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Abstract

Background: The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to
another, which are informative and insightful for public health policy makers to accurately predict the patterns of its
geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be
affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we
pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available
tempo-spatial patterns of reported cases.

Methodology: We first define a spatial transmission model, which involves representing both the heterogeneous
transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations.
Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the
transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors,
including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number
of imported cases.

Principal Findings: We implement our proposed models by focusing on the P. vivax transmission among 62 towns in
Yunnan province, People’s Republic China, which have been experiencing high malaria transmission in the past years. By
conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax
transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of
individual towns in the geographical spread of P. vivax.

Conclusion: The demonstrated models have presented a general means for inferring the underlying transmission networks
from surveillance data. The inferred networks will offer new insights into how to improve the predictability of P. vivax
transmission.
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Introduction

As one of the malaria parasites that can infect and be

transmitted by human beings, Plasmodium vivax has induced

enormous challenges to the public health of human population.

It has been estimated that 2.5 billion people all over the world are

at risk of infection with this organism, among which China

accounts for 19% of the global populations at risk [1]. To control,

eliminate or even eradicate malaria, WHO has suggested that the

most important measure is a timely response with the implemen-

tation of strategic intervention [2]. This requires the establishment

of effective and efficient monitoring or surveillance systems [3].

Moreover, in practice, human mobility can introduce malaria into

previously low-transmission or malaria-free areas, which has been

cited amongst the significant causes of the failure of the Global

Malaria Eradication Programme [4]. Therefore, it would be

desirable to investigate the underlying geographical spread of

malaria, which is not apparent from surveillance data. In this

paper, the transmission networks of P. vivax characterize how the

parasite transmits from one geographical location to another due

to human mobility. By focusing on the malaria transmission in

Yunnan province, People’s Republic of China, we pay special

attention to the problem of how to infer the underlying

transmission networks of P. vivax based on tempo-spatial patterns

of observed/reported cases.

Natural transmission of P. vivax depends on the interactions

between female anopheles mosquitoes and human beings. On the

one hand, the ability of mosquitoes to transmit P. vivax within a

geographical location is dependent upon a series of biological

factors, such as the daily survival rate of mosquitoes and the
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sporogonic cycle length of sporozoits in their bodies [5,6]. On the

other hand, human mobility between geographical locations in

various temporal (e.g., daily or monthly) and spatial (e.g., intra-

urban or inter-urban) scales may result in P. vivax transmission

from high-transmission to low-transmission or malaria-free loca-

tions [7–9]. Generally speaking, the geographical spread of P. vivax

has the following characteristics:

N Complexity. The dynamics of P. vivax transmission is complex

because it can be affected by a large number of interactive

factors (e.g., biological, environmental, and socioeconomic) at

or across different scales.

N Heterogeneity. The geographical locations have heterogeneous

transmission potential due to the dynamically-changing

environments, economic development, and other factors.

N Human reaction. Human beings may react either passively or

actively to malaria transmission at different organizational

levels (e.g., governmental or individual level).

N Sparse surveillance data. The reported cases, especially in low-

transmission areas, are both temporally and spatially sparse.

For example, there are on average fewer than one reported

case per 10,000 populations per year in P.R. China.

In view of this, to infer the underlying transmission networks of

P. vivax, it would be desirable to address the following two

computational issues:

N How can we model the dynamics of P. vivax transmission by

taking into consideration the heterogeneous transmission

potential caused by various factors at or across different scales?

N How can we quantify the impact of P. vivax transmission from

one geographical location to another based on the tempo-

spatial patterns of sparse surveillance data?

Mathematically speaking, the problem can be defined as follows:

Let G(V ,L) be a directed network with self-links, where V and L
represent the sets of nodes and links, respectively. Each node vi[V
stands for a geographical location in a malaria transmission area,

and each link (vi,vj)[L stands for the possible P. vivax transmission

from vi to vj . For each node vi, let O(vi) be the set of nodes that have

links from vi , i.e., O(vi)~fu[V D(vi,u)[L,u=vig, and I(vi) be the set

of nodes that have links to vi, i.e., I(vi)~fu[V D(u,vi)[L,u=vig.
Note that vi does not belong to either O(vi) or I(vi). Moreover, we

denote the weight of link (vi,vj) as wij to represent the proportion of

infected populations transmitting from vi to vj . Specifically, wii

refers to the proportion of infected populations in vi that do not

transmit. In this case, the objective is to estimate the link weights of

G(V ,L) based on surveillance data, which are formulated as N
tempo-spatial series (corresponding to N nodes or geographical

locations, such as villages or towns). For each node vi, the tempo-

spatial series take the form of 3-tuple (vi,yi(t),Ai(t)), which indicates

that yi(t) cases are observed/reported at time step t at vi with

attribute set Ai(t). In this paper, the attribute set Ai(t) consists of the

dynamically-changing temperature and rainfall over time t at node

vi, which reflects the heterogeneity of the nodes concerning the

transmission potential of P. vivax.

In this paper, we focus on the problem of how to infer the

underlying transmission networks of P. vivax among 62 towns

located in four adjacent counties (i.e., Teng Chong, Long Ling,

Ying Jiang, and Long Chuan) in Yunnan, China (see Figure 1),

where the IDs and names of these towns are listed in Table 1. All

these towns have been experiencing high P. vivax transmission in

the past three years, with at least one year having the annual

incidence rate larger than 1/10,000. Figure 2 presents the

reported P. vivax cases of the 62 towns in 2005 grouped by every

two weeks. It can be observed that different towns has different

patterns of infections. There are three major reasons: First, due to

the environmental and demographical heterogeneity of these

towns, the transmission potential of P. vivax at each individual town

is different. Figure 3 shows the heterogeneous transmission

potential (i.e., vectorial capacity) estimated by the average

temperatures and accumulated rainfall at each town based on

the method proposed by Ceccato et al. [6]. Second, human

mobility from one location to another may result in geographical

spread of P. vivax. Third, a large number of malaria cases in

Yunnan are imported from Myanmar [10], which is a high-

transmission country for malaria and contiguous with Yunnan.

Imported cases in this work are defined as malaria infections

whose origin can be traced to an area outside the country. Based

on the annual case reporting system in P.R. China, the fraction of

imported cases of P. falciparum in Yunnan was about 69.0% in

2005 [11]. While in 2011, among totally 301 reported P. falciparum

cases in Yunnan, 269 of them were imported cases (i.e., the

fraction of imported cases was about 89.4%) [12]. It was also

reported that the fraction of imported cases of P. vivax in China in

2011 is about 62.9% [12]. Along this line, in this paper, we study

several transmission scenarios with respect to different percentages

of imported cases (i.e., 60%, 70%, 80%, and 90%) among all the

reported P. vivax cases in the 62 towns. Specifically, we present a

spatial transmission model and a recurrent neural network model

to (i) infer the transmission networks of P. vivax from tempo-spatial

surveillance data, (ii) estimate the fraction of imported cases in all

reported cases for each individual town, and (iii) examine the roles

of individual towns on P. vivax transmission.

Materials and Methods

A spatial transmission model
Due to the complex nature of P. vivax transmission, to infer the

underlying transmission networks, appropriate spatial transmission

model should first be formulated. In this paper, we aggregate the

tempo-spatial series of surveillance data for each individual town

based on a time step with duration Dt. In reality, Dt may be

Author Summary

The transmission of Plasmodium vivax has induced
enormous public health problems at the global level.
Natural transmission of P. vivax depends on interactions
between anopheles mosquitoes and human beings. There
are two important factors that influence its geographical
spread. First, different locations may have different risks of
infection due to their heterogeneous environmental and
demographical profiles. Second, human mobility may
bring pathogens from high-transmission locations to
low-transmission locations. In view of this, to effectively
and efficiently control the geographical spread of P. vivax,
it would be desirable for us to characterize how it
transmits from one location to another. To achieve this,
we first build a spatial transmission model to characterize
both the heterogeneous infection risks at individual
locations and the underlying mobility of infected popula-
tions. By doing so, we can further infer the underlying P.
vivax transmission networks from tempo-spatial surveil-
lance data by using a machine learning method (i.e., based
on a recurrent neural network model). Our study offers
new insights into malaria surveillance and control from the
viewpoint of both system modeling and machine learning.

Inferring Plasmodium vivax Transmission Networks
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related to the incubation period of malaria (i.e., the period from

the point of infection to the appearance of symptoms of the

disease). In doing so, we assume that the observed/reported

infections at time step tz1 are more likely to be infected at

previous time step t. Generally speaking, the causes of geograph-

ical spread of P. vivax are twofold. First, within a town/node vi, the

number of malaria infections yi(t) at a time step t is determined by

multiple factors, such as temperature, rainfall, population size, as

well as the number of infections yi(t{1) at previous time step

t{1. Second, human mobility may introduce P. vivax from one

town to another. Specifically, we focus mainly on the mobility of

infected populations among different towns because patients with

typical malaria symptoms will be rapidly diagnosed and treated in

Yunnan, P.R. China. It is seldom for a diagnosed patient to cause

further malaria infection.

Malaria transmission potential at the nodal level. To

model P. vivax transmission at a node, we use the notion of

vectorial capacity (VCAP), which is defined as ‘‘the number of

potentially infective contacts an individual person makes, through

vector population, per unit time [13].’’ The VCAP is adapted from

the basic reproductive number calculated based on the Macdonald

model [14]. At each node vi[V , the value of VCAP is given by:

Vi~
{(mia

2
i )p

ni
i

ln(pi)
, ð1Þ

where mi represents the equilibrium mosquito density per person,

ai is the expected number of bites on human beings per mosquito

per day, pi is the probability of a mosquito surviving through one

whole day, and ni is the entomological incubation period of

malaria parasites. Based on the study of Ceccato et al. [6], all these

parameters are dynamically dependent on temperature (T ) and

rainfall (R) at node vi. Table 2 shows the detailed parameter

descriptions and settings in this work for calculating the vectorial

capacity of each individual town in Yunnan. It should be noted

that the values of relevant parameters are based on a certain

degree of assumptions and estimates, and they could be adjusted

once more accurate values are available in the future.

To further estimate the number of infections at a node vi, we

introduce another notion of entomological incubation rate (EIR),

which is defined as the number of infectious bites received per day

by a human being [15]. Let xi(t) denote the proportion of infected

populations among all human populations at vi at time step t, i.e.,

xi(t)~yi(t)=Pi. Here, yi(t) is the number of observed/reported

infections at vi at time step t, and Pi is the population size of vi.

Figure 4 shows a schematic diagram illustrating various data sources

utilized (i.e., physiological, environmental, demographical, and

surveillance data) for characterizing the infection risks of P. vivax at

each individual town based on the notion of EIR. Mathematically,

EIRi(t) can be calculated through Vi(t) as follows:

EIRi(t)~
c:Vi(t):xi(t)

1zc:ai(t)xi(t)=gi(t)
, ð2Þ

where c denotes the probability of the disease transmitting from an

infectious person to an uninfected mosquito, gi(t)~{ln(pi(t))
represents the daily death rate of a mosquito [15].

Based on the definition of EIR, the estimated number of

infections without considering human mobility at time step tz1
can be estimated as follows:

Figure 1. An illustration of the studied areas in Yunnan, P.R. China. The areas marked in red are located near the border between China and
Myanmar.
doi:10.1371/journal.pntd.0002682.g001

Inferring Plasmodium vivax Transmission Networks
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di(tz1)~bi
:Pi
:b:EIRi(t), ð3Þ

where b represents the probability of the disease transmitting from

an infectious mosquito to an uninfected person, and bi represents

control impact of malaria transmission at node vi. Here, the

control impact bi measures the efficiency of various intervention

strategies implemented at node vi, such as insecticide treated nets,

and long-lasting insecticide-treated nets. Although according to

Equation 3, the estimated number of human infections at tz1 is a

linear function of EIR at t, the nonlinear interactions of infected

mosquitoes and susceptible human beings and vice versa are taken

into account in Equations 1 and 2 associated with VCAP and EIR,

respectively. Specifically in this paper, since all of the 62 towns are

within Yunnan, we assume the malaria control strategies over

them have the same impact. Without loss of generality, we can set

b~c~1, which corresponds to perfect malaria transmission

between human beings and mosquitoes. In reality, these param-

eters can be estimated by assessing biting habits of mosquitoes at

different locations and conducting virological and serological

analysis on infected individuals [16–18].

The mobility of infected populations at the network

level. In the following, we introduce how to model the mobility

of infected populations with respect to the geographical spread of

P. vivax. Since human mobility among the 62 towns in Yunnan

mainly relies on road transportation, in this paper, we assume

that the transmission networks of P. vivax have the same topology

(i.e., connectivity) with the transportation network. By doing so,

we can quantify the transmission of P. vivax from one node to

another by learning the link weight wij between them, which

stands for the proportion of infected populations moving from vi

to vj (Note that in this paper, the weight only characterizes the

mobility of infected populations, where the population size of

each node indirectly contributes to the weight via EIR).

Accordingly, taking into consideration the mobility of infected

populations, the number of increased infections at node vi can be

calculated as follows:

Di(tz1)~
X

vj[I(vi )

dj(tz1)wji{
X

vj[O(vi )

di(tz1)wij , ð4Þ

which represents the difference between the number of cases

transmitted from neighboring nodes and the number of cases

transmitted to neighboring nodes. In summary, the estimated

number of new infections of node vi at time step tz1 should be:

oi(tz1)~di(tz1)zDi(tz1),i[f1, � � � ,Ng: ð5Þ

A recurrent neural network model
After modeling the spatial transmission of P. vivax, we further

introduce a recurrent neural network model, which allows for

Figure 2. The reported P. vivax cases of the 62 towns in Yunnan, P.R. China, in 2005. The blue points represent the 62 towns in Yunnan.
The red bars refer to the numbers of P. vivax cases in the corresponding towns aggregated over a duration of 16 days.
doi:10.1371/journal.pntd.0002682.g002
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reflecting both structural (or spatial) and temporal dependencies of

the nodes in the network by creating interdependent internal

states in the model [19]. Specifically, we build the model by

taking into consideration the control impact at individual nodes,

the road transportation network, as well as the total number of

imported cases to the N towns from the outside. Figure 5

illustrates the internal states of the model within a time step.

There are totally sd hidden layers in the network, and the links

between two hidden layers are determined by the connectivity of

the transportation network. Each hidden layer describes one stage

of disease transmission between two neighboring towns. In doing

so, to guarantee the possibility that one infected person may

travel to any other towns at a time step, sd should be equal to the

diameter of the road transportation network. The diameter of a

network refers to the greatest distance between any pair of nodes

in the network. To reflect the impact of P. vivax control at

individual nodes, a vector b~Sb1, � � � ,bNT’ is associated to the

out-links of the nodes in the input layer. In addition, the total

number of imported cases (i.e., Z(t)) of all the N towns is linked

to the N nodes in the output layer of the neural network, where a

vector c~Sc1, � � � ,cNT’ (
PN

i~1 ci~1) is associated with Z(t) to

represent the proportion of imported cases each town received in

all the imported cases.

Figure 3. The estimated VCAP values of the 62 towns in Yunnan, P.R. China, in 2005. The blue points represent the 62 towns in Yunnan. The red
bars refer to the estimated VCAP values based on the temperature and rainfall in corresponding towns and time steps (i.e., 16 days for each time step).
doi:10.1371/journal.pntd.0002682.g003

Table 1. The IDs and names of the studied 62 towns in
Yunnan, P.R. China.

ID Name ID Name ID Name ID Name

1 Shangying 17 Mangbang 33 Mengnong 49 Mangzhan

2 Zhonghe 18 Hehua 34 Kachang 50 Nabang

3 Wuhe 19 Puchuan 35 Taiping 51 Tongbiguan

4 Menglian 20 Mazhan 36 Jiemao 52 Mengyue

5 Beihai 21 Mengnuo 37 Gangmeng 53 Chengzi

6 Heshun 22 Tianning 38 Pingyuan 54 Jiewu

7 Tuantian 23 Pingda 39 Nongzhang 55 Husa

8 Gudong 24 Mucheng 40 Zhina 56 Huguo

9 Xinhua 25 Hetou 41 Xincheng 57 Jinghan

10 Mingguang 26 Bizhai 42 Jiucheng 58 Qingping

11 Qushi 27 Lameng 43 Xima 59 Wangzishu

12 Qingshui 28 Xiangda 44 Yousongling 60 Zhangfeng

13 Houqiao 29 Zhenan 45 Zhanxi 61 Saihao

14 Ruidian 30 Longshan 46 Sudian 62 Longba

15 Jietou 31 Longxin 47 Lianhuashan

16 Tengyue 32 Longjiang 48 Mangyun

doi:10.1371/journal.pntd.0002682.t001
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For each time step t, we have a vector of reported infections

y(t)~Sy1(t), � � � ,yN (t)T, which represents the number of P. vivax

infections at each individual town. Based on the proposed spatial

transmission model, we can estimate the number of infections

o(tz1)~So1(tz1), � � � ,oN (tz1)T at time step tz1 by treating

y(t) as an input. In other words, when an input pattern

y(t) is presented to the network, it produces an output o(tz1),
which is usually different from the number of reported cases

y(tz1) at time step tz1. Suppose that we totally have a Tz1
number of time steps, that is to say, we have a training set

f(y(1),y(2)), � � � ,(y(T),y(Tz1))g consisting of T ordered pairs of

N dimensional vectors (i.e., input-output patterns). In this case, the

problem of inferring underlying transmission networks of P. vivax is

to learn the parameters b, c, and link weights (i.e., wij ) of G(V ,L)

by minimizing the sum of squares of error between the estimated

numbers of infections (i.e., o(t)) and the observed numbers of

infections (i.e., y(t)) for all towns and time steps, that is,

min E~
1

2

XT

t~1

Ey(tz1){o(tz1)E2: ð6Þ

To solve the problem, we can use the backpropagation algorithm.

The algorithm consists of three steps: (i) feed-forward computa-

tion, (ii) backpropagation computation, and (iii) weight updates.

Step 1: Feed-forward computation. Given an initial W and the

input vector ~yy(t), the estimated output o(sk)(t) at layer sk can be

calculated as follows:

Table 2. The parameter descriptions and settings for calculating vectorial capacity.

Parameters Descriptions Values

Gonotrophic cycle length: U~0:5zfu=(T{gu)

fu The number of degree days needed for maturation 36.5 ([6])

gu The threshold below which gonotrophic development ceases 9.9 ([6])

T The average temperature of an individual town MODIS ([22])

The probability of daily survival: p~a1=U

a The proportion of vectors surviving each gonotrophic cycle 0.5 ([6])

Sporogonic cycle length: n~fn=(T{gn)

fn The number of degree days required for parasite development 105 ([39,57])

gn The threshold below which parasite development ceases 18uC ([6])

Human biting habit: a~h=U

h The human blood index 0.7 ([6])

The ratio of mosquitoes to human: m~10R=P

R The average rainfall of an individual town TRMM ([23])

P The human population in an individual town Census ([24])

doi:10.1371/journal.pntd.0002682.t002

Figure 4. A illustration of modeling infection risks of P. vivax at each individual town. The notion of vectorial capacity (VCAP) is defined as
‘‘the number of potentially infective contacts an individual person makes, through vector population, per unit time.’’ The notion of entomological
incubation rate (EIR) is defined as the number of infectious bites received per day by a human being. The calculation in this paper is based on the
work of Ceccato et al. [6] and Smith and McKenzie [15].
doi:10.1371/journal.pntd.0002682.g004
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o(sk)(t)~(W ’)k{1:diag(b):~yy(t): ð7Þ

Accordingly, the final output at the output layer can be calculated

by

o(t)~(W ’)d :diag(b):~yy(t)zZ(t):c, ð8Þ

where diag(b) is a diagonal matrix with diagonal entries b.

Step 2: Backpropagation computation. The vector of backpropaga-

tion error at the output layer is computed by e(t)~y(t){o(t).
Then, the vector of backpropagation error at layer sk can be calculated

as follows:

e(sk )(t)~W d{kz1:e(t): ð9Þ

Step 3: Weight updates. After the backpropagation error has been

computed for all nodes in the network, we start to update the link

weights. Based on the backpropagation algorithm, the update for

any link weight w
(sk)
ij (t) between layer sk and skz1 is given by:

Dw
(sk )

ij (t)~g:o
(sk )

i (t):e
(skz1)

j (t), ð10Þ

where g is a learning constant defining the step length of the

update. Since each link has the same weight at different layers,

backpropagation is performed as usual for each link and the results

are simply added, i.e., Dwij(t)~
Pd

k~1 Dw
(sk )

ij (t). For the situation

that there are T input-output patterns, the necessary update will

be

Dwij~
XT

t~1

Dwij(t): ð11Þ

The update of b and c can be done in a similar way, where

bi~g:
PT

t~1 ~yyi(t)e
(s1)

i (t) and ci~g:
PT

t~1 Zi(t)ei(t).

In summary, the objective of the backpropagation algorithm is

to gradually adjust the link weights so as to minimize Equation 6

by treating each time step as an input-output pattern. Theoret-

ically speaking, the global minimum cannot be guaranteed due to

the nonlinearity of the optimization problem. In this case, the step

length for weight updates is set to be a small value, i.e., g~0:0001.

Moreover, the algorithm will be stopped when there are successive

10 times that the change of E is less than 1.

Data collection and parameter settings
The following data are involved in constructing our spatial

transmission model and recurrent neural network model to infer

the underlying transmission networks of P. vivax among 62 towns

in Yunnan, P.R. China.

N Malaria cases. We collect the cases of P. vivax infection reported

in 2005 from the China Information System for Disease

Control and Prevention [20]. Although it is obligatory for any

medical institutions and hospitals to report clinically confirmed

infection cases into the system, it is ineluctable that some

infection cases are under-reported [21]. While in this paper,

we focus only on the P. vivax infections that have been reported

by the system. In other words, we do not consider the possible

unreported cases of the P. vivax infections. Specifically, we pay

special attention to the geographical spread of P. vivax among

62 towns in four adjacent counties in Yunnan, each of which

has the annual incidence rate larger than 1/10,000 for at least

one year. For each reported case, we collect the infection date

and location from the system.

N Temperature and rainfall. We collect temperature and rainfall data

of Yunnan in 2005 to estimate the transmission potential of P.

vivax for individual towns, which are located in the area

between longitude ranging from 94.12134uE to 108.8718uE
and latitude ranging from 20.62096uN to 29.37646uN. For the

temperature, we use the Moderate Resolution Imaging

Spectroradiometer (MODIS) to estimate near-surface air

temperature, which are available on an 8 day basis at 1 km

spatial resolution [22]. For the rainfall, we use the Tropical

Rainfall Measuring Mission (TRMM) product to estimate

Figure 5. An illustration of the recurrent neural network model. There are totally sd hidden layers in the neural network, each of which
consists of N nodes representing the nodes in original G(V ,L). bi represents the control impact of each node, Z(t) is the number of imported cases,
and the links between two hidden layers are determined by the transportation network structure.
doi:10.1371/journal.pntd.0002682.g005
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daily precipitation, which are available on a 0.25 degree spatial

resolution (about 26 km spatial resolution) [23].

Since the available MODIS and TRMM data have different

spatial resolutions, we first project the TRMM data into the same

resolution with MODIS data (i.e., 1 km spatial resolution). In

doing so, many spatial grids may have the same values of daily

precipitation. Such a deficiency can be addressed if more accurate

estimates are available in the future. Then, we aggregate the daily

precipitations on an 8 day basis to match the temporal resolution

of the MODIS data. Finally, by respectively averaging the

aggregated MODIS and TRMM data in a time duration

Dt~16, we can calculate the value of VCAP for each individual

town based on the model proposed by Ceccato et al. [6].

N Population size. The population size of each town is based on the

national census in P.R. China. In the past decade, China

conducted two national censuses, i.e., the fifth national census

in 2000 and the sixth national census in 2010. However, since

some administrative divisions and towns in Yunnan had been

restructured after 2005, the sixth national census cannot reflect

the population sizes of such towns obtained from the China

Information System for Disease Control and Prevention in

2005. In this paper, we set the population size of each town

based on the fifth national census in 2000 [24].

N Time period studied. It can be observed from surveillance data

that the malaria transmission in Yunnan exhibits a seasonal

pattern. In this paper, we focus mainly on the high-

transmission months from April to October in 2005.

N Duration of the time step. Although P. vivax parasites may stay

dormant for a long period after the primary infection is cleared

from the bloodstream [25], the incubation period of P. vivax is

usually from 12 to 20 days. In this paper, we set Dt~16 to

aggregate the time series of reported cases into different time

steps. There are totally 12 time steps.

N Road transportation network. The road transportation network

among the 62 towns is identified by using Google Maps API. If

there is a direct road between two towns without passing

through other towns, the road between the two towns will be

included. Figure 6 illustrates the identified road transportation

network, where the diameter is equal to 9. In other words, we

have sd~9.

The proposed models have presented a general way to

investigate the geographical spread of P. vivax based on surveil-

lance data, which involve both the heterogeneous transmission

potential of P. vivax and a machine learning algorithm. Based on

the available one-year surveillance data, the demonstrated models

are able to arrive at some informative results. Accordingly, if more

malaria cases are collected from surveillance data across multiple

years, the accuracy of our models will be further improved.

Results

The number of reported P. vivax cases for each individual town

shows a certain degree of spatial heterogeneity. Figure 7

demonstrates a smoothed surface map with respect to the number

of reported cases in individual towns in Yunnan, P.R. China. The

map is generated using ArcGIS version 10.0 (ESRI; Redlands,

CA, USA), where the kernel density estimator with search radius

0.2 is employed. The size of a node in blue corresponds to the total

number of reported cases in 2005, while the colored surface

represents the hotspot density magnitude of the P. vivax cases after

smoothing. Four obvious hotspots can be observed, that is, the

areas in red around the towns of Wuhe, Gudong, Pingyuan, and

Jinghan.

Based on the annual case reporting system in P.R. China over

the last several years [11,12], we assume that the fraction of

imported cases among all the reported P. vivax cases in the 62

towns is at least 60%. Accordingly, we can estimate the proportion

of imported cases for each individual town, that is, the vector c for

the 62 towns. Figure 8 shows the estimated proportion of imported

cases for each individual town under four scenarios with different

percentage of imported cases in the total number of reported cases

(i.e., 60%, 70%, 80%, and 90%). The error bars demonstrate the

standard deviations, which refer to the variation of the estimated

results for the four scenarios. It can be observed that for most

towns, the proportion of imported cases does not vary too much.

This is reasonable because international labor/tour mobility may

have certain regular temporal or spatial patterns [26]. Specifically,

it can also be observed that the town Wuhe has the largest

proportion of imported cases among the 62 towns. This is

consistent with the situation that Wuhe is the hotspot of malaria

transmission (see Figure 7). From the viewpoint of active

surveillance and intervention, we can pay special attention to

those towns with a larger proportion of imported cases, namely,

Wuhe, Tuantian, Mingguang, Tengyue, and Longjiang.

Figure 9 illustrates the values of weight matrices for the four

scenarios with different percentages of imported cases. It seems

that the inferred transmission networks of P. vivax (i.e., the weight

matrices) show different patterns when the total percentage of

imported cases changes. Particularly, it can be observed that as the

total percentage of imported cases increases, the values of the

diagonal entries vary dramatically. Note that the diagonal entries

in a weighted matrix represent the severity of P. vivax transmission

within individual towns (i.e., self-propagation of malaria) associated

with their local transmission potential. This is because there is only

little change about the proportion of imported cases for each

individual town as shown in Figure 8. In this case, as the total

percentage of imported cases increases, the total number of P. vivax

cases caused by local infections will decrease. In other words, the

P. vivax cases of individual towns will become geographically

sparse. In this case, some towns with high malaria transmission

risks may need to contribute more to the number of reported P.

vivax cases in other towns to minimize the sum of squares for error,

which makes them much easier to be identified.

Give the total percentage of imported cases in the 62 towns in

Yunnan, we can further assess the roles of individual towns during

the P. vivax transmission. Based on the estimated weight matrix for

the scenario with 80% imported cases, the towns can be classified

into two typical categories: the self-propagating towns and the

diffusive towns (see Figure 10). A self-propagating town i has a

relatively larger wii, which means that fewer new infections in this

town will transmit to other towns. While a diffusive town j has a

relatively smaller wjj , which means that new infections in this town

will be more likely to transmit to other towns. Figure 10 shows an

example of classification with two specific thresholds, i.e., 0.5 and

0.8. The towns with the proportion of self-propagation larger than

0.8 (respectively, less than 0.5) are classified into the category of

self-propagating towns (respectively, diffusive towns). The names

of the corresponding towns can be found in Table 1. In reality, the

thresholds can be defined by domain experts based on their work

experiences.

Discussion

With respect to the vector-borne pathogen (i.e., malaria),

existing studies have shown that human mobility from one location
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to another, which exhibits various spatial and temporal scales, is a

key behavioral factor for its geographical spread. This is because

human mobility influences their exposure to infectious vectors (i.e.,

mosquitoes), and further the malaria transmission [8,27,28].

Extensive studies have been conducted attempting to quantify

human mobility patterns so as to indirectly predict the underlying

malaria transmission networks. Such human mobility patterns can

be constructed from various available data, such as survey [29],

census data [30], airline transportation [31], mobile phone

[9,32,33], or even by certain computational methods, such as

the gravity model or its extension [34]. However, most of them

emphasize only the impacts of human mobility, which cannot

reflect the complex properties of malaria transmission. To step

forward to understand the underlying transmission networks of P.

vivax, in this paper, we have considered both the dynamics of P.

vivax transmission and the impact of human mobility.

Another research direction focuses on understanding the critical

features of host-vector-parasite interactions by building explicit

mathematical models, which assume homogeneous mixing of the

population [13]. Starting from the Ross model [35], a variety of

differential equation models with different levels of complexity

have been proposed to investigate the roles of demographic, socio-

economic, and environmental factors (e.g., age, immunization,

and migration), which are helpful to predict the effects of

interventions on the model parameters. Along this line, to assess

the effects of human mobility on the persistence of malaria, many

spatial transmission models have been proposed [28,36,37]. One

common limitation of these conceptual models is that the

population of both human beings and mosquitoes are assumed

to be fixed. However, researchers have shown that environmental

factors (e.g., temperature and rainfall) have a significant impact on

mosquito population as well as their biological cycles [38,39]. In

this paper, we have adopted the notion of vectorial capacity

(VCAP) to characterize the heterogeneous transmission potential of

P. vivax at different locations. Specifically, a vectorial capacity

model proposed by Ceccato et al. [6] is used to monitor changing

malaria transmission potential within a town by taking into

consideration the impact of temperature and rainfall on the

bionomics of mosquitoes and the parasite extrinsic incubation

period in mosquitoes.

The last decade has witnessed a great upsurge in studying and

revealing the unifying principles of real-world systems by modeling

them as complex networks [40–42]. Since then, lots of efforts have been

made to investigate disease transmission in populations by

integrating epidemic modeling with complex networks analysis

(e.g., human contact heterogeneity [43]). Each node in a network

can represent either an individual or a group of individuals to model

disease transmission at the individual/metapopulation level [44].

Accordingly, the transmission dynamics on the network can be

formulated by stochastic models on regular networks [45] or

irregular networks [46]. The mean-field versions of stochastic

models on regular networks correspond to the deterministic models

for which the homogeneous mixing of the population is a good

approximation. One major concern of these studies is to investigate

the impacts of realistic network topologies (e.g., random networks

[47], small-world networks [47,48], and scale-free networks [49]) on

Figure 6. An illustration of the road transportation network among the 62 towns in Yunnan, P.R. China. The roads are obtained using
Google Maps API. A direct road between two towns without passing through other towns will be included.
doi:10.1371/journal.pntd.0002682.g006
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the process and results of disease transmission. Different from these

studies, in this paper, we have focused on inferring the underlying P.

vivax transmission based on a small-scale actual network (i.e., the

road transportation network among the 62 towns in Yunnan). In the

future, the proposed model may be considered for larger networks,

in which a complex networks approach will be suitable.

Regarding the machine learning procedure, Liu et al. [50] have

stated that the methods to infer underlying networks of disease

transmission from observed incidences could be significantly different

from those to infer the structures of diffusion networks from

information flows due to the unique nature of disease transmission

dynamics [51,52]. Existing methods consider merely temporal

information to infer diffusion networks, and most of them are based

on the assumption of independent cascading of information. On the

contrary, malaria may spatially propagate due to human mobility in

two ways: (i) infected persons may bring the pathogen from one

location to another, and (ii) susceptible persons can become infected

while traveling to high-transmission locations. Therefore, geograph-

ical malaria transmission is not independent cascading. Reasonable

transmission networks can be discovered only when appropriate

transmission models are formulated.

As for the predictability, it is always expected that there is a

powerful model that can provide accurate predictions on the

malaria transmission patterns. However, it is extremely challeng-

ing due to the complicated dynamics of malaria transmission.

Based on surveillance data for scenarios with various percentages

of imported cases among all reported P. vivax cases, the hybrid

model (i.e., the spatial transmission model and the recurrent

neural network model) presented in this paper can help infer (i) the

the proportion of imported cases for individual towns, and (ii) the

transmission networks of P. vivax among the 62 towns. The results

have shown that the proportion of imported cases for individual

nodes (i.e., the value of vector c) is relatively stable for different

percentages of imported cases (Figure 8), while the underlying

transmission networks depend heavily on the total number of

imported cases (Figure 9). In P.R. China, the number of imported

P. falciparum cases at the county level is released every year through

an annual case reporting system. To further implement our

models, it would be necessary to continuously monitor the

imported P. vivax cases. By doing so, our models may provide

public authorities with new insights into active surveillance and

control of P. vivax transmission. Specifically, this can be achieved

Figure 7. A smoothed surface map with respect to the total number of P. vivax cases in each individual town. The size of the nodes in
blue represents the total number of reported cases. The colored surface represents the hotspot density magnitude of P. vivax cases after smoothing.
doi:10.1371/journal.pntd.0002682.g007
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by (i) identifying whether or not a particular P. vivax case is

imported during data collection in the front line, and (ii) analyzing

the tempo-spatial patterns of imported P. vivax cases across

multiple years.

Last but not the least, this work is novel in that it provides a way

to investigate the underlying malaria transmission patterns from

the real-world malaria surveillance data [53,54]. Figure 11

illustrates a machine learning framework, which consists of the

interactions between malaria transmission models and machine

learning models. The framework consists of three interactive

components:

N Malaria transmission models. Based on the real-world problems

that need to be investigated, appropriate transmission models

Figure 9. The inferred P. vivax transmission networks for scenarios with 60%, 70%, 80%, and 90% imported cases. The colors
represent the relative strength of malaria transmission from one town to another. Note that the diagonal entries refer to the self-propagation of P.
vivax within individual towns.
doi:10.1371/journal.pntd.0002682.g009

Figure 8. The estimated proportion of imported cases for each individual town in different scenarios. The error bars represent the
standard deviations of the four scenarios with 60%, 70%, 80%, and 90% imported cases in the total number of reported cases. It can be observed that
for most towns, the proportion of imported cases does not vary too much.
doi:10.1371/journal.pntd.0002682.g008
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can be developed ranging from conceptual homogeneous

mixing models [13] to realistic data-driven agent-based models

[44,55]. Once a model is developed, some parameters should

be continuously obtained from surveillance system, such as the

temperature and rainfall in this work. Meanwhile, some

parameters would be difficult to obtain directly from

surveillance systems, which may also determine the perfor-

mance of the model.

N Machine learning models. For the parameters that cannot be

directly obtained from surveillance system, we can infer them

using appropriate machine learning methods [56]. The

learning process should comprehensively concern the differ-

ences between the outputs of the transmission model and the

observations from surveillance systems.

N Surveillance systems. The functions of surveillance systems in this

framework are twofold: First, the surveillance data can serve as

continuous inputs for a malaria transmission model, which is

used to predict malaria transmission patterns. Second, the

surveillance data can also perform as measures of an

appropriate machine learning model such that both the

malaria transmission model and the parameters in the model

can be adjusted accordingly.

The integration of the spatial transmission model and the

recurrent neural network model in this paper provides a typical

implementation of this framework.

Finally, due to the data availability at the moment, the proposed

models still have several limitations that are worthy of being

improved and investigated in the future:

N Biological parameters. Most of the biological parameters have been

set based on the study of Ceccato et al. [6] (see Table 2). To

achieve more precise prediction, specific investigation in Yunnan

should be conducted. For example, the gonotrophic cycle length

of mosquitoes in Yunnan may differ from that in Africa.

N Spatial heterogeneity. The TRMM data for daily precipitation is

about 26 km spatial resolution in this paper, which is not good

enough to represent the heterogeneity of daily precipitation of

individual towns. Moreover, more geographical factors may be

involved to reflect the spatial heterogeneity, such as elevations

and vegetation of individual towns.

N Human mobility. This paper has only considered the mobility of

infected populations among the 62 towns. By quantitatively

characterizing human mobility patterns (e.g., through calling

records of mobile phones [9,32]), the results might be

significantly improved. Further, for those countries/regions

where human mobility from one location to another may

further introduce new infections, more complex spatial

transmission models should be involved into the framework

[28,36,37].

N Learning methods. A recurrent neural network model is used to

infer the underlying P. vivax transmission networks, where a

time step with a duration of 16 days is utilized. In the future,

novel machine learning methods will be proposed to avoid

such manual settings. Moreover, to improve the accuracy of

the learning results, it is necessary and desirable to continu-

ously collect the reported cases of P. vivax infections every year.

N Under-reported cases. The performance of the proposed models in

this paper depends on the quality of surveillance data (i.e., the

reported cases of the P. vivax infections). However, in reality,

the infections may be under-reported [21]. To take into

account the possible under-reported infections, more deliber-

ated models should be incorporated into the machine learning

framework.

N Imported cases. In this paper, the proportion of the imported cases

in each individual town is assumed to be constant throughout

the year. In the future, it would be desirable to investigate

whether this value is dynamically changing over time.

N Dynamic transmission networks. Similar to the imported cases, the

P. vivax transmission among the 62 towns may also exhibit

certain spatio-temporal patterns. To investigate the dynamic P.

vivax transmission networks, it would be helpful to refine our

framework by involving stochastic transmission models.

Figure 10. The estimated proportion of self-propagation for individual towns under the scenario with 80% imported cases. The red
and blue lines show the thresholds for classifying self-propagating towns and diffusive towns, respectively.
doi:10.1371/journal.pntd.0002682.g010
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