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Fourier Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS) are two common instruments used for
analysis of edible oils. The output signal is often analysed on the software attached to the workstations. The processing software is
usually individualised for a specific source.The output of GCMS cannot be analysed on the FTIR hence analysts often need to juggle
between instruments when multiple techniques are employed. This could become exhaustive when a large dataset is involved. This
paper reports a synchronised approach for analysis of signal from FTIR and GCMS. The algorithm is demonstrated on a dataset
of edible oils to investigate the thermal degradation of seven types of edible oils treated at 100∘C and 150∘C. The synchronised
routines identify peaks present in FTIR and GCMS spectra/chromatograms where the information is subsequently extracted onto
peak tables for further analysis. In this study, it is found that palm based products and corn oils were relatively more stable with
higher content of antioxidants tocopherols and squalene. As a conclusion, this approach allows simultaneous analysis of signal from
multiple sources and samples enhancing the efficiency of the signal processing process.

1. Introduction

Fourier Transform Infrared (FTIR) and Gas Chromato-
graphy-Mass Spectrometry (GCMS) are two essential tech-
niques applied for analysis of edible oils [1, 2]. Fundamentally,
FTIR spectra illustrate absorption bands with characteristic
frequency attributed to different functional groups whilst
GCMS reveals the compounds eluted at different retention
times with mass spectra corresponding to compounds pre-
sent, indicative of the fatty acid compositions. Conventionally
the resultant signals from both instruments are analysed with
the software equipped at the workstations for peak integra-
tion.The software is typically instrumental andmodel depen-
dent.The signal processing tool exclusively designed for FTIR
is not applicable to GCMS chromatograms due to differences
in data nature and characteristics. Therefore to analyse the
output from both FTIR and GCMS, an analyst has to juggle
between both instruments. When a large volume of sample is

involved, the signal processing process can be exhaustive and
time consuming.

With the advances in computer technology, various alter-
natives have been made available reducing the dependence
on the default signal processing tool; for instance, the digital
data in csv format is readable on Microsoft Excel. Numer-
ous algorithms have been developed for analysis of signal
from various instrumentation techniques, that is, Fourier
Transform Infrared (FTIR) [1, 3], Gas Chrnomatography-
Differential Mobility Spectrometry (GC-DMS) [4], Gas
Chromatography-Mass Spectrometry (GC-MS) [5–7], High
Performance Liquid Chromatography (HPLC) [8], Nuclear
Magnetic Resonance (NMR) [9], two-dimensionalGasChro-
matography (GC-GC) [10], and Liquid Chromatography-
Mass Spectrometry (LC-MS) [11] to allowmathematical inte-
gration of the signals including baseline correction, smooth-
ing, and peak deconvolution on a personal computer. These
algorithms however are designed to cater a specific source of
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signal; hence, when multiple sources of signals are involved
more than one algorithm is required.

In edible oil industry, continuous monitoring and exten-
sive cross comparisons between products involving multiple
instrumental techniques such as FTIR and GCMS are com-
mon and this often results in enormous amount of data that
requires a more efficient way for data interpretation.This has
motivated the development of a signal processing approach
that aids in analysis of signals from multiple sources. In this
paper, we report a synchronised signal processing algorithm
that caters both FTIR and GCMS signal for evaluation of
thermally degraded vegetable oils.

2. Materials and Methods

2.1. Samples. Seven types of edible oils were studied including
(1) palm oil, (2) canola and palm oil, (3) corn oil, (4) canola
oil, (5) soybean oil, (6) blended palm, sesame and peanut oil,
and (7) canola and sunflower oil. They were obtained from
the local market and heated at 100∘C and 150∘C, respectively,
for 15min using a digital heating block. The oil samples were
then left to cool and analysed using FTIR and GCMS. A total
of 63 FTIR spectra and GCMS chromatograms, respectively,
were produced (7 types × 3 treatments × 3 replicates = 63).

2.2. Fourier Transform Infrared (FTIR). All spectra were
obtained using an ATR-FTIR of ThermoScientific (Thermo
Nicolet Analytical Instruments, Madison, WI). The spectra
were collected at a resolution of 4 cm−1 in the range of
4000–650 cm−1. Each spectrum was rationed against a fresh
background spectrum recorded from the bare ATR crystal.
Prior to collection of each background spectrum, the ATR
crystal was cleaned with absolute ethanol to remove any
residual. Each sample was scanned in triplicate.

2.3. Gas Chromatography-Mass Spectrometry (GC-MS). For
GCMS analysis, 100 𝜇L of oil was dissolved in 2mL of
dichloromethane (DCM).The sample was analysed on a Shi-
madzu GC-MS systemmodel QP500 with amedium polarity
capillary column (BPX-5 column (29.4m × 0.25mm), with
film thickness of 0.25 𝜇m)with helium as the carrier gas. One
microlitre of the sample was injected using splitless injection
with injector temperature 300∘C according to the following
scheme: 50∘C for 2min with 10∘C/min up to 300∘C.The final
temperature was held for 10min. The total runtime for each
sample was 37min. For MS detection, electron ionization
with 70 eV was applied and mass fragments were detected
between 40 and 500m/z. The ion source temperature and
transfer line temperature were 200∘C and 300∘C, respectively.
Note that the detector was activated after 5min.

2.4. Signal Processing. The FTIR spectra and GCMS chro-
matograms were analysed using the synchronised algorithm
developed in Matlab R2012a. The synchronised strategy is
an extension of the peak detection and matching algo-
rithm designed for FTIR, published in [12]. First, all data
files (csv format for FTIR spectra and netcdf for GCMS

chromatograms) were converted into mat files. The algo-
rithm requires input of the data nature whether it is one-
dimensional or two-dimensional. If the data is two dimen-
sional, the algorithm would obtain the total ion chro-
matogram (summing the intensities of all mass spectral of
the same scan) compressing them into one-dimensional data.
The data is subsequently baseline corrected according to
asymmetric least squares [13], smoothed using soft heuristic
thresholding (sym8 wavelet) [14], and transformed into first
derivative signal where the peak start, peak, and peak end
are identified. Briefly, the algorithm would evaluate each
data point of the derivative signal in succession; a peak start
is labelled when the derivative signal is above zero and 𝑥
times greater than the peak noise (average absolute change of
derivative); when the signal crosses 𝑥-axis attaining negative
values, the peak is located. As the derivative signal crosses 𝑥-
axis again where the values become positive, peak end has
arrived [12]. Upon detection of a peak, the corresponding
peak area is calculated as the sum of the detector output
between the start and the end. The algorithm would evaluate
the spectrum in turn to identify the peaks present; they will
then bematched across samples for similar functional groups
according to a predefined window size. For example, if a win-
dow of 𝑧

1
scans is set and a peak at 1720 cm−1 is targeted for

matching, the algorithmwould search through all samples for
possiblematching peaks ranging between 1720±𝑧

1
cm−1.The

matching peaks are subsequently arranged in the same col-
umn with rows corresponding to samples; as a result, a table
representative of peaks detected and matched is produced. It
is important to evaluate the resultant table to confirm that
parameters employed such as window size and peak thresh-
old are adequate. If a potential matching peak is mismatched
or unmatched, it is an indication that the window size would
require fine-tuning. In terms of peak detection, it is possible
that the algorithm suffers to identify poorly resolved bands
or shoulder bands; sometime the peak noise threshold may
be unsuitable, too small that noise is misidentified as signals
or too large that signals are overlooked. Therefore, it is
essential tomanually verify the information on the peak table
overlaying the spectra for visualization.

For GCMS data, peaks are detected similarly based on the
total ion chromatograms; however, in the matching process,
the candidate matching peaks are identified according to
a predefined window size, 𝑧

2
(in this paper, 𝑧

2
= ±50

scans (±15 s)), and further confirmed with the mass spectra
according to the similarity index. Spectra with correlation
coefficient >90% are considered corresponding to the same
compound in which matching peaks are organised into a
peak table as described above. For each compound identified,
the mass spectrum is recorded. Prior to peak matching, the
spectra were prealigned to some common peaks according to
the strategy of retention time alignment in [15]. In oil analysis,
prealignment, and setting, an optimum window size is cru-
cial to minimize erroneous matching as compounds eluted
closely may exhibit mass spectra with high similarity, some-
time more than 98% for example, 2,4-dodecadienal and 2,4-
decadienal eluting at 11.98min and 12.35min, respectively.
Figure 1 shows the schematic diagram of the synchronised
algorithm. Two peak tables were produced resulting from



Journal of Analytical Methods in Chemistry 3

Data

1D data No Total ion
chromatogram

Determine peak noise factor
and matching window Yes

Baseline correction

Determine peak noise
factor, matching
window, and similarity
index desire

Smoothing

First derivative signal

Peak detection

Peak matching (if 1D signal, peaks are matched according to
window size only; if 2D signal, peaks are matched according to

window size and mass spectra)

Peak table

Figure 1: Schematic diagram of the synchronised algorithm.

the analysis of FTIR and GCMS spectra/chromatograms.The
algorithm undoubtedly experiences some inherited short-
comings; nevertheless, it enablesmultiple output signals from
analytical instruments to be processed efficiently and sys-
tematically. The peak table was preprocessed (square rooted,
scaled to one, and standardised) and subjected to Principal
Component Analysis (PCA) for further analysis.

3. Results and Discussion

The algorithm yields two peak tables corresponding to the
analysis of a total of 63 FTIR and GCMS spectra/chromato-
grams, respectively. Figure 2 shows the FTIR spectra of seven
edible oils treated under different temperatures: unheated,
100∘C, and 150∘C. Essentially the superimposed spectra of
heated and unheated palm oil, corn oil, and blended palm
oil exhibit slight variation suggesting little changes upon
treatments. The scores plot of the FTIR peak table in Figure
3 shows that canola-based oils are differentiable from palm-
based oil. After heating at 150∘C, various vegetable oils regard-
less of the origin are observed to cluster implying sharing of
common features where palm oil encountered comparatively
less alteration, inferring better thermal stability.

Typically, heated cooking oils are challenged with the
loss of unsaturation due to the attack of oxygen via radical
reaction [16]. The degree of unsaturation is often monitored
based on several characteristic bands at 1650 cm−1 (C=C
stretching vibration of cis-olefins), 1417 cm−1 (rocking vibra-
tions of CH bonds of cis-disubstituted), and 3001 cm−1 (CH
stretching vibration of the cis-double bond) [17]. If only a

limited number of spectra are involved, there is no issue
related to identification of changes due to thermal treatment;
however, the process can be exhaustive when numerous
spectra are concerned. The algorithm allows efficient evalu-
ation of a large number of samples. Figure 4 illustrates the
relative abundance of some bands commonly reported for
discrimination of thermally degraded oil. Evidently, the band
corresponding to olefinic attribute at 1430–1330 cm−1 reduces
steadily/disappears upon heating confirming the loss of dou-
ble bonds where palm oils are characterised by relatively less
polyunsaturated compounds, which is not unexpected. Other
lines of evidence of diminished unsaturation are observed
at 3010 cm−1 and 1650 cm−1. As oxidation continues, the
degree of unsaturation is correspondingly reduced closing the
gap of difference between polyunsaturated and polysaturated
oils, leading to clustering of the thermally oxidised edible
oils as demonstrated in Figure 3. In addition to loss of
unsaturation, elevated temperature simultaneously triggers
hydrolysis of triglycerides yielding fatty acids and glycerols,
evidenced with increased band intensity at 1157 cm−1 (C–
O ester groups). The autooxidation of unsaturated fatty
acid also leads to emission of volatile aldehydes. The band
at around 1680 cm−1, indicative of the C=O stretching of
conjugated unsaturated aldehydes, is profoundly detected
in heated oils of which palm oil demonstrated greater
abundance. Formation of trans-fatty acid, a common issue
in thermally oxidised oil, is associated with the band near
966 cm−1; it is often identified in a small amount in fresh
oil as a consequence of isomerisation of cis-unsaturated fatty
acids upon bleaching, refining, and deodorization [18–20].



4 Journal of Analytical Methods in Chemistry

3519 3037 2554 2072 1590 1108
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ab
s

Palm oil 

Canola and palm 
oil

Corn oil 

Canola oil 

Soya oil 

Palm, peanut, and 
sesame oil

Canola and 
sunflower oil

Wavenumber (cm−1)

Unheated
100∘C
150∘C

Figure 2: The FTIR spectra of seven edible oils treated under different temperatures, unheated, 100∘C and 150∘C.

Palm oil 
Canola and palm oil 
Corn oil 
Canola oil 
Soybean oil 
Palm, peanut, and sesame oil 
Canola and sunflower oil 

−6 −4 −2 0 2 4 6 8 10
−10

−5

0

5

PC1

PC
2 Palm-based oils and

corn oil

Canola-based oils and
soybean oil

Palm oil 100∘C
Canola, and palm oil100∘C
Corn oil 100∘C
Canola oil 100∘C

Palm oil 150∘C
Canola and palm oil 150∘C
Corn oil 150∘C
Canola oil 150∘C

Soybean oil 100∘C
Palm, peanut, and sesame oil 100∘C
Canola and sunflower oil 100∘C

Soybean oil 150∘C
Palm, peanut, and sesame oil 150∘C
Canola and sunflower oil 150∘C
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The undesirable conversion is witnessed to be encouraged
under increasing temperature confirmed by soaring of the
band at 966 cm−1 in which palm olein oil and blended
canola-sunflower oil demonstrate higher concentration after
heating. As suggested elsewhere, palm oil and sunflower oil
are characterised by better efficiency of heat transfer, thus
leading to higher conversion of trans-fatty acid [21, 22]. The
information on the peak table is converted into bar charts that

are verified by overlaying the spectral at a designated region as
illustrated in Figure 4; this approach enables rapid validation
of the algorithm.

The algorithm is designed for simultaneous analysis of
GCMS chromatograms. Figure 5 illustrates the peaks pre-
cisely identified in a chromatogram and the inset shows sev-
eral dienaldehydes commonly present in all chromatograms.
The information extracted is similarly translated into a peak
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table. Figure 6 shows the relative abundance of the peak
area corresponding to several compounds. Most cooking oils
are enriched with vitamin E that exists in various forms
mainly tocopherols and tocotrienols. Their presence essen-
tially improves the antioxidation property of cooking oil

as the compounds, during oxidation process, compete with
unsaturated fats for lipid peroxy radical [23]. According toAl-
Saqer et al. [24], these compounds are prominently found in
soybean, canola, sunflower, and corn oils with relatively lower
amount in palm oil. In this study, only 𝛼- and 𝛾-tocopherols
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are identified; they are relatively more prominent in blended
and pure palm oil as opposed to the findings of Al-Saqer et al.
[24]. Nevertheless the nutritional label on the products, when
compared, indicates that blended and pure palm oils possess
higher vitamin E corresponding to the relative abundance
of the total tocopherols revealed by GCMS: palm, peanut,
and sesame (75mg/100mL); palm oil (60mg/100mL); corn
(63mg/100mL); canola and palm (50mg/100mL); canola
and sunflower (30.8mg/100mL); canola (20.3mg/100mL);
soya (15mg/100mL). The higher concentration of vitamin E
in palm based oil provides an explanation to the better oxida-
tive stability suggested from the analysis of FTIR spectra.
The various forms of tocopherols are in addition convertible;
several studies have reported the conversion of 𝛾- and 𝛿-
tocopherols into 𝛼- and 𝛽-tocopherols [25, 26]. As observed
in this study, the 𝛾-form of tocopherol is distinctively found
in unheated palm-based oil, corn oil, and canola-sunflower
oils; upon heating, this compound is completely missing
and replaced with 𝛼-tocopherol that appears to degrade with
increasing temperature.

Squalene is also a compound commonly found in
vegetable oils, particularly high in olive oils, with antioxidant
property. As illustrated in Figure 6, squalene is detected
profoundly in blended and pure palm oil as well as corn oil
corroborating the hypothesis drawn from FTIR spectra that
these varieties of oils are more resistant to oxidation. Plant
sterols including sitosterol, campesterol, and stigmasterol are
cholesterol-like molecules; the saturated analogues are sug-
gested as effective cholesterol-lowering agents whilst those
with ethylidene contain side chain that may behave as antiox-
idants [27, 28]. In this study,𝛽- and 𝛾-sitosterols are identified
with the former distinctively detected in canola and corn
oils where the finding is in agreement with Ratnayake et al.
[29].

During oxidation, fatty acids are typically converted into
hydroperoxides and further broken down into secondary

products such as aldehydes and ketones [30–32]. It is
found that dienaldehydes such as 2,4-nonadienal and 2,4-
decadienal are consistently detected in all oil samples where
the concentrations appear to increase appreciably after heat-
ing at 150∘C with no significant different concluded statis-
tically (𝑝 > 0.05). Interestingly at 100∘C, a decline in the
amount of dienaldehydes is consistently experienced in all oil
varieties, possibly due to the chain reaction of transformation
to ultimate by-products.

4. Conclusion

The study demonstrates that output from FTIR and GCMS
can be simultaneously analysed using a common signal
processing approach for evaluation of thermally degraded
vegetable oils.Thiswould save the time for an analyst to juggle
between instruments and applies some commonguidelines to
process the signals systematically. Undoubtedly, the approach
is not a perfect and flawless method as there are possibilities
that peaks are overlooked or mismatched; nevertheless, it
offers a systematic strategy to process relatively large datasets
of edible oils from GCMS and FTIR simultaneously with
reasonable reliability.
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