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Abstract Complex Mus musculus crosses provide

increased resolution to examine the relationships between

gene expression and behavior. While the advantages are

clear, there are numerous analytical and technological

concerns that arise from the increased genetic complexity

that must be considered. Each of these issues is discussed,

providing an initial framework for complex cross study

design and planning.

Introduction

Sandberg et al. (2000) using Affymetrix microarrays, were the

first to detect differences in genome-wide brain gene expression

between two inbred mouse strains (C57BL/6J [B6] and

129SvEv [129; now 129S6/SvEvTac]). Importantly, these

authors observed that some differentially expressed (DE) genes

were found in chromosomal regions with known behavioral

quantitative trait loci (bQTLs). For example, Kcnj9 which

encodes for GIRK3, an inwardly rectifying potassium channel,

was differentially expressed (higher expression in the 129

strain) and is located on distal chromosome 1 in a region where

QTLs had been identified for locomotor activity, alcohol and

pentobarbital withdrawal, open-field emotionality, and certain

aspects of fear-conditioned behavior. This study was unable to

address the question of whether or not the elements regulating

Kcnj9 expression were located within the QTL intervals and/or

near the gene locus. However, it is possible to extract such

causal relationships by combining gene expression and geno-

type data in genetically segregating populations. Jansen and

Nap (2001) were among the first to suggest this approach,

which they termed ‘‘genetical genomics’’. Although originally

described for Arabidopsis, the strategy was quickly used to

examine gene expression in Drosophila, yeast, and the mouse

(see Lum et al. 2006 and references therein). Schadt et al. (2003)

and others defined the expression QTLs (eQTLs) as either cis

(mapping near the gene locus) or trans (mapping elsewhere in

the genome). When behavioral QTLs (bQTLs) and cis-eQTLs

overlap, the cis-eQTL genes are inferred as strong quantitative

trait gene (QTG) candidates (see e.g. Farris et al. 2010). The

situation for trans-eQTLs is more complicated since the QTL

confidence interval is generally larger and any gene within the

QTL interval could have a regulatory role.

The application of genetical genomics to mouse has

generally focused on segregating populations involving
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two inbred strains, one of which is very frequently the B6

strain. Descriptions of these applications are found in the

following section. The data analysis is relatively straight-

forward, especially because good sequence data are avail-

able for essentially all strains that would ever be used in a

behavioral experiment (Keane et al. 2011). There are,

however, problems with the two strain intercross approach.

First, two strains will capture only a fraction of the genetic

diversity that is available in Mus musculus (Roberts et al.

2007; Keane et al. 2011). Behavioral techniques and

apparatus have been engineered for the placid and some

would argue somnambulant laboratory strains of mice that

are highly related (Roberts et al. 2007). Using SNPs as a

surrogate for genetic diversity, a B6 x DBA/2J (D2) F2

intercross has only 1/6 the gene diversity of a heteroge-

neous stock (HS) formed from the eight inbred strains used

to form the collaborative cross (CC) (Churchill et al. 2004;

Iancu et al. 2010); the CC strains include three wild-

derived strains. Crosses of low genetic diversity are not

optimal for systems biology applications (Churchill et al.

2004; Threadgill and Churchill 2012). Second, given high

quality sequence data and dense genotyping platforms, the

use of complex crosses allows one to extract for any QTL a

haplotype structure which in turn can markedly reduce the

QTL confidence interval, in some cases to less than 1 Mbp.

Although QTLs of this size are still 1–2 orders of magni-

tude larger than QTLs detected in human association

studies, the reduction in size, especially in gene poor

regions, is still sufficient to focus the analysis on a handful

of candidates.

This article focuses on the use of complex crosses to

examine the relationships between gene expression and

behavior. Some historical background is provided as the

field has moved from simple to complex segregating

populations. While the advantages of complex crosses are

obvious, there are several disadvantages, especially ones

associated with data analysis. Microarray platforms were

not designed for complex crosses and thus, RNA-Seq

becomes the preferred strategy for assessing gene

expression. While RNA-Seq allows one to examine not

only gene expression but also the expression of non-

coding RNAs, alternative splicing and allele specific

expression, the data analysis is computationally intensive.

An additional consideration is that the inclusion of wild-

derived strains in the HS-CC has sometimes limited the

application of this population for mapping certain

behavioral responses. Behavioral testing protocols in mice

have been primarily established for assessment in the

common laboratory strains and increased locomotor

activity associated with the inclusion of the wild-derived

alleles has raised concerns about testing validity (see

Logan et al. (2013) for recent examination of potential

impact in the Diversity Outbred).

Model systems for complex populations

One could begin a discussion of brain gene expression,

behavior, and complex crosses with Sandberg et al. (2000)

(see above) but to fully understand the role of mouse

complex crosses in this equation, it is perhaps best to start

with a series of papers that appeared more than 20 years

ago and demonstrated that it was possible to map QTLs for

behavioral traits in recombinant inbred (RI) strains of mice

(e.g. Gora-Maslak et al. 1991; Belknap 1992). While sev-

eral RI panels were available, it was the BXD RI panel

(Taylor 1978) that was most widely used. These papers and

confirmatory F2 intercross studies clearly established two

important and related points. One was that the QTL effect

sizes were generally small and two, as a consequence, the

QTL confidence intervals were typically very large, fre-

quently more than 25 cM (or *50 Mbp). As a result, it

was almost impossible to know which gene or genes within

the QTL interval are causally related to the phenotype of

interest. This search was of course further complicated at

the time by the poor annotation of the mouse genome.

Several strategies were developed to reduce the QTL

interval (see e.g. Darvasi 1998). These included the use of

interval specific congenic strains, mapping in advanced

intercross populations, recombinant progeny testing, and

the recombinant inbred segregation test. (Talbot et al.

1999, used a variant of the advanced intercross strategy to

map QTLs for open-field behavior in a heterogeneous stock

(HS) created from eight inbred laboratory mouse strains. A

subsequent analysis of these data (Mott et al. 2000)

revealed that it would be possible to map QTLs with good

precision and extract an approximate QTL haplotype

structure. However, despite these and other improvements,

only a very small number of behavioral quantitative trait

genes (bQTG) have been identified (see e.g. Shirley et al.

2004). Although QTL resolution at the gene level is not

typical in some mouse populations, it can be possible to

approach gene level resolution in some commercially

available outbred populations (Yalcin and Flint 2012) and

interval specific congenic lines (Shirley et al. 2004).

Several approaches have been used to identify and pri-

oritize candidate genes within a QTL interval. This initially

focused on allelic sequence variation, but, even just a

decade ago this was possible only if one was willing to

sequence individual genes. Today, given the availability of

high quality inbred strain sequence data (Keane et al.

2011), it is now possible to interrogate a QTL interval and

determine which genes harbor non-synonymous coding

SNPs that match the QTL profile. An alternative approach,

which was widely adopted, was to integrate QTL analysis

and gene expression profiling, emphasizing the genetical

genomics approach (Jansen and Nap 2001). The emphasis

on this approach was key to the development of WebQTL
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(Wang et al. 2003). Gene expression data from multiple

brain regions was made available for the B6 and D2 inbred

strains and 32 BXD RI strains. Also posted at the Web site

were a variety of RI strain behavioral and genotype data.

For many investigators, this was the first portal for exam-

ining how the natural variation in gene expression and

behavior were correlated. Over the years, the Website has

been updated by the inclusion of brain gene expression data

from other RI panels, mouse F2 intercrosses, additional

BXD RI strains, and a significant number of inbred mouse

strains, including whole brain and brain regional data. The

data have been used in a variety of ways, including

detecting how patterns of gene co-expression have behav-

ioral associations (Chesler et al. 2005).

Peirce et al. (2006) mined the data to address the

question of ‘‘how reliable are eQTLs?’’. These authors

noted that for B6xD2 genotypes, cis-eQTLs are highly

replicable but that there is an overabundance on eQTLs

where the B6 strain is associated with higher expression.

These data suggested that some of these QTLs were arti-

facts due to SNPs and the poor hybridization of the D2

cDNA. Subsequent experiments showed that indeed this

was the case (Walter et al. 2007, 2009). Flint and col-

leagues (see Solberg et al. 2006; Valdar et al. 2006a, b)

mapped QTLs for a variety of behavioral phenotypes in

[2,000 HS animals; this HS population (HS/NPT), also an

eight strain cross, differed from that used by Talbot et al.

(1999). Importantly for this article, Flint and colleagues

collected hippocampal gene expression data on 460 ani-

mals (Huang et al. 2009). Similar to Peirce et al. (2006),

Huang et al. (2009) concluded that a significant proportion

of the cis-eQTLs were hybridization artifacts. Nonetheless

and not unexpectedly, the number of ‘‘true’’ cis-eQTLs

appeared to be significantly greater than those previously

detected in simpler crosses; i.e., in the HS population,

additional regulatory alleles are detected. Similar results

were obtained for gene expression in a simpler HS (HS4),

derived from crossing four laboratory strains (Malmanger

et al. 2006).

The CC (Churchill et al. 2004) was formed to provide a

unique system biology resource that addresses many

shortcoming in available mouse strain resources, such as

limited genetic diversity. The goal was to generate[1,000

RI strains formed from eight inbred strain founders that

capture [90 % of the genetic diversity available in Mus

musculus. Three of the CC founders are wild-derived

strains. Although it appears that only several hundred RI

strains will reach completion, the CC, like the BXD RI

panel, will in time provide an important reference popu-

lation for examining gene-behavior relationships. Two

outbred versions of the CC have been created, the HS-CC

and the Diversity Outbred (DO) (Iancu et al. 2010; Chur-

chill et al. 2012). To date, brain gene expression data are

only available for the HS-CC. Iancu et al. (2010) compared

brain (striatum) gene expression in a B6xD2 F2 intercross,

HS4, and HS-CC animals. Although it was assumed that

the regulation of gene expression would differ in each of

the populations, it was also assumed that given striatal

function is not cross dependent, at some level function and

gene expression should overlap in a similar way for all

three crosses. To address this issue, Iancu et al. (2010)

utilized the Weighted Gene Co-expression Network Ana-

lysis (WGCNA) (Zhang and Horvath 2005). This analysis

builds from the premise that (a) gene expression networks

have scale free properties (i.e. there are a few highly

connected nodes) and (b) co-expressed genes share similar

functions. The analysis revealed that while there were some

cross-dependent differences, the overall modular sub-

structure of the co-expression network was cross inde-

pendent, the highly connected nodes remained intact. Iancu

et al. (2013) next asked if selection for a behavioral phe-

notype (haloperidol-induced catalepsy) had similar effects

on expression network structure across the three crosses.

The results obtained are both interesting and cautionary as

we press forward examining complex cross gene expres-

sion. The selection paradigm was short-term (3–4 genera-

tions), the rate of segregation of the responsive and non-

responsive lines was similar, and the responsive and non-

responsive lines all differed by greater than 20-fold in the

haloperidol ED50. The difference in response was not

pharmacokinetic. The first key observation was that there

was no overlap of differential gene expression for the three

selections. The second key observation was that as genetic

diversity increased, the number of co-expression modules

affected by selection also increased. It was possible to

identify a core set of modules affected by selection. What

is unknown is whether or not the additional modules that

were affected by selection e.g. in the HS-CC population,

are relevant to our understanding of the gene-behavior

relationship.

Phenotype measurements in eQTL analysis

Several technological advances have fundamentally altered

the definition of phenotype in QTL studies. Mapping RNA

transcript and protein abundance levels is widespread, and

in principle any biologic characteristic of interest can be

tested for association with genetic polymorphisms. In the

context of neurobehavioral traits, examples include number

of neuronal cells in specific brain regions (Rosen and

Williams 2001; Airey et al. 2001) and also brain mor-

phometry (Li et al. 2005; Jan et al. 2008). The focus of this

review is on high-throughput methodologies and in par-

ticular measurements of gene expression such as micro-

arrays, qPCR, and RNA-Seq. While these technologies
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offer tremendous breath to transcriptome analysis, several

factors can adversely affect the quality of the results. All

technologies assume intact RNA; the extent to which this

assumption is true can be evaluated using the RNA integ-

rity number (RIN) (Schroeder et al. 2006). From human

studies, it has been shown that possible confounding fac-

tors include length of time post-mortem and the pH of the

sample; statistical analysis can incorporate these as

covariates (Liu 2011). For hybridization based methods,

factors affecting probe matching can strongly affect

expression measurement (Walter et al. 2007); these errors

can further propagate in the course of eQTL mapping

(Iancu et al. 2012). PCR based methods can also be

affected by polymorphisms within the primer sequence.

Taking into account these factors has beneficial effects on

the downstream analysis.

Batch effects can introduce serious confounding factors

in the analysis of expression levels; ideally, all samples

should be processed at the same time. If separate batches

are unavoidable, balancing case/controls, and sex within

batches is important. Several techniques that alleviate

batch effects have been proposed, with the ComBat pack-

age among the most popular (Johnson et al. 2007).

A major limitation affecting microarray-based analyses

is the limited dynamic range of the fluorescence signals.

This problem is resolved by the RNA-Seq methodology,

where the dynamic range is orders of magnitude above the

microarray capacity (Nagalakshmi et al. 2008). The

adverse effects of SNPs on probe hybridization are also

completely alleviated by RNA-Seq. Count data is directly

related to expression level, as opposed to microarrays

where the fluorescent intensity is an indirect measurement.

Although RNASeq is more costly than array-based tech-

nologies, costs are steadily decreasing, which promises

increased utilization of this technology.

Analytical approaches for eQTL

The analysis of eQTL in complex crosses mirrors that of

traditional QTL mapping at its core. However, it also

comes with additional issues that require special care by an

analyst either not considered in the simplest forms of QTL

mapping or further exacerbated. We will briefly review

some of the most common choices of statistical method-

ology with an emphasis on methods for the analysis of

crosses with more than two founders. First, we will con-

sider common issues between high dimensional eQTL

techniques. Specifically we will consider methods devised

to deal with the multitude of statistical tests that need to be

performed for a given experiment through either correc-

tions to significance measures or by approaches that reduce

the number of tests that need to be performed. We will then

discuss specific statistical methodology devised for the

analysis of the emerging RNA-Seq technology as related to

more established microarray eQTL methods. Note that this

review will mainly consider frequentist methods, though

we note that Bayesian approaches are becoming more

prevalent in mouse genetics. See, for instance, the review

by Stephens and Balding (Stephens and Balding 2009) as

an introduction to Bayesian methods in genetics. Also note

that we focus on the case of a single QTL/eQTL underlying

a given trait though generalizations of the below method-

ology allow the examination of two or more loci.

Overview of genetic and statistical considerations

The analytical methods with which QTL/eQTL analysis

occurs depends on the cross as well as other experimental

factors such as the assumed genetic model and phenotype.

It is important to note that there are a number of design

considerations that should be taken into account early in

the planning process, particularly for studies utilizing

complex crosses (Fig. 1). For crosses involving two inbred

progenitor mouse lines (i.e. F2s intercross or backcrosses)

either a single marker analysis of variance (Broman and

Speed 1999), interval mapping (Lander and Botstein 1989),

or related regression based approaches (Haley and Knott

1992) are typically applied when assuming the presence of

a single QTL. For crosses with more than two inbred

founders such as in heterogenous stock (HS) (McClearn

et al. 1970), CC (Churchill et al. 2004) or Diversity Out-

bred (DO) (Svenson et al. 2012) mice, typically multiple

regression procedures are performed based on estimates of

founder strain allelic contributions for a given marker/

interval (Talbot et al. 1999; Mott et al. 2000; Svenson et al.

2012; Aylor et al. 2011; Durrant et al. 2011; Philip et al.

2011). These values are the result of haplotype recon-

struction in terms of the founder lines using either the

genotype calls (Mott et al. 2000; Liu et al. 2010), or

intensities of the genotyping arrays (Svenson et al. 2012;

Collaborative Cross 2012). Haplotype reconstructions in

this manner mainly draw on the use of a Hidden Markov

Model though alternate approaches have also been recently

considered (Zhou et al. 2012). Hidden Markov Models are

a machine learning approach designed for inferring

underlying states of an unknown spatially/temporally

ordered variable (Rabiner 1989). For this application, the

states would correspond to founder inbred strain haplotypes

and the end result would be a matrix of probabilities of

descent from each pair of founder inbred strains which can

be further summarized per strain (Mott et al. 2000; Valdar

et al. 2009). The basic multiple linear regression model

approach in this case would typically compare a model

with the founder contributions to one without the founder

contributions for each marker interval. The comparison of

R. Hitzemann et al.: The genetics of gene expression in complex mouse 15
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these two models allow the computation of an F statistic

and accompanying p value (Valdar et al. 2009).

Multiple testing considerations

One issue that is exacerbated in high dimensional eQTL

scans is how to pick a significance threshold once p values

(or LOD scores) are generated for each expression phe-

notype. The way in which these thresholds are chosen can

be roughly divided into three categories ordered by

decreasing conservativeness: familywise error rate, false

discovery rate (FDR), and permutation/simulation proce-

dures. The procedure used depends on the expected effect

size as well as type of desired downstream analysis. For

instance if the main goal is to confirm the top ranked genes

via qPCR there is little benefit to incur the increased

computational and analytical time generating and inter-

preting large lists of genes potentially regulated by an

QTL. Therefore a familywise based approach such as the

Bonferroni correction would make sense (Bottomly et al.

2012). The Bonferroni correction has also been used as an

approach to estimate the number of false positives (Schadt

et al. 2003).

Controlling the false discovery rate also has been sug-

gested (Storey and Tibshirani 2003; Carlborg et al. 2005).

A common way to implement this control is through the

computation of q values from the scan p values. A q value

corresponds to the expected proportion of false positives

when calling a given test significant (Storey and Tibshirani

2003). It has been used on top of permutation-based

p values as a way to estimate the specificity of the given

scan (Aylor et al. 2011; Chesler et al. 2005). In addition,

FDR values have been estimated directly using subsets of

the eQTL p values (Ghazalpour et al. 2008). One issue with

considering FDR corrections is the presence of dependence

if multiple p values are considered per expression trait

(Kendziorski and Wang 2006). Dependence between two

tests in this context means that say, a low p value for trait A

implies a low p value for trait B. For instance the com-

putation of q values relies on at most weak dependence

between p values and violations of this may cause inac-

curacies of the method (Storey and Tibshirani 2003).

However, application of an approach such as surrogate

variable analysis could be applied to remove dependencies

between the test statistics increasing the validity of the

q values (Leek and Storey 2007, 2008).

Permutation testing is arguably the most common

approach for significant assessment in eQTL studies. An

approach similar to QTL studies would apply a permuta-

tion procedure to each expression trait separately (Chur-

chill and Doerge 1994). However, as the number of tests is

thousands of times greater than a standard QTL analysis, it

is not desirable to perform a full permutation test poten-

tially increasing computation time by at least an additional

thousand-fold. One approach is to reduce the number of

permutations necessary to compute the significance

threshold through the use of a parametric model (Valdar

et al. 2006a). Also, permutation testing procedures can be

applied to only a subset of expression traits with the result

then used to choose thresholds for the remaining traits

(Huang et al. 2009; Aylor et al. 2011). This approach needs

to take into consideration distributional differences among

the traits that can lead to large differences in threshold

values (Carlborg et al. 2005). One approach to choose

Fig. 1 Simple framework that

highlights (in each orange box)

the design and analysis

considerations that should be

taken into account for

expression studies utilizing

complex crosses. It is noted that

the primary research question,

as well as the cross,

accompanying assumed genetic

model and phenotype must be

determined first

16 R. Hitzemann et al.: The genetics of gene expression in complex mouse
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representative threshold values is to interpolate based on a

representative group of threshold values (Huang et al.

2009), another is to choose a global threshold based on the

distribution of the thresholds (West et al. 2007). Regardless

of the approach used to generate the significance thresh-

olds, permutations need to be carried appropriately out with

regard to experimental design (Churchill and Doerge

2008).

Dimension reduction

One strategy to reduce the number of tests being performed in

an eQTL setting is to focus only on a subset of expression traits

relevant to the phenotype(s) of interest. Relevance in this case

is determined through differential expression analysis (Schadt

et al. 2003). Other approaches take advantage of the fact that

expression data is highly correlated to first form groups of

genes with highly similar expression profiles followed by a

QTL mapping procedure, two common procedures for doing

this are clustering and principle component analysis. Clus-

tering algorithms are commonly used in microarray experi-

ments (Eisen et al. 1998) and have been used successfully as a

means to reduce the number of traits necessary to map (Chun

and Keleş 2009; Lan et al. 2003; Yvert et al. 2003). Procedures

based on principal components analysis, which seeks to find

eigengenes or eigentraits that explains a certain amount of

variability while being independent from one another (Alter

et al. 2000), have also been applied to expression data prior to

mapping (Lan et al. 2003; Biswas et al. 2008). Mapping

expression traits by first clustering the expression data and

then summarizing the clusters using the ‘eigengene’ have also

been shown to be effective for finding QTL regions with a

large effect on expression traits (Fuller et al. 2007).

RNA-Seq eQTL approaches

The advent of microarrays made eQTL approaches an

attractive option to elucidate the genetic underpinnings of

gene expression. However, microarrays have many issues that

prevent them from being an ideal datasource. For instance,

microarrays have fixed probes/reporters that can limit

expression estimates. This means both that a potential gene of

interest may not be interrogated in addition to the possibility

that hybridization of the probes on the array may be affected

by genomic differences as is discussed later. A more recent

approach is the high throughput sequencing of the mRNA

population in a given experimental condition for a given

animal (Mortazavi et al. 2008). This data source is less con-

strained by annotation, is free from relying on reporter

hybridization and therefore allows additional types of analy-

ses related to basic microarray-based eQTL to be performed.

The first type of analysis facilitated by RNA-Seq is the

study of transcript-level expression specifically alternative

splicing QTL (sQTL) as has been found to be informative

in humans (Heinzen et al. 2008; Kwan et al. 2008). This

type of analysis has been examined using microarrays for

complex mouse crosses (Alberts et al. 2005), however, in

practice fixed microarray probe placement and genomic

differences between probe sequence and RNA source was a

major impediment (Huang et al. 2009; Ciobanu et al.

2010). From recent studies using RNA-Seq, it appears that

the technology is better suited to assessing the genetics of

alternative splicing analysis in humans (Pickrell et al.

2010; Rakitsch et al. 2012). However though it has been

suggested as a promising avenue of research (Guryev and

Cuppen 2009; Hitzemann et al. 2013) little work appears to

have been done applying the method to mouse crosses.

Another potential benefit to the use of RNA-Seq is the

direct study of allele-specific expression. These experi-

ments have traditionally been performed through the use of

RT-PCR based confirmation approaches (Cowles et al.

2002). Allele-specific expression is implemented in prac-

tice for RNA-Seq in a similar manner by essentially

counting the number of sequence reads generated by the

technology that overlap with either the reference or alter-

native allele(s) (Degner et al. 2009). Initial applications of

this approach to study embryonic imprinting yielded

promising (Gregg et al. 2010) though conflicting messages

(DeVeale et al. 2012) about the additional power RNA-Seq

lends to the problem.

Computational issues

One of the central issues with eQTL mapping is the drastic

increase in computational capabilities it requires over a

similar QTL study. This is only exacerbated by increases in

marker density of new genotyping arrays (Yang et al. 2009)

and expression traits in exon-level oligonucleotide arrays

(Gardina et al. 2006) or RNA-Seq (Mortazavi et al. 2008).

In order to gain computational efficiency, aspects of the

underlying mathematics can be leveraged to provide

essentially the same results using less computational

resources. The simplest example of this is the ability to use

a matrix of phenotypes in standard linear model fitting as

opposed to a single phenotype vector as is typically used.

This means that relatively computationally expensive

matrix calculations are performed only once and can

therefore be leveraged to perform batch processing of

phenotypes at a significant decrease in computational time

(Valdar et al. 2009). This type of batch processing also

lends itself to parallel processing either through a cluster

computing environment or a single computer with multiple

processors. A related example is the mixed effects model

framework of EMMA (Kang et al. 2008). Similarly, ana-

lysis methods have also been developed for RNA-Seq that

make computationally beneficial approximations to the
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underlying parameter estimation procedure (McCarthy

et al. 2012).

Population substructure

Population substructure is a serious confounding factor in

many QTL and eQTL mapping studies (Devlin et al. 2001;

Pritchard and Donnelly 2001; Kang et al. 2008; Valdar

et al. 2009; Listgarten et al. 2010). In brief, the problem

can be summarized as follows: for a statistical test used to

identify the causative genetic effects on a phenotype, the

null hypothesis states that there is no association between

the genetic locus and the phenotype. However, this

assumption does not hold in cases where population sub-

structure is present: differences in average phenotype value

between the subpopulations will be detected as a QTL for

each genetic locus that segregates between the subpopu-

lations, even though the locus is not necessarily causative.

It is therefore important to distinguish between causative

associations and associations due solely to genetic linkage.

In mouse QTL studies, much of the uneven relatedness

between individuals is due to the complex genetic history

of the commonly used inbred strains. The most significant

differences are between the classical inbred strains and the

wild-derived inbred strains (Ideraabdullah et al. 2004;

Yalcin et al. 2004). Classical inbred strains are derived

from a limited number of individuals of the Mus musculus

subspecies that have widely varying degrees of relatedness

(Bonhomme et al. 1989). The wild-derived strains are

derived from several Mus subspecies captured at different

times and geographic locations (Bonhomme and Guenet

1989). Therefore, studies that evaluate phenotypic vari-

ability among several inbred strains need to account for the

phylogenetic differences.

Heterogeneous stock mice are derived from inbred

strains using various outbreeding procedures (Chia et al.

2005). QTL mapping in these populations offers markedly

higher resolution as compared to simple intercrosses

(Talbot et al. 1999; Svenson et al. 2012). However, despite

efforts to randomize the mating process, individuals in

outbred mouse populations display varying levels of

relatedness (Aldinger et al. 2009; Iancu et al. 2012). Fur-

thermore, an in-depth analysis of the structure of a heter-

ogeneous stock mouse population revealed that relatedness

is not evenly distributed across the genome and individual

chromosomes can have effects on phenotype that are dis-

tinct from the whole genome kinship information (Iancu

et al. 2012) adding another layer of complexity. Therefore,

mapping strategies employed in outbred populations need

to adjust for this confounding factor (e.g., Cheng et al.

2011 and references therein).

Attempts to adjust for population substructure fall into

several categories. In human association studies, genomic

control (Devlin et al. 2000) structured association (Prit-

chard et al. 2000) and principal component analysis

(Patterson et al. 2006) are the most commonly employed

procedures. In mouse populations, the relatively large

effect size of the kinship structure seems to favor an

alternative mixed-model approach (Kang et al. 2008). In a

further refinement of this approach (Iancu et al. 2012), we

recently demonstrated that it is possible to simultaneously

detect strain-specific effects and also correct for population

structure.

Causal inference

One of the main benefits of eQTL studies is the ability to

form networks based on the correlation/covariation struc-

ture of the expression data across the experimental popu-

lations (Chesler et al. 2005). This allows relationships

between expression traits to be expressed, for example,

Trait A and Trait B are correlated and therefore there is

potentially a relationship between the two traits. Without

additional information or assumptions typically one cannot

state confidently whether Trait A causes Trait B (Trait

A?Trait B) or Trait A reacts to Trait B (Trait A/Trait B)

or whether there is a confounding factor responsible for the

observed correlation. Therefore co-expression networks by

themselves cannot usually be used to form ‘causal’ or

‘reactive’ hypotheses, however when jointly considered

with DNA variation data such inference is possible (Schadt

et al. 2005). The inclusion of DNA variation data in the

context of experimental crosses is necessary as it can be

assumed to be the main driver of variation in the traits

under consideration (Schadt et al. 2005). There are several

similar ways in which causal reasoning is performed in the

eQTL context: model selection approaches (Schadt et al.

2005; Chen et al. 2007; Millstein et al. 2009) structural

equation modeling (SEM) (Liu et al. 2008; Aten et al.

2008) and Bayesian networks (Zhu et al. 2007). All of

these approaches are similar in spirit in that they attempt to

define local or global relationships of the form Marker

A?Trait B?Trait C. Although, the use of causal inference

approaches have shown promise, in general some cautions

apply about the interpretation of causal modeling in eQTL.

Specifically, consideration of large sample sizes, the

removal of factors that can play a role as a hidden con-

founder as well as considering comprehensive sets of

models are seen as necessary steps for robust causal

modeling (Li et al. 2010).

Conclusion

The utility and value of complex crosses for examining the

relationship between behavior and expression is clear.
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However, there are numerous considerations given the

increased genetic complexity that must be dealt with in the

design of these types of studies. By highlighting each of

these, we provide a conceptual framework to guide

researchers in study planning and implementation.
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