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Leptolyngbya sp. strain Heron Island is a cyanobacterium exhibiting chromatic acclimation. However, this strain has strong in-
teractions with other bacteria, making it impossible to obtain axenic cultures for sequencing. A protocol involving an analysis of
tetranucleotide frequencies, G�C content, and BLAST searches has been described for separating the cyanobacterial scaffolds
from those of its cooccurring bacteria.
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Leptolyngbya sp. strain Heron Island is a cyanobacterium classi-
fied in section III, a section that consists of filamentous cyano-

bacteria that grow in a single plane (1). This cyanobacterium was
isolated from Heron Island, Australia, in 2009. Leptolyngbya sp.
Heron Island exhibits chromatic acclimation, a phenomenon in
which the composition of the light-harvesting complex phycobili-
some (PBS) is modified with changes in light conditions (2–4).

DNA was isolated from Leptolyngbya sp. Heron Island using
the Qiagen DNeasy plant minikit. The genomic DNA was broken
into fragments by sonication for 5 min. The genome of Leptolyn-
gbya sp. Heron Island was sequenced using an Illumina HiSeq
2000, applying the short-insert paired-end sequencing protocol
(100-bp insert size) to a depth of coverage of 100�. These reads
were de novo assembled using the ABySS (version 1.3.6) software
(5). Leptolyngbya sp. Heron Island cultures cannot be grown ax-
enically; therefore, the genomic assembly harbors sequences from
other heterotrophic bacteria that are associated with this cyano-
bacterium. Several approaches were used to detect and separate
any heterotrophic bacterial sequences or chimeras from the Lep-
tolyngbya sp. Heron Island genome assembly. They include a
G�C percentage analysis, a tetranucleotide frequency analysis,
comparison to a reference cyanobacterial genome, and an analysis
of gene annotations. The initial G�C percentage analysis of the
assembled scaffolds indicated that 3 to 4 contaminating genomes
are likely present. The first step consisted of devising a BLAST
algorithm that selected only those scaffolds that contained a gene
that matched some gene in Leptolyngbya sp. strain PCC 7376. The
tetranucleotide frequencies (6) of the BLAST positive scaffolds
were calculated using TETRA (7), followed by principal compo-
nent analysis (8) using Biopython (9) of the resultant matrix ob-
tained from TETRA. Finally, the scaffolds were separated on the
basis of their G�C percentage to yield scaffolds that contained
only cyanobacterial genes.

Genome annotation was carried out using GeneMark S (10)

and the NCBI Prokaryotic Genomes Annotation Pipeline (PGAP)
2.0. The resulting gene models were validated against the NCBI
nonredundant protein database by BLASTp, which yielded max-
imum sequence homology with cyanobacterial genes.

The final assembly of Leptolyngbya sp. Heron Island contains
119 scaffolds, with an N50 scaffold length of 103,122 bp and an
overall assembly size of 8.06 Mb, making it one of the biggest
genome sequences among cyanobacteria (11). The annotation in-
cludes 7,223 estimated protein-coding sequences, 55 tRNAs, and 9
clustered regularly interspaced short palindromic repeat (CRISPR)
arrays. The latter component suggests an amazing capability to
deal with attacking bacteriophages, as CRISPR arrays are a key
defense mechanism against invading DNA (12), and it is consis-
tent with a report that subsection III and IV cyanobacteria tend to
have a higher number of CRISPR loci and of repeat-spacer units
(13). The availability of the sequences of the phycobilisome genes
in Leptolyngbya sp. Heron Island will help in the refinement of
phycoerythrin and phycocyanin crystal structure obtained from
this organism. Eventually, with the detailed phycobilisome-
encoding genes, the genome information will also help in studying
chromatic acclimation in this newly isolated cyanobacterium.

Nucleotide sequence accession number. The draft genome
sequence of Leptolyngbya sp. strain Heron Island J has been de-
posited at DDBJ/EMBL/GenBank under the accession
no. AWNH00000000.1. The version described in this paper is the
first version.
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