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Abstract
The advent of complete-genome genotyping across phenotype cohorts has provided a rich source
of information for bioinformaticians. However the search for SNPs from this data is generally
performed on a study-by-study case without any specific hypothesis of the location for SNPs that
are predictive for the phenotype. We have designed a method whereby very large SNP lists
(several gigabytes in size), combining several genotyping studies at once, can be sorted and traced
back to their ultimate consequence in protein structure. Given a working hypothesis, researchers
are able to easily search whole genome genotyping data for SNPs that link genetic locations to
phenotypes. This allows a targeted search for correlations between phenotypes and potentially
relevant systems, rather than utilizing statistical methods only. HyDn-SNP-S returns results that
are less data dense, allowing more thorough analysis, including haplotype analysis. We have
applied our method to correlate DNA polymerases to cancer phenotypes using four of the
available cancer databases in dbGaP. Logistic regression and derived haplotype analysis indicates
that ~80 SNPs, previously overlooked, are statistically significant. Derived haplotypes from this
work link POLL to breast cancer and POLG to prostate cancer with an increase in incidence of
3.01- and 9.6-fold, respectively. Molecular dynamics simulations on wild-type and one of the SNP
mutants from the haplotype of POLL provide insights at the atomic level on the functional impact
of this cancer related SNP. Furthermore, HyDn-SNP-S has been designed to allow application to
any system. The program is available upon request from the authors.
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1. Introduction
In recent years, the amount of genomic data on disease phenotypes has increased
exponentially. The decreasing cost of genetic testing, along with the future promise of
personalized medicine has resulted in a boom in individual genomic data [1–5]. Most
bioinformatic techniques determine clusters of mutations that may be followed and used as a
diagnostic tool in various diseases [6–9]. Traditional analysis of genome wide association
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studies (GWAS) focus on a single phenotype, and aim to find SNPs that show statistically
significant association with the phenotype in any of the measured genes. In most cases these
analysis do not have an a priori hypothesis of the locations of the SNPs. Therefore, very
stringent statistical criteria are needed to obtain SNPs that are predictive, resulting in only a
small number of SNPs being identified. Few studies have leveraged the vast information
generated to identify new SNPs with clear functional impact on disease onset [10–13].

Moreover, tracking a mutation resulting from these SNPs through transcription and
translation to their ultimate effects in a cell is largely left to the scientific community at
large. In addition, correlating a mutation to a phenotype is a daunting task for researchers
who typically work at a cellular level. Most biochemists or molecular biologists have a
biosystem of interest, and broad sweeping GWAS studies are typically intractable for their
purposes. It was our intent to create a tool that would allow a user to query genomic-level
data for their system of interest. There have been examples previously where this has been
done on a single GWAS study, but not on combined data sets [14]. To this end, we
developed an algorithm whereby a researcher can directly query one or several GWAS
studies for their gene region of interest. We term this method hypothesis driven SNP search
(HyDn-SNP-S). The software returns all SNP mutations within their gene region, along with
information on which phenotype the mutation occurs in. Further statistical methods can then
be applied to the GWAS data. Additionally, by returning a focused set of mutations, tracking
the consequences of the mutations through the RNA and protein levels becomes trivial.

The workflow shown in Fig. 1 outlines the process used in HyDn-SNP-S. Researchers can
select one or many GWAS for the phenotypes of interest, apply the SNP-Phenotype program
to search for their gene of interest, and further analysis can be carried out as desired. Our
program returns both intronic and exonic SNPs, allowing the investigation of impact on
RNA, gene processing or protein sequence. The simplicity of the software implementation
makes this method ideal for researchers not comfortable with large-scale bioinformatic
analyses, or those who lack the resources to perform such studies.

The database of genotypes and phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap) was
developed to “archive and distribute the results of studies that have investigated the
interaction of genotype and phenotype”. Data is distributed in the form of either raw
genotyping data tagged with individual specific data such as gender, race and onset of
phenotype; or as catenated lists of SNPs. This repository provides an ideal source of GWAS
data useful to researchers with a targeted interest. Users are able to freely download the sets
of SNPs, in a standard format for use with our software. Any phenotype of interest that is
represented in this database would be a possible point of study for a HyDn-SNP-S study.

In this contribution, we present the development of HyDn-SNP-S and its application to
search for cancer related SNPs on all human DNA polymerases. These enzymes are
involved in all processes related to DNA replication, repair and recombination. The
efficiency and fidelity of these processes are critical since errors can lead to carcinogenesis.
Numerous studies indicate that mutations in DNA polymerases affect characteristics ranging
from fidelity, to nucleotide incorporation rate, to cell proliferation [15–26]. However, a
direct link has not been established between these mutations and cancer onset.

Our results uncovered a large number of cancer related SNPs on DNA polymerases.
Statistical analysis on selected studies reveals for the first time the possibility that DNA
POLL could be a major contributor to cancer risk. Molecular dynamics simulations were
performed on wild-type and a SNP mutant on POLL to further investigate the functional
impact of the mutation.
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2. Methods
In this section we describe the algorithm to search for disease related SNPs based on a given
hypothesis and its implementation in an easy to use software package. Subsequently we
describe the statistical methods to determine the association of the SNPs with the phenotype.
This is followed by a description of the graph analysis of the resulting data from HyDn-
SNP-S for the present studies. Finally, the details of molecular dynamics (MD) simulations
on DNA polymerase lambda structures are described.

2.1. HyDn-SNP-S
SNP collections for each phenotype are obtained from studies deposited on the database of
genotypes and phenotypes (dbGaP). A header is appended to each data set declaring the
phenotype associated with each individual study. Mutations listed relative to the HuRef and
Celera genomes are removed, as we are working within the frame of reference of the
GrCh37 human genome reference build. All files containing the SNP collections are
subsequently catenated into a single searchable resource file. This single file allows HyDn-
SNP-S to search all relevant SNPs for every phenotype that was included in the resource file
in one single run. Following the generation of this resource file, the program HyDn SNPs
was used to search for mutations within the gene region of interest. Users enter the
chromosome, and gene range for searching, and point the program to the resource file.
Sample resource files are available with the HyDn SNPS download. Further information and
instructions are available in the documentation for this program. Any SNPs found that match
the chromosome and gene location range are deposited into a results file. This file lists all
the SNP associated information, such as ss and rs number, allele, chromosome,
chromosomal location, contig number, and contig location, and type of chip used in the
original genotyping experiment. These can then be categorized by location; intronic, exonic,
or at a splice site. For our purposes, exonic SNPs were then compared to reference SNPs to
ascertain the extent of prior investigation, as well as relative allele frequency in the natural
population. The consequence of any given SNP was determined either by use of the
reference SNP database, or in the case of previously unreported SNPs, translated by use of a
DNA codon table in conjunction with the gene sequence and protein sequence. HyDnSNPs
is available upon request from the authors.

2.2. Statistical analysis
We utilized four publically available case/control genome wide association studies (GWAS)
from dbGAP (access request #1961) across multiple cancer types (including breast,
melanoma, lung and prostate cancers) [27–32] to determine if SNPs or haplotypes
constructed from SNPs in our genes of interest (genes coding for all human polymerases)
are associated with any of these disease phenotypes. Additionally, we determined if any
synergistic results across multiple databases exist that may imply a common cancer genesis.
Multiple genetic modes of inheritance were examined: additive, dominant, recessive and
genotypic in a covariate-adjusted logistic regression analysis associating each SNP with the
disease phenotype. The maximum likelihood estimate of the posterior probabilities of
haplotypes for each observation was produced using the EM algorithm. Score statistics for
the association of the haplotypes with the cancer phenotype were constructed using these
posterior probabilities. We use the R package “haplo.stats” to implement these haplotype
functions [33]. Logistic regression is also used to estimate the association of a haplotype
with the disease phenotype, given the genetic context. As we focus on the SNPs in only a
few genes, we avoid issues with multiple testing, which are burdensome when trying to
evaluate the association between genetic markers and a disease phenotype when measuring
thousands or millions of genetic variants.
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2.3. Graph analysis
For ease of visual analysis, the data resulting from the HyDn-SNP-S search has been
transformed into edge-node format to allow visual interpretation of the networks of
phenotypes and polymerases involved in tumorigenesis. Frequently more than one
polymerase was found to have single point mutations within a cohort of cancer patients;
network analysis allows for easy visual interpretation. Edge-node tables were csv formatted
for use in Gephi [34], visualization was performed with a Fruchterman–Reingold [35]
algorithm using an area of 15,000 and a gravity of 7.0. Nodes and edges were weighted by
degree; for these analyses, weight was the number of mutations occurring between each
phenotype and polymerase.

2.4. MD simulations
MD was performed on wild-type and the R438W mutant of DNA POLL in the binary and
ternary conformations (PDBID: 1RZT, 2PFQ) using NAMD. The simulations were
performed using a parallel build of NAMD [36] employing the CHARMM [37] force field
on the XSEDE Teragrid. The structures were solvated, and appropriate counterions were
added to reach 0.5 mM NaCl. A timestep of one femtosecond was used, a Langevin
thermostat was used to maintain temperature at 300 K, and a Nose–Hoover Langevin
combination method was used to control pressure. The systems were solvated with TIP3P
water, neutralized with counter ions and subjected to 1000 steps of conjugate gradient
minimization and temperature ramped to 300 K. After equilibration, the systems were run
for at least 14 ns of production time. Frames from the trajectories were written every 1 ps.
The solvation boxes included a 15 Å pad on each face of the box. Long range electrostatics
were calculated using particle mesh Ewald [38], and van der Waals were calculated with a
nonbonded cutoff of 8 Å and a switching function between 7 and 8 Å

Correlation analysis by residue was carried out for each system using the ptraj module of
Amber11, across the entire simulation. An all residue correlation was performed and
difference plots were calculated using Mathematica [39]. Correlation between the mutated
residue and the residues in Loop 1 were also calculated and plotted. Generalized masked
Delaunay analysis was carried out using the TimeScapes software from the D.E. Shaw group
[40]. Trajectories were prepared using VMD [41], and all solvent and nucleic acids were
excluded from analysis. A sliding window of 5% of the total number of frames was used,
and total events per frame were calculated and plotted against frame number.

3. Results and discussion
The HyDn-SNP-S method returns results from whole genome genotyping studies rapidly,
far faster than traditional bioinformatic methods. Pre-screening with HyDn-SNP-S
dramatically decreases the time required to perform statistical analysis on GWAS data, by
excluding all mutations not relevant to a researcher’s hypothesis. As proof of concept four
genotyping studies have been statistically analyzed following application of the HyDn-SNP-
S method. Additionally, one mutation, both determined to be statistically significant and of
structural interest was subjected to molecular dynamics studies and consequent analysis.

Upon searching four cancer phenotype studies (melanoma, breast, lung and prostate cancer)
[11, 29–32, 45] for mutations in all polymerase genes, a total of 708 mutations were found.
Of these mutations 491 were intronic, and 217 were exonic. Additionally, four of the exonic
mutations were found to be at splice sites. As per the workflow described above, all four
searches were carried out simultaneously, and results were available within a few minutes.
Following application of the HyDn-SNP-S analysis, the four studies were subjected to
traditional biostatistical analysis. The focused nature of the search allows for relaxation of
the more stringent mathematical methods, and facilitates more thorough analysis of the
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resulting mutations. Haplotype analysis on whole genome genotyping data is frequently not
performed as the combinatorial nature of these studies across all mutations would be
prohibitively computationally expensive. As the dataset used for analysis following the
HyDn SNP-S method has significantly reduced complexity, these targeted studies can detect
mutations of moderate significance that would be overlooked in traditional bioinformatic
analyses and perform these searches more rapidly than is typically possible.

Logistical regression and haplotype analysis was performed on these studies to determine
statistical significance. The prostate cancer case/control database examined yielded 69 SNPs
in the genes of interest. Eleven of them were statistically significantly associated with
prostate cancer status for at least one genetic model. The melanoma cancer case/control
database examined yielded 215 SNPs in the genes of interest. Twenty-six of them were
significantly associated with melanoma case/control status for at least one genetic model
after controlling for age and gender. The breast cancer case/control database examined
yielded 100 SNPs in the genes of interest. Twenty-two of them were statistically
significantly associated with prostate cancer status for at least one genetic model. The lung
cancer case/control database examined yielded 51 SNPs in the genes of interest. Twenty of
them were statistically significantly associated with prostate cancer status for at least one
genetic model. Table S1 reports all of the significant SNPs, their p-value and corresponding
POL gene.

Analysis was performed to determine the association between the derived haplotypes from
each gene and disease status. No haplotypes were predictive of disease status for the lung
cancer study nor the melanoma study using any of the three genetic models. However, the
haplotypes constructed from SNPs on POLL were borderline significant for the breast
cancer study using a recessive (p-value = 0.048) or additive (p-value = 0.091) model
formulation. This haplotype is constructed from two SNPs: rs3730477 (C > T; R438W) and
rs3730463 (A > C: T221P). The odds ratios from individual significant and borderline
significant contrasts within each model type are reported below. In the case of the additive
model, for each additional C–A haplotype observed, the odds of breast cancer are multiplied
by 1.15 (p-value = 0.029). Similarly, for each additional C–C haplotype observed, the odds
of breast cancer are multiplied by 0.812 (p-value = 0.062), i.e., a protective genotype. For
the recessive model, having 0 or 1 copy of the C–A haplotype results in the odds of breast
cancer being multiplied by 0.829 relative to having 2 copies of the C–A haplotype (p =
0.026). Having 0 or 1 copy of the C–C haplotype results in the odds of breast cancer being
multiplied by 3.01 relative to having two copies of the C–C haplotype (p = 0.099). The
haplotypes constructed from SNPs on the PolG genes were significant for prostate cancer.
This haplotype is constructed from three SNPs: rs3087374, rs2351000 and rs2247233. The
odds ratios from individual significant contrasts within each model type are reported below.
For the recessive model, having 0 or 1 copy of the G–T–G haplotype results in the odds of
prostate cancer being multiplied by 1.33 relative to having 2 copies of the G–T–G haplotype
(p = 0.005). Having 2 copies of the G–C–A haplotype results in 9.64 of the odds of prostate
cancer as compared to having 0 or 1 copy of the G–C–A haplotype (p = 0.008).

A literature search indicates that only one of these statistically evaluated mutations has been
explored in vitro [42]. Experimental analysis of the mutations we report here is outside the
scope of this work. However, the mutations arising from these SNPs present interesting
targets for further experimental studies.

The data resulting from a HyDn-SNP-S search can not only be discussed at the molecular
level, and in the context of predictive power, but due to the nature of these studies, on a
much broader basis. Relating many phenotypes to many polymerases generates a network of
data best represented by an edge-node interactive diagram. Using the number of SNPs as a
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weighting property, it is possible to broadly examine the complete network of phenotype–
polymerase interactions. Fig. 2 shows a flattened version of this data, limited to statistically
explored phenotype data, which is available in interactive form online at http://
www.chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html. Both polymerases and
phenotypic studies are represented as nodes, sized according to SNP density. By clicking on
a node, all connections to that node will be listed. Clicking on any of those connections will
return all connections to that selected node.

The interactive map allows investigation of the network associations of various phenotypes
and polymerases and the complete list of connections is available from the dropdown menu
at the top of the page. A complete list of all connections is available upon request from
andres@chem.wayne.edu. This file also includes the translated mutations. Many diseases are
not caused by a single point mutation, but rather by a collection of factors. As the formatting
for the results of HyDn-SNP-S is well suited to network analysis, and additional data can be
garnered as desired from the genotyping studies, this approach may have critical importance
in searching for combinations of factors that may be predictive for disease. Due to the
targeted nature of the search, there is a significant reduction in the analytic space and thus,
more thorough analysis can be performed. The haplotype described above is one example;
individually the two mutations would have been overlooked by traditional analysis, but in
combination they are strongly predictive.

To further validate that hypothesis driven analysis of whole genome genotyping data is
valuable to researchers, we sought to study a mutation with statistical significance that
would have been overlooked by traditional methods. Of the two mutations that comprise the
haplotype linking POLL to breast cancer, only the mutation R438W is in the polymerase
domain. This position is not close to the active site, but it is within 14 Å of Loop 1, which
has been shown to be critical for fidelity [43]. The R438W SNP mutation has been
previously shown to contribute to decreased fidelity in vitro, increased mutation frequency,
and generation of chromosomal abnormalities [44]. An eightfold increase in inaccurate
substitutions was observed in base substitution assays and karyotypic analysis of several cell
lines carrying this mutation also reported a high level of spontaneous or IR-induced
chromosomal aberrations. With ample evidence to suggest a molecular basis for these
results, we selected DNA polymerase lambda R438W for further study.

Four MD simulations were performed, using crystal structures 1RZT and 2PFQ. These
structures were selected as they represent the binary and ternary complexes of Pol lambda,
respectively. The binary complex includes Pol lambda and the template DNA, the ternary
complex includes Pol lambda with both the template and incoming nucleotide. The change
in Loop 1 conformation between the two structures is shown in Fig. 3. Panel A overlays the
binary and ternary complexes, Loop 1 is shown in purple to illustrate the alteration in
conformation. Panel B shows a closer view of the loop conformations, indicating both
binary and ternary conformations. Panels B and C illustrate the relative proximity to the
R438W mutation. As the structure transits between the two loop conformations, the
mutation ranges from roughly 12.6 Å to 14.3 Å away. A video illustrating the position of the
mutation and the visual interpolation of the binary and ternary conformations is available as
Movie S1. Mutations in this loop have been shown to have no effect on catalytic rate while
simultaneously increasing the number of misincorporations, thus Loop 1 is critical for
polymerase fidelity [43]. Following a 14 ns simulation, correlation analysis was carried out
to determine whether the residues in Loop 1 were affected by the mutation.

As shown in Fig. 4, the binary complex shows little change in correlation between the wild-
type and mutant structures. Conversely, the ternary complex shows high correlation and
anti-correlation in two regions. The highest points of correlation are between residues at
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positions 438 and 569, as well as between 438 and 420. Residues showing the greatest
change in correlation in the ternary complex were mapped to the structure and colored
orange as shown in Fig. 4C. It is notable that a majority of these residues are on Loop 1. To
further understand the impact of the SNP mutation on Loop 1, the correlation data between
position 438 and all residues in Loop 1 was extracted and plotted. Fig. 4D shows that
although there is higher correlation in the ternary complex between the wild-type and
mutant, both complexes show altered correlation between the wild-type and mutant. The
sum of these analyses suggests that the introduction of the R438W mutation alters the
overall correlation pattern in the ternary complex, but more importantly, directly affects the
motions of Loop 1 in the both complexes. As Loop 1 regulates fidelity, and transit between
the two conformations shown in Fig. 3 is required for catalysis, the SNP leading to the
R438W mutation likely has direct effects on polymerase activity in vitro and in vivo.

In addition to the correlation analysis, generalized masked Delaunay (GMD) analysis was
performed to determine the impact, if any, on the overall activity of the simulations. The
results are shown in Fig. 5, events are plotted on the Y-axis, and frame number is plotted on
the X-axis. GMD defines events as persistent motions across the masked Delaunay reduced
representation of the protein structure. Panels A and B show the wild type activity for both
the binary and ternary complexes, with average activity levels of roughly 0.2 events per
frame. These patterns are typical of stable simulations, where no major rearrangement is
occurring. The alteration in the correlation plots combined with the stability of the GMD
indicates that the mutation induces only local alterations in activity.

The sum of the correlation and GMD analysis indicates that the R438W mutation appears to
modify only the movement of Loop 1, while the overall dynamics are not significantly
altered. This provides context for the experimental work by Terrados et al. [44]. Their
experiments indicated that the R438W mutation increases the error rate of Pol lambda, but
does not alter the overall rate of polymerization. Our results indicate that the R438W
mutation alters only the behavior of Loop 1, while leaving the overall conformational
motions of Pol lambda unperturbed. This would agree with the behavior observed
experimentally. The R438W mutation alters the behavior of Loop 1, thus decreasing fidelity,
while the overall behavior of the polymerase is unaffected, allowing it to maintain a normal
rate of polymerization.

4. Conclusions
We have developed a powerful method that allows researchers to interact with whole
genome genotyping data in a focused, hypothesis driven way. By allowing researchers to
find data on their own systems of interest, we will expedite the study of any mutations that
may logically be connected to a phenotype. Also, the focused nature of these searches will
allow more thorough statistical analysis, and appropriate recognition to combinations of
factors that would be difficult to fully assess in an extremely broad GWAS analysis. By
applying this methodology to our system of interest we were able make the first direct
statistical link between DNA polymerases and cancer, define two haplotypes with strong
predictive power, and trace a cancer-associated mutation to a structural effect in the
translated protein and investigate its functional impact by computational simulations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.dnarep.2013.06.001.
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Fig. 1.
Flowchart of the HyDn-SNPs method. Upon development of a hypothesis, researchers select
GWAS studies with relevant phenotypes, and obtain locations of the genes of interest.
Following application of the algorithm, SNPs can be separated by intronic or exonic. Further
analysis can be performed by in vitro validation or computational studies.
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Fig. 2.
Edge-node network of the HyDn-SNPs results. Phenotypes and polymerases are shown as
nodes, edges are weighted by total number of SNPs connecting each phenotype to each
polymerase. This is also available as an interactive map at http://www.chem.wayne.edu/
cisnerosgroup/gexf-js2/index2.html.
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Fig. 3.
(A) Overlay of Polλ in the binary and ternary conformations. DNA is shown in light blue,
and the Loop 1 is shown in purple. (B) Differences in Loop 1 orientation between the two
conformations. Distance between position 438 and Loop 1 following an interpolation
between the two structures at its furthest (Panel D) and closest (Panel C) approaches. (For
interpretation of the references to color in this artwork, the reader is referred to the web
version of the article.)
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Fig. 4.
Correlation difference plots for the binary (A) and ternary (B) conformations relative to the
wild type. Increases in correlation are shown in orange, while increases in anti-correlated
motions are shown in blue. In both cases, alterations in the correlation plots are visible, more
notably in the ternary complex. The highest values from the ternary complex correlation
plots were mapped back to the residues affected, and are colored orange in Panel C. Notably
many of these residues are on Loop 1. Panel D shows the individual correlation values for
each of the residues in Loop 1. While the binary complex shows moderate alteration on
several, the ternary complex shows considerable differences for several residues,
particularly between residues 469 and 472. (For interpretation of the references to color in
this artwork, the reader is referred to the web version of the article.)
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Fig. 5.
GMD plots for the binary and ternary complex simulations in both wild type and mutant
form. No drastic differences are apparent between the four simulations indicating that all
four are showing the same general level of physical activity. This indicates that the overall
motions of the polymerase are not perturbed. In light of the data presented in Fig. 4, this
indicates that the significant alterations in conformational space are restricted to the Loop 1
region.
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