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ABSTRACT A theoretical framework is constructed to
treat the effects of salt ions on polyionic structural transitions
in the absence of specific ion binding. As an application, the
salt concentration-dependent part of the free energy difference
governing the B -- Z, transition of [d(C-G)d(C-G)J6 in 1:1
electrolytes is calculated; quantitative agreement with the ex-
perimental findings is obtained. The effects of temperature
and multivalent cations are also discussed. Preliminary calcu-
lations indicate that the ZII conformation in solution is thermo-
dynamically less favorable than Z, in the high-salt regime
(2.0-5.0 M) but more favorable than Z, below 2.0 M salt.

During the 30 years following Watson and Crick's proposi-
tion of the classical B-DNA structure, it has been gradually
established that DNA exhibits considerable conformational
polymorphism (1-3). Depending on the base pair sequence
and the environmental conditions present, the molecule may
adopt several distinct conformations, undergoing reversible,
often very cooperative, structural transitions. Perhaps the
most dramatic example of such a structural DNA transition
in solution is the highly cooperative salt-induced transition
of poly[d(C-G) d(C-G)] helices observed by Pohl and Jovin
in 1972 (4). The CD spectra above a critical salt concentra-
tion-2.3 M NaCl or 0.66 M MgCl2 for poly[d(C-G)-d(C-
G)1-were found to be inverted with respect to their low-salt
forms, indicating the existence of a new, presumably left-
handed, high-salt helical structure. Crystallographic proof of
a left-handed conformation (named Z) was obtained by
Wang et al. (5) in 1979, working with [d(C-G) d(C-G)]3 crys-
tals. Related Z conformations have been found with [d(C-
G) d(C-G)]2 as well (6, 7) and are also consistent with fiber
x-ray diffraction patterns of alternating purine-pyrimidine
polymers (8). The relationship of the crystal structures to the
conformations observed by Pohl and Jovin in solution has
been clarified through NMR (9, 10) and Raman spectroscop-
ic studies (11), which provide strong evidence that the low-
salt and high-salt conformations in solution are identical (or
at least very similar) to the B and Z forms, respectively. As
far as we know, an alternating purine-pyrimidine sequence
with dinucleotide repeat seems to be a necessary yet not suf-
ficient-a counterexample is the sequence [d(A-T)-d(A-
T)]-prerequisite for the occurrence of a left-handed confor-
mation. A given DNA sequence may not undergo a B Z
transition due to an unfavorable free energy balance (e.g.,
atomic core overlaps in the Z form), too high kinetic barri-
ers, or both. However, when a transition is permitted by se-
quence it is found to be affected (often very dramatically) by
a variety of environmental conditions and chemical DNA
modifications such as the type and concentration of ions
present (12-15), organic cosolvents (13-16), ligand binding
(17, 18), torsional stress in supercoiled DNA (19, 20), meth-
ylation (21, 22) and halogenation (23, 24) of the bases, and

atomic substitutions in the phosphodiester backbone (25).
Compared to this wealth of experimental knowledge, quanti-
tative theoretical understanding of even the simplest B -> Z
transitions is less than poor.

This is due to the extreme structural complexity of the
many-particle systems involved and the lack of working sta-
tistical theories for several important interactions (e.g., hy-
dration, specific binding) involved. However, as discussed
in this work, one contribution to the total free energy bal-
ance controlling the B Z transition, namely, that due to
the interaction between phosphates and the diffuse cloud of
ions, can be estimated with fair accuracy thanks to advances
in the theory of ionic solutions and the availability of struc-
tural DNA data. This contribution is expected to be very
important in general, and particularly so in the simplest case
of a system exhibiting a B -* Z transition-i.e., [d(C-G) d(C-
G)]&-water-alkali halide-since alkali halide ions (with the
possible exception of Li') do not seem to bind to DNA (26,
27) or perturb DNA hydration. I develop an approximate
theoretical framework for treating diffuse ionic effects in
structural transitions of polyions and apply it to the case just
mentioned, avoiding technical details as much as possible.
An extensive technical discussion of the approximations in-
volved as well as additional results will be presented else-
where.

THEORETICAL BACKGROUND
Consider the system consisting of (i) a single DNA polyanion
of specified sequence-e.g., [d(C-G) d(C-G)]j-bearing its
full stoichiometric charge, -eM, in which M is the number
of phosphates present, (ii) N1 anions and M + N2 cations
stemming from complete dissociation of a simple salt (e.g.,
NaCl) as well as the DNA phosphates, and (iii) N, water
molecules, at temperature T and pressure p. Assume that the
DNA may exist in conformations X, Y, ... defined as speci-
fied sets of the positions of all DNA atoms denoted {R(X)},
{R(Y)}, ... with probabilities P(X), P(Y), .... Introducing the
corresponding Gibbs free energies of the entire system,
G(X), G(Y), ..., the relative probability for occurrence of
any two conformations (say X and Y) is given by

P(X) = exp -B3AG(X, Y), [1]

in which ,B = (kBT)-l (kB being the Boltzmann constant) and
AG(X, Y) = G(Y) - G(X). In the case of dilute DNA solu-
tions and whenever theX- Y conformational transition is of
the all-or-none type (which is usually the case for segments
shorter than about 100 base pairs due to the cooperativity of
the transitions), either side of Eq. 1 is equal to the apparent
equilibrium constant of the X -- Y isomerization, which may

Abbreviations: pmf, potential of mean force; RPM, restricted primi-
tive model; HNC, hypernetted chain; EXP-MSA, exponential mean
spherical approximation; CC, counter-ion condensation; PB, Pois-
son-Boltzmann; KSA, Kirkwood superposition approximation.
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be measured spectroscopically or calorimetrically (for the case
of the B -- Z transition see refs. 4 and 28). The condition

AG(X, Y; N, T. ) = 0, [2]

in which the dependence of the Gibbs functions on the ther-
modynamic state parameters (N = (Nw, N1, N2 + M), T ,
P) has been explicitly introduced, defines the set N, T,
p for which X and Y are equiprobable-i.e., the so-called
midpoint of the X -* Y transition. If no such set can be found
when the state parameters are varied in a given range of val-
ues, there is no transition in that range, one of the conforma-
tions being always more favorable there. To proceed further
we now split AG(X, Y) into two parts:

AG(X, Y) = AGo(X, Y) + AG1(X, Y). [3]

AG,(X, Y) is the contribution due to the interactions ofDNA
phosphates and the ions only. AGO(X, Y) is the contribution
due to all other interactions in the system (e.g., DNA chemi-
cal bonds, base stacking, steric repulsions of DNA groups
other than the phosphates, DNA hydrophobic and hydro-
philic interactions, dispersion forces, etc.). This term is ob-
viously hopelessly complex and cannot be dealt with at pres-
ent. Even the "simpler" many-body problem involved in the
evaluation of the term AG1(X, Y) is intractable without intro-
ducing a series of approximations both at the model and the
statistical averaging level. In this first attack of the problem
we proceed as follows:

(i) Using the classical McMillan-Mayer (MM) strategy
(29) for treating multicomponent systems, one can show that
when total volume changes accompanying the X -* Y transi-
tion are negligible

AG1(X, Y) = AF1(X, Y) = F1(Y) - FA(X). [4]

F1(X) and F1(Y) are the Helmholtz-like free energies ob-
tained by statistical averaging over ion configurations with
the phosphates fixed at conformations X and Y, respective-
ly. The effective pair potentials iAm(r) thereby used as an
input are also obtained from statistical averaging albeit over
water configurations with both the phosphates and the ions
fixed. They depend on T and the water chemical potential M
as well as the distance r between two particles of species a
and P.

(ii) The ith DNA phosphate in conformation X is treated
as if it were just another salt anion of charge -e, located at
the charge center of gravity ri(X) of the group, as deter-
mined from the atomic coordinates and the partial charges.
Within the approximate framework just constructed, AF1(X,
Y) is nothing else but the amount of reversible work spent in
bringing M of the anions from positions {r(X)} to positions
{r(Y)} in a simple salt solution. It can be shown that

3AFi(X, Y) = 1[WiM)i(ri(Y), ..., rM(Y))
-WiM) (r1(X) . rM(X))], [5]

in which /3WiM) = -In gjM) is the M-anion potential of mean
force and g(m) is the M-anion correlation function (30, 31).

(iii) Unfortunately, almost nothing is known about many-
particle correlations in fluids, but very much has been
learned in the past 20 years or so concerning two-particle
correlations (30, 31). To derive a working expression for AF1
I introduce the well-known Kirkwood superposition approx-
imation (KSA) (30), replacing the M-particle potential of
mean force (pmf) by the sum over two-particle pmfs. Eq. 5
then becomes

M

/3AF1(X, Y) = 13 [WWjA)(rij(Y)) - WV2i?(rij(X))], [6]
ii
i>j

rij(X) = Iri(X) - rj(X)l being the distance between phos-
phates i and j in conformation X.

(iv) The solvent-averaged potential VAir) can in princi-
ple be accurately determined by using computer-based tech-
niques (Monte Carlo, molecular dynamics) in conjunction
with nowadays available potentials of the "vacuum" interac-
tions involved (water-water, ion-ion, ion-water). However,
in view of the other approximations introduced above, such
an accuracy is not required here. The dominant ion-ion in-
teractions (after solvent averaging) will be (a) dielectrically
screened coulomb and (b) core repulsions of the hydrated
ions. They are approximately described by the well-known
potential defining the most studied theoretical model of ionic
solutions-namely, the so-called restricted primitive model
(RPM) (32, 33).

fj(r) = q°%(r) +
Er

(0 r<o-

4(r) = '0 r >o-. [7]

Here a = 1 (a = 2) for anions (cations), Za is valency, E is
dielectric constant of water, and oc is average effective dis-
tance of closest approach of the ions (ionic diameter). Thus
the ions are treated as equal-size hard spheres embedded in a
dielectric continuum characterized by E. As mentioned
above, the parameters E and a depend both on T and on salt
concentration (via g,,). For E one uses available experimen-
tal data for pure water, the salt dependence being a second-
order effect. An unambiguous a priori choice for a is not
possible. However, it is clear that it must depend on the type
of ions present and has to be larger than the sum of the ionic
crystal radii (2.5-4.0 A) and smaller than the sum of the hy-
drated ionic radii (6.0-8.0 A) of an anion-cation pair. It is
used as an adjustable parameter in the range 3.0-7.0 A.
Items i-iv define the theoretical framework used here to de-
termine the free energy contribution AF1(X, 1). The RPM
potential of mean force W11 is calculated as a function of
distance, salt concentration, and temperature. This quantity
is subsequently used in conjunction with DNA structural
data to determine AF1 for the B -- Z transition, by means of
Eq. 6.

RESULTS
Anion-anion pmfs were calculated by means of the follow-
ing three statistical mechanical approximations: (i) the so-
called hypernetted chain (HNC) integral equation, known to
yield excellent results for simple RPM electrolytes (32, 33);
(ii) the so-called exponential mean spherical approximation
(EXP-MSA) of Andersen and Chandler (34, 35); and (iii) a
simple semi-analytic expression suggested by Olivares and
McQuarrie (36, 37), namely,

13W11(i) -ln g0(i; P) 1+ X exp -X(? - 1)PW11(f)=-Ingo~~~f; fi) + ~~~ [8]
in which r = r/o, p = pa3, p = (N1 + N2 + 2M)/V, x = KU, p
is the ionic number density,

K(47re2 2 P 1/2

is the Debye-Huckel screening parameter, A = 1Be2/1E is a
dimensionless coupling constant, V is the volume, and go is
the exact pair correlation function of the hard sphere fluid
obtained when all ions are uncharged. In this work we use go
values calculated by Barker and Henderson (38) using the
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Monte Carlo method supplemented by data obtained from
numerical solution of the Percus-Yevick integral equation
(39). Representative pmfs are shown in Fig. 1 for a low (0.39
M) and a high (2.31 M) salt concentration of 1:1 electrolyte
(oa = 6.0 A) at room temperature. At the low salt concentra-
tion all three approximations yield essentially identical re-
sults (only the HNC pmf is depicted). The effective anion-
anion interaction is repulsive everywhere and monotonically
decreasing with distance due to the predominance of
screened Coulomb interactions. At the high salt concentra-
tion, the situation is dramatically different. The many-body
hard core contribution to the effective interaction W11 domi-
nates over the now heavily screened Coulomb repulsions
and gives rise to the highly nonmonotonic behavior shown.
All three approximations yield qualitatively similar results,
the largest quantitative differences occurring in the region of
the peak (1.3 c f c 2.0). The quality of the approximations
improves in the order iii < ii < i due to a progressively better
description of Coulomb screening effects, particularly in the
region of the peak. However, it turns out that in the case of
the B and Z structures most distances involved lie predomi-
nantly outside the region of quantitative discrepancy and
therefore even the simplest approximation-i.e., iii-suf-
fices to obtain reasonably accurate results. With this in
mind, we now turn to the calculation of AF1 for the B -+ Z
transition. Fig. 2 schematically depicts the phosphate back-
bone charge configurations ofDNA in the right-handed clas-
sical B form (low salt) and the most commonly found left-
handed conformation, Z, (high salt). The drawing is based on
computer-generated graphs of the structures kindly provided
by T. Jovin and F. Eckstein (Gottingen, F.R.G.). All calcula-
tions reported here are for the DNA dodecamer
[d(pCpG) d(pCpG)]6 (i.e., a full helical turn in the Z, and
slightly more than one helical turn in the B conformation).
We use the atomic coordinates published by Arnott and Hu-
kins (40) for B and those of Wang et al. (41) for Z1 DNA, to
obtain all positions of the 24 univalent charges representing
the phosphates and the 276 distances involved. Due to the
symmetry of the structures not all distances are distinct.
When the distinct distances are numbered in increasing or-

0.8k

0.6 k
.0.39 M

0.4p

C
0.2

-0.21

-0.41

. ~~~~~~,,->

I\
1.0 1.5

'2.31 M

B Z.

FIG. 2. Schematic phosphate configurations in the B and Z, con-
formations. Each phosphate is modeled as a negatively charged hard
sphere.

der, the kth distance rk, (k = 1, ..., 5) appears Vk times. The
set Irk, Vk, S; k = 1, ..., S} depends on the conformation and
contains all structural information entering our calculation.
Using approximation iii, Eq. 7 becomes

2 -S(Xd)

f3z6F1(B, ZI) = I (-1)' I Vk -In go(Pk(Xt))
t=1 k=1

+
exp X exp -Xfk(Xt)}]

1 + X fk(Xt) IL
[9]

rk = rk/a, X1 = B, X2 = Z1.

This expression has been used to calculate the salt depen-
dence of the free energy contribution 18AF1. Representative
results for three values of the hard core diameter oC (4.25 A,
5.0 A, 6.0 A) and T = 298.15 K and e = 78.4 are depicted in
Fig. 3. It is seen that above a critical salt concentration (3.36
Mforcr= 4.25 A, 2.05 Mforoa= 5.0A, 1.32Mfor a= 6.0
A) the B form becomes thermodynamically unfavorable
[PAF1(B, Z.) < 0] as far as phosphate-ion interactions are
concerned. The critical salt concentration (at which 8AF1 =
0) depends very strongly on a (not shown). Since we do not
calculate AGO of Eq. 3 here, the predictions of our theory
cannot be directly compared with the experimentally deter-
mined total free energy difference for the B -- Z transition

A

6.0 A

10.

- 5.

2.5

-5.

FIG. 1. Anion-anion potentials of mean force of a 1:1 RPM elec-
trolyte at 25TC. Salt concentrations are indicated; reduced distance i
= r/o, a = 6.0 A; ... and -, HNC; --, EXP-MSA; ----, Eq. 8 (see
text).

FIG. 3. Salt concentration dependence of the free energy differ-
ence /3AF1(B, Za) due to diffuse ionic interactions. Calculations are
for 1:1 electrolyte at 250C for three effective ionic diameters (o). c,
Salt concentration.
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FIG. 4. Comparison of theory with experiment. DNA in NaCl
solution at 25TC. -, Eq. 9 with o- = 4.90 A; x, experimental
data; 12AG'/RT of ref. 28.

but rather its salt-dependent part [i.e., NAG0/RT with N =
12 and R being the gas constant, in Pohl's notation (28)]. As
shown in Fig. 4, we obtain excellent agreement with experi-
ment if we set the value of the only adjustable theoretical
parameter, namely, a, equal to 4.90 A. For concentrations
(c) above 2 M the same linear dependence on ln c found ex-
perimentally (slope: -7.20 = -12 x 0.6) is also predicted
theoretically (slope: -6.9 for oa = 4.90 A, strongly dependent
on a in general). Furthermore, deviations from this linear
behavior occur in the same direction and range in both the
experimental and theoretical cases. (Compare figure lb of
ref. 28.)
Having shown that the salt-dependent part of j3AG is cor-

rectly described by the theory proposed here, I identify the
remaining term P3AGO for the system at hand to be

,3AGO = -In 13Z/PB = 0.799 [10]

by comparison to experiment (28) and the thermodynamic
model for the transition, proposed by Pohl and Jovin (4, 28).
In this model 13z and P8B are the nucleation parameters for
nucleation of a Z conformation at the end of a B form DNA
and B conformation at the end of a Z form DNA, respective-
ly. The experimental critical concentration c at the midpoint
of the transition of the [d(C-G) d(C-G)]6 dodecamer in NaCl
solution is 2.51 M. Using Eqs. 10, 9 with a- = 4.90 A, 3, and
2, we obtain c = 2.48 M. This is not too far from the value
2.20 M one obtains ignoring 83AGO altogether (i.e., using the
condition /AF1 = 0 instead of Eq. 2). In other words, when-
ever diffuse ionic interactions are prevalent, useful first-or-
der estimates of the critical concentrations c may be ob-
tained by considering the term I3AFi alone. An example for
the usefulness of this conjecture is provided by calculations
concerning the effects of multivalent salt cations on the tran-
sition, always assuming that no specific site binding occurs.

Typical results are shown in Fig. 5 for 1:1, 1:2, and 1:3
electrolytes and the same ac = 5.0 A in all three cases. The
critical concentrations are 1.0 M for the 1:2 electrolytes and
0.7 M for the 1:3. The value 1.0 M is not too far from the
experimental value 0.66 M for poly[d(C-G)-d(C-G)] (4) in
MgCl2 solution. Better agreement can be obtained if one
takes into account the binding of one Mg2+ to the terminal
phosphate of the Zi form, seen in the x-ray work (41). The
accompanying charge neutralization leads to a lower esti-
mate for c. If a- is assumed to be temperature independent,
the dependence of 8AF1 on temperature is found to be en-
tirely negligible. This is due to the fact that the product ET
entering Eq. 9 is essentially constant, its variation in the
range 20-70°C being of the order of only 10% (42). Precisely
this kind of behavior is also observed experimentally. For

1:1

FIG. 5. Salt concentration dependence of AF1(B, Z) in 1:1, 1:2,
and 1:3 electrolytes at 250C; o- = 5.0 A.

the system at hand, the transition characteristics do not de-
pend on temperature, at least in the range 25-50'C (4).

Finally, we have also calculated the relative stability of the
other Z conformation described by Wang et al. (41)-name-
ly, Z11-using the same approach and parameters as above.
The B -- Z11 transition in 1:1 electrolyte is found to occur at
c= 3.50 M. In the range 2.0-5.0 M the Z11 is thermodynami-
cally less favorable than Z1, but below 2.0 M the situation is
reversed, the Z11 being only slightly less favorable than B
[e.g., for 0.4-1.8 M, 0 < PAF1(B, Z11) < 1.0 while 1.0 <
/3AF1(B, Z1) < 7.0]. These preliminary results indicate that
the Z11 free energy lies between the B and Z, free energies
and therefore Z1 is likely to be found at B/Z interfaces, as
suggested by Wang et al. (41).

DISCUSSION
In contrast to other currently used approximate theories of
chain polyelectrolytes such as the counter-ion condensation
(CC) theory (reviewed in ref. 26) and the so-called Poisson-
Boltzmann (BP) equation approach (reviewed in ref. 43),
which, as noticed by Behe and Felsenfeld (21), do not seem
to describe the electrostatics of the B -* Z transition well,
the approximate approach outlined above seems to explain
the experimentally observed salt dependence of the simplest
B -* Z transition with a perhaps surprising accuracy. Since
this may be the case with other salt-induced polyionic struc-
tural transitions as well, it is appropriate, as suggested by
one referee, to briefly discuss the main approximations in-
volved as well as the possible reasons for the inadequacy of
previous theories and apparent success of the present one.
Both the CC and PB theories are simple versions of what
may be called the inhomogeneous fluid approach, viewing
the polyion structure (in our case the DNA phosphates in
conformation X) as the source of an external field giving rise
to space-dependent ionic distributions {pi(r, X)}. The total
free energy determining the probability P(X) is then the sum
of the energy to create X in vacuo and the free energy of the
salt solution in the external DNA field, which is a functional
of the {pj(r, X)}. This general picture is qualitatively exact
but does not lead to a realistic quantitative description at
present, since neither the integral equations determining the
p1(r, X) nor the form of the free energy functional are known
well enough to deal with the DNA-salt solution system,
which in addition is characterized by considerable structural
complexity. To obtain results within the inhomogeneous flu-
id framework, one has to: (i) drastically simplify the geome-
try of the phosphate charge configuration [e.g., model it as
an infinitely long uniformly charged cylinder (PB) or line
(CC)], (ii) neglect ionic core repulsions (which are as impor-
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tant as Coulomb interactions at high salt concentrations),
and (iii) use linearized (CC) or nonlinearized (PB) mean field
equations to determine the ionic distributions. These ap-
proximations still lead to reasonable estimates for colligative
properties of the DNA-salt system (26, 43), but they are sim-
ply too drastic for treating problems such as the B -* Z tran-
sition. Although the CC equation may be cast in a form capa-
ble of describing complex discrete charge configurations (44)
and the PB equation may be modified to include hard core
repulsions, I could not find a practicable way to overcome
limitations i, ii, and iii simultaneously, adopting the usual
inhomogeneous fluid point of view. In the approach used
here, the problem is first conceptually "homogenized" by
treating the phosphates as if they were simply salt anions.
After this model approximation has been introduced, a rigor-
ous result by Percus (45) leads us directly to the exact statis-
tical relationship (5), which expresses the free energy differ-
ence of interest to us in terms of many-particle pmfs of the
homogeneous salt solution, quantities which a priori depend
only on bulk ionic concentrations and not on the high (un-
known) local ionic densities near the phosphates. Introduc-
tion of the KSA in conjunction with fairly accurate approxi-
mate two-particle pmfs for the RPM model finally led to ex-
pressions suitable for obtaining quantitative results. A priori,
one simply doesn't know how good an approximation the
KSA is. On the basis of experience with triplet correlations
in hard core and Lennard-Jones fluids (30, 31) I expect it to
be reasonable when the fixed particles are not too closely
bunched, which is roughly the case with extended "linear"
polyions such as DNA. In addition, one must keep in mind
that we fortunately calculate only free energy differences
and not absolute free energies and therefore profit from ex-
tensive cancellation of errors and terms neglected in the ex-
pansions. Several refinements of the theory can be intro-
duced at the price of more computing-e.g., the charged
particles can be modeled as hard spheres of different diame-
ters and HNC pmfs can be used throughout. Such work will
be reported elsewhere. Going beyond the KSA and RPM
levels is not as straightforward and must await further ad-
vances in the theory of electrolytes. It is clear that a com-
plete theory should also determine the complex term AG0 in
Eq. 3 (which in fact contains all the sequence dependence). I
hope that the present approach could in principle be com-
bined with so-called "force-field" methods used in large-
scale computer simulations of DNA structures in the ab-
sence of solvent, to yield the complete AG of Eq. 3 for the B
--+Z and other DNA structural transitions in the course of
the next few years.

I am deeply indebted to T. Jovin for innumerable discussions con-
cerning DNA, warmest hospitality while visiting Gottingen, and
continuous encouragement. I also thank G. Felsenfeld for a discus-
sion of this work and J. Wiechen for computing HNC potentials of
mean force.
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