similarly, if all

prey mites are in diapause, then the number of predator mites

does not change. If some of the predator mites are active, the

difference between the first and the second term in (3.14) indi-

cates whether their number will decrease or increase. We

assume that 0 , aP � bP, 0 , aR � bR, and 1 � P(0), R(0).

Within a summer, the goal of both predator and prey (the

players) is to maximize their chances of survival [21,22], which

translates to the optimization problems defined by (3.11) and

(3.12), subject to the dynamical constraints (3.13) and (3.14).

We assume that the game between the predator mites and

the prey mites has a Stackelberg structure, i.e. we assume

that the predator can impose its decision on the prey.

Remark 3.1. The system of predatory mites and fruit-tree red

spider mites is inter-seasonal, i.e. the summer season lasting

for about five months is followed by the winter season, last-

ing for about seven months. Therefore, equations (3.13) and

(3.14) apply to a period equal to a summer season, thus

there are no long-term dynamics.

However, let us analyse the equilibrium dynamics

obtained for various values of uP and uR. The equilibrium
points are fP*,1 ¼ R*,1 ¼ 0g and fP�,2 ¼ aR/bR uP;R�,2 ¼
aP/bP uRg; where the latter point is well defined for uR,

uP = 0. The Jacobian of the system (3.13) and (3.14) is

J ¼ �aP uP þ bP uP uR R bP uP uR P
�bR uP uR R aR uR � bR uP uR P

� �
:

Eigenvalues of J at equilibrium point fP*,1 ¼ R*,1 ¼ 0g are

aRuR and aPuP. Eigenvalues of J at equilibrium point

fP�;2 ¼ aR/bR uP;R�;2 ¼ aP/bP uRg are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�aR uRaP uP
p

and

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�aR uRaP uP
p

: Therefore, if uP ; 0 and uR ; 0, both equilibria

are marginally stable (namely related to periodic trajectories over

the two populations). Otherwise, both equilibria are unstable.

As derived in appendix A of this paper, the optimal strat-

egies of the predator and prey follow the pattern depicted in

figure 4. As the number of switches in the strategies depend

on the initial parameters aP, aR, bP, bR, season length T and

initial values P(0) and R(0), results of the numerical case

studies are shown in figures 6 and 7 of appendix B. Please

bear in mind that these results are just approximations of the

optimal results obtained by grid-based numerical techniques.

That is why we have chosen an extremely small T which pro-

vides a relatively high precision of the outcome. For details

about the numerical computations, see appendix B.

Contrary to the models introduced in §§3.1 and 3.2, the opti-

mal strategies of the predator and prey mites in apple orchards

are much more versatile; the predator and prey clearly react to

each other’s decisions. However, note that the mechanism of

their behaviour is much more clear when studying the problem

in reverse time (either the predator or the prey switches their

behaviour at the same time or the predator reacts to the

behaviour of the prey). The possible frequent switching in the

strategies (dependent on parameters aP, aR, bP, bR, season

length T and initial conditions P(0) and R(0)) does not match

empirical observations on the diapause behaviour of predator

mites and fruit-tree red spider mites.
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Our analytical computations (see appendix A) yield a pre-

diction that is counterintuitive at first: the predator may opt

out of the interaction before the prey. However, this is not sur-

prising when it is realized that our analytical computations

yield predictions for what is optimal for the population

(rather than the individual). Indeed, the predator population

may profit from opting out because it allows the prey popu-

lation to grow and hence represent later a richer food source

for the predator population. This option is known as ‘the

milker–killer dilemma’ in the literature [23–25].
Interface
Focus

3:20130034
4. Discussion
In §§3.1–3.3, we introduced three models trying to capture

diapause induction and termination behaviour of predator

and prey mites. The first two models seem to correspond to

the laboratory and field observations very well: it is expected

that the prey reacts to the presence of the predator by

changing the manner and speed of its diapause induction.

In most field observations, the predator indeed stays active

the entire season. However, in rare cases, it might also happen

that the predator enters and leaves diapause during the

season, whereas the diapause induction in the prey is irrevers-

ible. This is due to the fact that the diapause in predator mites

is much more flexible than that in the prey mites. In other case

studies, it was observed that the predator mites enter diapause

once the prey enter diapause; subsequently, the prey might

become active when the predator is in diapause, followed by

the predator becoming active as well. While repeated entering

diapause/active state was an outcome of the game-theoretical

model without energy introduced in §3.3, the way in which

the predator and prey mites are predicted to enter the

active/non-active (diapause) state is too versatile and differs

from our empirical expectations. We conclude that models,

including energy dynamics match the field and laboratory

observations much better than the model without energy

dynamics [13,14]. This is a very interesting observation as

the model without energy is a trivial extension of the

Lotka–Volterra model and the first step towards game-

theoretical models from this widely used framework.

Moreover, the model without energy is a special case of both

models treated in our previous work (one would derive this

model from the previous models by eliminating the energy

dynamics). This model represents a simpler way of modelling

the predator–prey interactions and a natural question to ask is

whether extending it by energy variables is really necessary.

The results in this paper suggest that one needs to include

the energy dynamics in this model in order to model the

system of interest with more realism. However, it remains to

be seen whether there are no other models without energy

dynamics which would be closer to the observed behaviour.

If such a model is found, we would have falsified our hypoth-

esis that including energy dynamics is essential to the

predictions from §§3.1 and 3.2 models.

The system under consideration is multi-seasonal, i.e. each

summer season is finitely long and it is followed by a winter

season. For this reason, long-term analysis does not yield

much insight into the behaviour of our model. If we, however,

assume the summer season is infinitely long, then stability

analysis shows that prey diapause stabilizes the predator–prey

dynamics. This result has been reported earlier as the stabilizing

effect of prey refuges on predator–prey dynamics [26,27].
For all models we have proposed so far, it is still to be

shown that optimal summer behaviour of the predator and

prey populations, as derived in this study, is resistant against

invasion by mutant strategies and robust against structural

modifications, such as the inclusion of predator decisions to

enter diapause or not. Ultimately, we hope to explain

winter dynamics of predator mites and fruit-tree red spider

mites based on optimal timing of diapause induction in

summer. The use of bifurcation analysis can help determine

for which parameter domains the proposed optimal strategies

are evolutionarily stable.
Appendix A
A.1. Derivation of the optimal strategies for the

predator and prey in the third (new) model
First, we formulate the problem of the predator and the problem

of the prey via HJB equations [28]. We will then study the

reaction of the prey to the behaviour of the predator and sub-

sequently compute the optimal behaviour of both of them.

We assume here that a Stackelberg game is being played in

which the predator can impose its decision on the prey. In the

analysis, this is equivalent to analysing what behaviour is opti-

mal for the prey with respect to the behaviour of the predator,

and consequently checking what is optimal for the prey. How-

ever, most of the behaviour obtained from this analysis

coincides with the outcomes of the Stackelberg game with the

prey as the leader and outcomes of the Nash game, i.e. the

game in which there is no hierarchy between the players.

The analysis is carried out in reverse time, i.e. proceeding

from the end of the season towards its beginning, we will

study the optimal behaviour of the predator mites and the

prey mites.
A.2. Characteristic system for the prey
Let us introduce a reverse time t ¼ T � t( f 0 ¼def

df/dt ¼ �_f)
and a value function for the prey

VRðtÞ ¼
ðT

T�t
ð1� uRÞRdt0:

With bP ¼
def
@VR/@P; bR ¼

def
@VR/@R; the HJB equation has

the form

HR ¼
@VR

@t
þmax

uR
ðbPð�aP uP Pþ bPuPuR PRÞ

þ bRðaRuR R� bRuPuR PRÞ þ ð1� uRÞRÞ:
ðA 1Þ

The characteristic system (in reverse time) is

P0 ¼ aP uP P� bPuPuR PR; ðA 2Þ
R0 ¼ �aRuR Rþ bRuPuR PR; ðA 3Þ
b0P ¼ bPð�aP uP þ bPuPuR RÞ � bRbRuPuR R ðA 4Þ

and b0R ¼ bPbPuPuR Pþ bRðaRuR�bRuPuR PÞþ 1�uR; ðA5Þ

with transversal conditions bP(0) ¼ 0, bR(0) ¼ 0, and

additional initial conditions P(0) . 0, R(0) . 0. Optimal

decision can then be derived as [18–20]

uR ¼ HeavSR



rsfs.royalsocietypublishing.org
Interface

Focus
3:20130034

7
with

SR ¼ RðbP bP uP Pþ bRðaR � bRuP PÞ � 1Þ: ðA 6Þ

Note that the sign of SR does not depend on R, as R is always

positive if the prey is alive. As SRðt ¼ 0Þ ¼ �Rð0Þ , 0, uR

equals 0 for some interval t [ ½0; tR
1 Þ; while we cannot yet

exclude the option that tR
1 ¼ T: Note that if the season is

very short, then uR ¼ 0 is optimal for the prey for the entire

season. While the fact that uR(0) ¼ 0 is independent of the be-

haviour of the predator, the time when the strategy of the

prey should change might be dependent on uP.

This can be seen from the following characteristic system,

obtained by substituting uR ¼ 0 into (A 2)–(A 5) and with

initial conditions P(0), R(0) � 1, bP (0) ¼ bR(0) ¼ 0:

P0 ¼ aP uP P; ðA 7Þ
R0 ¼ 0; ðA 8Þ
b0P ¼ �aP bP uP ðA 9Þ

and b0R ¼ 1: ðA 10Þ

The solution of (A 7)–(A 10) is

bPðtÞ ¼ 0; bRðtÞ ¼ t; PðtÞ ¼ Pð0ÞeaP

Ð t

0
uPðcÞdc

; RðtÞ ¼ Rð0Þ:

Substituting this solution into (A 6) leads to

SR ¼ Rð0Þ taR � tbR uPðtÞPð0Þe
Ð t

0
aP uPðcÞdc � 1

� �
:

Remark A.1. (Switching surface starting at R(0) ¼ 0) Note

that in our system it is impossible for R to reach value 0. If

we allowed condition R(0) ¼ 0, then there would be a switch-

ing surface starting from R(0) ¼ 0 as SRð0Þ would then equal

to zero. In such a situation, prey would either start in dia-

pause or uR [ (0,1). The switching surface starting at

R(0) ¼ 0 would then have the following parametrization:

SRð0Þ ¼ 0;

SR ¼ RðbP bP uP Pþ bRðaR �bRuP PÞ � 1Þ ¼ 0:

S0R ¼ R bP bP
duP

dt

� �
PþaR �bR uPP� bRbR

duP

dt

� ��

P� bRbR ðuPÞ2aP P
�
¼ 0:

Trivially, these two equations are zero for R ¼ 0 (i.e. there

exists a switching surface for R ¼ 0). However, they are also

zero for

bP¼�a 2
R þ2aRbR uP P�b 2

R ðuPÞ2P2

þbRðduP/dtÞPþbR ðuPÞ2aP P

bP PððduP/dtÞaRþbR ðuPÞ3aP PÞ;
ðA11Þ

bR¼�
�duP/dt�uPaRþbR ðuPÞ2P

ðduP/dtÞaRþbR ðuPÞ3PaP
: ðA12Þ

Note that this solution makes sense only if uP
=0. More-

over, we know that bP(0) ¼ bR(0) ¼ 0 and P follows the

dynamics in (A 2), with P(0) ¼ 0. From the second time deriva-

tive ofSR;we can obtain expression for uR along this switching

surface. However, we need to know the expression for uP (in

case that uP
=0) in order to be able to get an explicit expression

for this intermediate value of uR (as its expression contains uP

and its time derivatives). There is a switching surface present

in the dynamics, but only if uP [ (0,1]. The expression for uR
alongside this surface is then

uR¼c1

c2

;

with

c1¼2bR
duP

dt

2

PaR�b2
R

duP

dt
P2ðuPÞ3aPþ

d2uP

dt2
a2

R

�d2uP

dt2
aRbR uP P�d2uP

dt2
bR ðuPÞ2aP Pþ5bR ðuPÞ2

aP P
duP

dt
aRþb2

RðuPÞ5a2
PP2þbR ðuPÞ3a2

PP
duP

dt

þbR ðuPÞ4a2
PPaRþ3bR

duP

dt

2

aP uP P;

c2¼bR ðuPÞ2bP PR
duP

dt
aRþuPaP

duP

dt
þðuPÞ2aPaR

� �
:

Note that c2 ¼ 0 if uP ¼ 0. Therefore, we can proceed to the

analysis of the characteristic system for the predator and only if

uP(0) [ (0,1].

Let us now investigate the optimal behaviour of the pred-

ator at the end of the season, taking into account that uR,* ¼ 0

at the end of the season.
A.3. Characteristic system for the predator
Adopting a similar analysis as the one for the prey, we can

proceed as follows: we again consider reverse time t ¼ T � t
( f 0 ¼def

df/dt ¼ �_f) and a value function for the predator

VPðtÞ ¼
ðT

T�t
ð�aP uP Pþ bPuPuR PRÞdt0:

With aP ¼
def
@VP/@P; aR ¼

def
@VR/@R; the HJB equation has

the following form:

HP ¼
@VP

@t
þmax

uP
ðaPð�aP uP Pþ bPuPuR PRÞ

þ aRðaRuR R� bRuPuR PRÞ

� aP uP Pþ bPuPuR PRÞ: ðA 13Þ

The characteristic system is

P0 ¼ aP uP P� bPuPuR PR; ðA 14Þ
R0 ¼ �aRuR Rþ bRuPuR PR; ðA 15Þ
a0P ¼ aPð�aP uP þ bPuPuR RÞ

� aRbRuPuR R� aP uP þ bPuPuR R
ðA 16Þ

and a0R ¼ aPbPuPuR Pþ aRðaRuR � bRuPuR PÞ

þ bPuPuR P;
ðA 17Þ

with initial conditions P(0), R(0) � 1 and transversal con-

ditions aP(0) ¼ aR(0) ¼ 0. The optimal decision can be

expressed as

uP ¼ HeavSP

with

SP ¼ aPð�aP Pþ bPuR PRÞ � aRbRuR PR� aP P

þ bPuR PR: ðA 18Þ

Note that the sign of SP is independent of P, as P has to

be positive for the predator to be alive. From the initial
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and transversal conditions, it follows that SPðt ¼ 0Þ ¼ Pð0Þ
ð�aP þ bPuRð0ÞRð0ÞÞ: As uR(0) ¼ 0, SPðt ¼ 0Þ ¼ �aP

Pð0Þ , 0: Therefore, uP(0) ¼ 0.

Remark A.2. (Switching surface starting at P(0) ¼ 0). Note

that in our system it is impossible for P to reach value 0. If

we allowed condition P(0) ¼ 0, then there would be a switch-

ing surface starting from P(0) ¼ 0. Then, depending on the

initial value of R and value of uR(0), the predator would

either start in diapause or uP [ (0,1). If we allow P(0) ¼ 0,

R(0) ¼ 0 and uR(0) [ (0,1), then there might be a switching

surface for the predator starting at P(0) ¼ 0, alongside

which uP [ (0,1), whereas the prey would act as described

in Remark A.1. In such a case, if uP [ (0,1) at the beginning

of the season, the switching surface for the predator would

have to satisfy the following conditions:

SPð0Þ ¼ 0;

SP ¼ Ap

SP ¼ aPð�aP Pþ bPuR PRÞ � aRbRuR PR� aP P

þ bPuR PR ¼ 0;

S0P ¼ �PR bP ðuRÞ2aR � bP
duR

dt
þ aRbR

duR

dt

�

�aPbP
d
dt

uR þ aPbP ðuRÞ2aR

�
¼ 0:

From equations SP ¼ 0; S0P ¼ 0; one can compute that

aP ¼ –1 and aR ¼ 0. As with aP(0) ¼ 0 and dynamics (A 16)

aP ¼ –1 cannot be achieved, we can conclude that the inter-

mediate strategy and switching surface starting at t ¼ 0

does not exist. This, however, implies, that also the switching

surface discussed in remark A.1 does not exist.

Assuming that uP(t) ¼ uR(t) ¼ 0 on some interval [0, tx),

and given that tx ¼ minðtP
1 ; t

R
1 Þ; where tP

1 and tR
1 are the

times in which the predator and prey change the strategy

from uP ¼ 0 to uP [ (0,1] and uR ¼ 0 to uR [ (0,1] at the

end of the season, respectively, we find on this interval that

P0 ¼ 0; ðA 19Þ
R0 ¼ 0; ðA 20Þ
a0P ¼ 0 ðA 21Þ

and a0R ¼ 0: ðA 22Þ

Therefore, for t [ [0, tx), P(t) ¼ P(0), R(t) ¼ R(0), aP ¼ 0,

aR ¼ 0, and (from (A 18))

SP ¼ �aP Pð0Þ:

This means that as long as uR ¼ 0, uP ¼ 0 as well. Moreover,

SP , 0 also if uP ¼ 0, while uR ¼ 1. Therefore, tP
1 . tR

1 ; while

we cannot exclude the option when tP
1 and tR

1 are arbitrarily

close to each other.

As long as uP ¼ 0, the solution to the system (A 7)–(A 10)

equals to P(t) ¼ 0, bR(t) ¼ 1, P(t) ¼ P(0), R(t) ¼ R(0).

Consequently, SR ¼ taR Rð0Þ � Rð0Þ:
This implies that SR ¼ 0 if R(0)(taR–1) ¼ 0, i.e. the time

when uR ¼ 0 changes into another strategy is equal to

tR
1 ¼ 1/aR (and is therefore independent of R and P.). Clearly,

PðtR
1 Þ ¼ 0; bRðtR

1 Þ ¼ 1; PðtR
1 Þ ¼ Pð0Þ; RðtR

1 Þ ¼ Rð0Þ:
If uP ¼ 0, while uR [ (0,1), the characteristic system for the

predator becomes

P0 ¼ 0; ðA 23Þ
R0 ¼ �aRuR R; ðA 24Þ
a0P ¼ 0 ðA 25Þ

and a0R ¼ aRaRuR: ðA 26Þ

The switching surface of the predator will become

SP ¼ Pð0Þð�as
RbRuR;sRs � aP þ bP uR;s RsÞ; where Rs solves

(A 24) and as
R solves (A 26), given that uR ¼ uR,s[(0,1).

A.4. Finding uR,s if uP¼0
We can use the following relation, with f.,.g denoting Jacobi

brackets [19]: S0R ¼ fSR; hRg; S00R ¼ fS0R; hRg; with hR being

the Hamiltonian of (A 1). We assume uPðtÞ ¼ 0 for t [ ½0; tP
1 �:

Then

SR ¼ RðaR bR � 1Þ; ðA 27Þ

and

S0R ¼ fSR; hg ¼ aR R: ðA 28Þ

In other words, as R = 0;S1
R : 0 ¼ �bR þ 1=aR is a switching

surface for the prey. Moreover, if there is an intermediate strat-

egy uR ¼ uR,s [ (0,1), SR ¼ 0 implies S0R ¼ 0: [19]. Setting

(A 27) and (A 28) to 0 only leads to the trivial solution R ¼ 0.

Therefore, there is no singular strategy for the prey under the

assumption that once uR
=0, when uP is still equal to zero.

Note that if uR jumps at tR
1 ; also co-states bP and bR might

jump, as the HJB equation will change. However, as the

expression for the switching surface S1
R is trivial, such a

jump does not happen.

A.5. Finding optimal strategy for the predator
when uR¼1

Let us now investigate optimal behaviour for the predator

once uR ¼ 1, if the predator plays uP ¼ 0. The characteristic

system for the predator (A 14)–(A 17) becomes

P0 ¼ 0; ðA 29Þ
R0 ¼ �aR R; ðA 30Þ
a0P ¼ 0 ðA 31Þ

and a0R ¼ aR aR; ðA 32Þ

with initial conditions PðtR
1 Þ ¼ Pð0Þ; RðtR

1 Þ ¼ Rð0Þ; aPðtR
1 Þ ¼ 0;

aRðtR
1 Þ ¼ 0: This implies that aP(t) ¼ 0, aR(t) ¼ 0 also for

t . tR
1 ; P(t) ¼ P(0), RðtÞ ¼ Rð0Þe�aR ðt�tR

1 Þ: Then

SP ¼ �aP Pð0Þ þ bP Pð0ÞRð0Þe�aRðt�tR
1 Þ;

which equals to 0 at time tP
1 ¼ ðtR

1 � ðln (aP=bP Rð0Þ)Þ=aRÞ:
Note that if R(0) ¼ 1 and aP ¼ bP, then tP

1 ¼ tR
1 ; otherwise,

depending on values of R(0), aP and bP, the difference

between tP
1 and tR

1 might be arbitrarily small or very high.

In order to find the strategy for the predator uP,s [ (0,1),

we have to solve the system of characteristic equations

(A 14)–(A 17) with uR ¼ 1, uP ¼ uP,s, leading to:

SP ¼ ðaP þ 1Þð�aP Pþ bP PRÞ � aRbR PR
¼ PððaP þ 1Þð�aP þ bP RÞ � aRbR RÞ ¼ 0 ðA 33Þ

and S0P ¼ fSP; hg ¼ bP PRð�aPaR � aRÞ ¼ 0: ðA 34Þ

These two expressions can be equal to zero only for aP ¼ –1,

aR ¼ 0 (not that this outcome coincides with the outcome

found in remark A.2). As aPðtP
1 Þ ¼ 0; this is clearly imposs-

ible. The conclusion is that at time tP
1 the predator switches

to strategy uP ¼ 1 immediately.



uR = 1

uR = 0

uP = 0

uP = 1

t = 0 t = T

Figure 5. Typical behaviour for the predator and prey in the model dealt with
in this article. Here, uP and uR refer to the portion of the predator and prey
population being active, respectively. For certain initial values of parameters
the times of the switches in the strategy for uP and uR are the same, for
most initial values of the parameters they differ. Note that while the behaviour
at the end of the season was found analytically (the behaviour on the right-
hand side of the dashed line), the rest of this behaviour might vary as suggested
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A.6. With uR¼1, uP¼0, will uR change to
another value?

If uR ¼ 1 and uP ¼ 0, i.e. for time t [ ½tR
1 ; t

P
1 Þ; the system of

characteristics for the prey becomes

P0 ¼ 0; ðA 35Þ
R0 ¼ �aR R; ðA 36Þ
b0P ¼ 0 ðA 37Þ

and b0R ¼ aR bR; ðA 38Þ

with initial conditions PðtR
1 Þ ¼ Pð0Þ; RðtR

1 Þ ¼ Rð0Þ;
bPðtR

1 Þ ¼ 0; bRðtR
1 Þ ¼ tR

1 : Note that with uP ¼ 0 the switching

surface can be expressed as

SR ¼ RðaR bR � 1Þ:

As bR is increasing on ½tR
1 ; t

P
1 Þ and R is positive, the prey

does not go into diapause from uR ¼ 1 if uP ¼ 0. Solving

(A 35)–(A 38) yields P(t) ¼ P(0), bP ¼ 0, r ¼ Rð0Þe�ðt�tR
1 ÞaR ;

bRðtÞ ¼ tR
1 eðt�t

R
1 ÞaR :
by the outcomes of numerical case studies (cf. appendix B). (Online version
in colour.)
A.7. If uR¼1, uP¼1, will predator and/or prey
jump to another value?

Last but not least, the situation to be examined is when the

prey is active and predator is active as well, i.e. when

t . tP
1 : Behaviour of the prey can again be investigated

by substituting uR ¼ 1, uP ¼ 1 into the characteristic system

(A 2)–(A 5) and (A 16) and (A 17):

P0 ¼ ðaP � bP RÞP; ðA 39Þ
R0 ¼ ð�aR þ bR PÞR; ðA 40Þ
a0P ¼ aPð�aP þ bP RÞ � aRbR R� aP þ bP R; ðA 41Þ
a0R ¼ aPbP Pþ aRðaR � bR PÞ þ bP P; ðA 42Þ
b0P ¼ bPð�aP þ bP RÞ � bRbR R ðA 43Þ

and b0R ¼ bPbP Pþ bRðaR � bR PÞ; ðA 44Þ

with PðtP
1 Þ ¼ Pð0Þ; RðtP

1 Þ ¼ Rð0Þe�ðtP
1�t

R
1 ÞaR ; bPðtP

1 Þ ¼ 0;

bRðtP
1 Þ ¼ tR

1 eðt
P
1�t

R
1 ÞaR ; aPðtP

1 Þ ¼ 0; bPðtP
1 Þ ¼ 0:

Note also that with uP ¼ 1, uR ¼ 1 the switching surfaces

SP; SR become

SP ¼ PðaPð�aP þ bP RÞ � aRbR R� aP þ bP RÞ; ðA 45Þ

and

SR ¼ RðbPbP Pþ bRðaR � bR PÞ � 1Þ; ðA 46Þ

and they are both positive. Solving (A 40)–(A 44) analytically

is impossible. One option is that as long as the prey is active,

the predator stays active as well, if the decrease of SR is faster

than the decrease of SP: Then, in reverse time, the prey

would enter diapause earlier than the predator, and the

entire analysis could be repeated from the situation uP ¼ 0,

uR ¼ 0. However, if at any moment the decrease of SR

becomes slower than the decrease of SP; then the predator

would enter diapause later than the prey. Numerical studies

in appendix B suggest that this situation can occur as well.
A.8. The expected behaviour of the
predator/prey

Once both predator and prey are in diapause, we can repeat

the analysis shown above. The typical optimal behaviour for
the predator and prey is depicted in figure 5. However,

numerical studies in appendix B suggest that the behaviour

beforehand can look quite different.
Appendix B: numerical computations of the
optimal strategies for the predator and prey
in the third model
B.1. Setting of the numerical computations
The model of the intra-seasonal interaction between predatory

mites and fruit-tree red spider mites was implemented in

Fortran. In this program, the time interval [0,T ] was discre-

tized into nt subintervals (commonly 5 . T and 10 . T
subintervals). Moreover, the optimal decisions uP and uR

were searched at nu points (higher nu increases the precision

of the outcome, while nt has to be divisible by nu– 1), starting

from (random) initial estimates. As we consider a game with

Stackelberg structure, the constrained optimization for the

prey (the follower) was embedded into the constrained optim-

ization for the predator (the leader). The ordinary differential

system (3.13) and (3.14) was discretized on nt subintervals

using the fourth-order Runge–Kutta method (with constant

step t ¼ T/nt) and subsequently the fitness functions for the

predator and prey were approximated using the trapezoidal

rule with the time step t. Two cases were considered:

— the optimal uP and uR are continuous, piecewise affine

functions; and

— the optimal uP and uR are piecewise affine functions with

possible discontinuities in the internal nodal points. For

the calculations of the ith subinterval of uP and uR, up

and ur are considered to be continuous (i.e.

upðti�1Þ ¼ upðtþi�1Þ; upðtiÞ ¼ upðt�i Þ).

Note that the results of the numerical computations strongly

depend on the number of discretization points and on the

chosen structure for uP and uR and that the results obtained

here are just an approximation of the optimal strategies.
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Here, P(0) ¼ R(0) ¼ 1. (Online version in colour.)
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Figure 7. Comparison of the numerical outcomes of the game on interval [0,10] with discontinuous strategies: nt ¼ 100, ni ¼ 50 (a,b) and nt ¼ 100, ni ¼ 100
(c,d). Here, P(0) ¼ R(0) ¼ 1. (Online version in colour.)
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Table 1. Comparison of different algorithms in terms of P(T ).

strategy type T nt ni P(T )

continuous 10 100 50 1.282645

continuous 10 100 100 1.285299

discontinuous 10 100 50 1.321685

discontinuous 10 100 100 1.619314
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B.2. Results of the numerical computations
In table 1, we compare different algorithms in terms of P(T ).

The maximization criterion of the leader is
Ð T

0 ð�aP uP Pþ
bPuPuR PRÞd t ¼ PðTÞ � Pð0Þ and P(0) is given, therefore
P(T ) indicates the outcome for the leader well. Higher P(T )

with the same values nt and nu indicates a better outcome

for the predator. In all tested cases with the same nt and ni,

the discontinuous strategies brought better outcome to the

leader than the continuous ones, which indicates that

indeed discontinuous strategies are optimal in this model.

For the numerical case studies, we have considered a very

short season in order to improve the precision of the algor-

ithm. Parameters aP, bP, aR and bR were set to 0.05, 0.2,

0.25 and to 0.24. The graphs comparing different outcomes

are shown in figures 6 and 7.

While the behaviour before the last switch (when both

predator and prey enter diapause after being active) varies

among different numerical outcomes, the behaviour at the

end of the season corresponds to our analytical results.
s
3:2013003
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