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Abstract
We consider finite sample properties of the regularized high-dimensional Cox regression via lasso.
Existing literature focuses on linear models or generalized linear models with Lipschitz loss
functions, where the empirical risk functions are the summations of independent and identically
distributed (iid) losses. The summands in the negative log partial likelihood function for censored
survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial
likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle
inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the
difficulties caused by lacking iid Lipschitz losses.
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1. Introduction
Since it was introduced by Tibshirani (1996), the lasso regularized method for high-
dimensional regression models with sparse coefficients has received a great deal of attention
in the literature. Properties of interest for such regression models include the finite sample
oracle inequalities. Among the extensive literature of the lasso method, Bunea, Tsybakov,
and Wegkamp (2007) and Bickel, Ritov, and Tsybakov (2009) derived the oracle
inequalities for prediction risk and estimation error in a general nonparametric regression
model, including the high-dimensional linear regression as a special example, and van de
Geer (2008) provided oracle inequalities for the generalized linear models with Lipschitz
loss functions, e.g., logistic regression and classification with hinge loss. Bunea (2008) and
Bach (2010) also considered the lasso regularized logistic regression. For censored survival
data, the lasso penalty has been applied to the regularized Cox regression in the literature,
see e.g. Tibshirani (1997) and Gui and Li (2005), among others. Recently, Bradic, Fan, and
Jiang (2011) studied the asymptotic properties of the lasso regularized Cox model. However,
its finite sample non-asymptotic statistical properties have not yet been established in the
literature to the best of our knowledge, largely due to lacking iid Lipschitz losses from the
partial likelihood. Nonetheless, the lasso approach has been studied extensively in the
literature for other models, see e.g. Martinussen and Scheike (2009) and Gaiffas and
Guilloux (2012), among others, for the additive hazards model.

*Supported in part by NSF Grant DMS-1007590 and NIH grant R01-AG036802.

NIH Public Access
Author Manuscript
Stat Sin. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Stat Sin. 2014 January 1; 24(1): 25–42. doi:10.5705/ss.2012.240.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We consider the non-asymptotic statistical properties of the lasso regularized high-
dimensional Cox regression. Let T be the survival time and C the censoring time. Suppose
we observe a sequence of iid observations (Xi, Yi, Δi), i = 1, …, n, where Xi = (Xi1, ⋯ Xim)
are the m-dimensional covariates in  Yi = Ti ∧ Ci, and Δi = I{Ti≤Ci}. Due to a large amount
of parallel material, we follow closely the notation in van de Geer (2008). Let

Consider the Cox model (Cox (1972)):

where θ is the parameter of interest and λ0 is the unknown baseline hazard function. The
negative log partial likelihood function for θ is

(1.1)

The corresponding estimator with lasso penalty is denoted by

where  is the weighted l1 norm of the vector θ ∈ Rm. van de Geer
(2008) considered σk to be the square-root of the second moment of the k-th covariate Xk,
either at the population level (fixed) or at the sample level (random). For normalized Xk, σk
= 1. We consider fixed weights σk, k = 1, ⋯ ,m. The results for random weights can be
easily obtained from the case with fixed weights following van de Geer (2008), and we
leave the detailed calculation to interested readers.

Clearly the negative log partial likelihood (1.1) is a sum of non-iid random variables. For
ease of calculation, consider an intermediate function as a “replacement” of the negative log
partial likelihood function

(1.2)

that has the iid structure, but with an unknown population expectation

The negative log partial likelihood function (1.1) can then be viewed as a “working” model
for the empirical loss function (1.2). The corresponding loss function is

(1.3)
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with expected loss

(1.4)

where P denotes the distribution of (Y, Δ, X). Define the target function f̅ as

where θ̅ = arg minθ∈Θ Pγfθ. It is well-known that Pγfθ is convex with respect to θ for the
regular Cox model, see for example, Andersen and Gill (1982), thus the above minimum is
unique if the Fisher information matrix of θ at θ̅ is non-singular. Define the excess risk of f
by

It is desirable to show similar non-asymptotic oracle inequalities for the Cox regression
model as in, for example, van de Geer (2008) for generalized linear models. That is, with
large probability,

Here θ is called the “estimation error”, which is typically proportional to  times the
number of nonzero elements in θ.

Note that the summands in the negative log partial likelihood function (1.1) are not iid, and
the intermediate loss function γ(·, Y, Δ) given in (1.3) is not Lipschitz. Hence the general
result of van de Geer (2008) that requires iid Lipschitz loss functions does not apply to the
Cox regression. We tackle the problem using pointwise arguments to obtain the oracle
bounds of two types of errors: one is between empirical loss (1.2) and expected loss (1.4)
without involving the Lipschitz requirement of van de Geer (2008), and one is between the
negative log partial likelihood (1.1) and empirical loss (1.2) which establishes the iid
approximation of non-iid losses. These steps distinguish our work from that of van de Geer
(2008); we rely on the Mean Value Theorem with van de Geer’s Lipschitz condition
replaced by the similar, but much less restrictive, boundedness assumption for regression
parameters in Bühlmann (2006).

The article is organized as follows. In Section 2, we provide assumptions that are used
throughout the paper. In Section 3, we define several useful quantities followed by the main
result. We then provide a detailed proof in Section 4 by introducing a series of lemmas and
corollaries useful for deriving the oracle inequalities for the Cox model. To avoid duplicate
material as much as possible, we refer to the preliminaries and some results in van de Geer
(2008) from place to place in the proofs without providing much detail.

2. Assumptions
We impose five basic assumptions. Let ‖·‖ be the L2(P) norm and ‖·‖∞ the sup norm.

Assumption A. Km ≔ max1≤k≤m{‖Xk‖∞/σk} < ∞.
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Assumption B. There exists an η > 0 and strictly convex increasing G, such that for all θ ∈
Θ with ‖fθ − f̅‖∞ ≤ η, one has ℰ(fθ) ≥ G(‖fθ − f̅‖).

In particular, G can be chosen as a quadratic function with some constant C0, i.e., G(u) = u2/
C0, then the convex conjugate of function G, denoted by H, such that uv ≤ G(u) + H(v) is
also quadratic.

Assumption C. There exists a function D(·) on the subsets of the index set {1, ⋯ m}, such
that for all ⊂ {1, ⋯ , m}, and for all θ ∈ Θ and θ̃ ∈ Θ, we have

. Here, D(  is chosen to be the cardinal number
of 

Assumption D. .

Assumption E. The observation time stops at a finite time τ > 0, with ξ ≔ P(Y ≥ τ) > 0.

Assumptions A, B, and C are identical to those in van de Geer (2008) with her ψk the
identity function. Assumptions B and C can be easily verified for the random design setting
where X is random (van de Geer (2008)) together with the usual assumption of non-singular
Fisher information matrix at θ̅ (and its neighborhood) for the Cox model. Assumption D has
a similar flavor to the assumption (A2) in Bühlmann (2006) for the persistency property of
boosting method in high-dimensional linear regression models, but is much less restrictive in
the sense that Lm is allowed to depend on m in contrast with the fixed constant in Bühlmann
(2006). Here it replaces the Lipschitz assumption in van de Geer (2008). Assumption E is
commonly used for survival models with censored data, see for example, Andersen and Gill
(1982). A straightforward extension of Assumption E is to allow τ (thus ξ) to depend on n.

From Assumptions A and D, we have, for any θ ∈ Θ,

(2.1)

for all i, where σ(m) = max1≤k≤m σk. Note that Um is allowed to depend on m.

3. Main result

Let  be the l1 norm of θ. For any θ and θ̃ in Θ, denote

Consider the estimator

3.1. Useful quantities
We first define a set of useful quantities that are involved in the oracle inequalities.
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•

a̅n = 4an, .

• r1 > 0, b > 0, d > 1, and 1 > δ > 0 are arbitrary constants.

•
.

•
, where

• λn ≔ (1 + b)λ̅n,0.

• δ1 = (1 + b)−N1 and δ2 = (1 + b)−N2 are arbitrary constants for some N1 and N2,
where N1 ∈ N ≔ {1, 2, …} and N2 ∈ N ∪ {0}.

•

.

• W is a fixed constant given in Lemma 4.3 for a class of empirical processes.

• Dθ ≔ D({k : θk ≠ 0, k = 1, …, m}) is the number of nonzero θk’s, where D(·) is
given in Assumption C.

•

, where H is the convex conjugate of function G defined in
Assumption B.

• .

• .

•

.

•

In the above, the dependence of  on the sample size n is through θ that involves the
tuning parameter λn. We also impose conditions as in van de Geer (2008):

Condition I(b, δ). .

Condition II(b, δ, d). .

In both conditions, η is given in Assumption B.

3.2. Oracle inequalities
We now provide our theorem on oracle inequalities for the Cox model lasso estimator, with
detailed proof given in the next section. The key idea of the proof is to find bounds of
differences between empirical errors of the working model (1.2) and between approximation
errors of the partial likelihood, denoted as Zθ and Rθ in the next section.
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Theorem 3.1. Suppose Assumptions A-E and Conditions I(b, δ) and II(b, δ, d) hold. With

we have, with probability at least

that

4. Proofs
4.1. Preparations

Denote the empirical probability measure based on the sample {(Xi, Yi, Δi) : i = 1, … n} by
Pn. Let ε1, ⋯ , εn be a Rademacher sequence, independent of the training data (X1, Y1, Δ1),
⋯ , (Xn, Yn, Δn). For some fixed θ* ∈ Θ and some M > 0, denote ℱM ≔ {fθ : θ ∈ Θ, I(θ−θ*)
≤ M}. Later we take , which is the case of interest. For any θ where I(θ − θ*) ≤ M,
denote

Note that van de Geer (2008) sought to bound supf∈ℱM Zθ(M), thus the contraction theorem
of Ledoux and Talagrand (1991) (Theorem A.3 in van de Geer (2008)) was needed, which
holds for Lipschitz functions. We find that the calculation in van de Geer (2008) does not
apply to the Cox model due to the lack of Lipschitz property. However, the pointwise
argument is adequate for our purpose because only the lasso estimator or the difference
between the lasso estimator θ̂n and the oracle  is of interest. Note the notational difference
between an arbitrary θ* in the above Zθ(M) and the oracle .

Lemma 4.1. Under Assumptions A, D, and E, for all θ satisfying I(θ − θ*) ≤ M, we have
EZθ(M) ≤ a̅nM.

Proof. By the symmetrization theorem, see e.g. van der Vaart and Wellner (1996) or
Theorem A.2 in van de Geer (2008), for a class of only one function we have
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For A we have

Applying Lemma A.1 in van de Geer (2008), we obtain

Thus we have

(4.1)

For B, instead of using the contraction theorem that requires Lipschitz, we use the Mean
Value Theorem:

where θ** is between θ and θ*, and

(4.2)

satisfying
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Since for all i,

following Lemma A.1 in van de Geer (2008), we obtain

(4.3)

Combining (4.1) and (4.3), the upper bound for EZθ(M) is achieved.

We now can bound the tail probability of Zθ(M) using the Bousquet’s concentration theorem
noted as Theorem A.1 in van de Geer (2008).

Corollary 4.1. Under Assumptions A, D, and E, for all M > 0, r1 > 0 and all θ satisfying I(θ
− θ*) ≤ M, it holds that

Proof. Using the triangular inequality and the Mean Value Theorem, we obtain

where θ** is between θ and θ*, and Fθ**(k, Y) is defined in (4.2). So we have

Therefore, in view of Bousquet’s concentration theorem and Lemma 4.1, for all M > 0 and
r1 > 0,
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Now for any θ satisfying I(θ − θ*) ≤ M, we bound

Here recall that τ is given in Assumption E. By the Mean Value Theorem, we have

(4.4)

where θ** is between θ and θ* and, by (2.1), we have

(4.5)

Lemma 4.2. Under Assumption E, we have
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Proof. This is obtained directly from Massart (1990) for the Kolmogorov statistic by taking

 in the following:

Lemma 4.3. Under Assumptions A, D, and E, for all θ we have

(4.6)

where W is a fixed constant.

Proof. For a class of functions indexed by t, ℱ = {1(y ≥ t)efθ(x)/Um : t ∈ [0, τ], y ∈ R, efθ(x) ≤
Um}, we calculate its bracketing number. For any nontrivial ∈ satisfying 1 > ∈ > 0, let ti be
the i-th ⌈1/ε⌉ quantile of Y, so

where ⌈x⌉ is the smallest integer that is greater than or equal to x. Furthermore, take t0 = 0
and t⌈1/ε⌉ = +∞. For i = 1, ⋯, ⌈1/ε⌈, define brackets [Li, Ui] with

such that Li(x, y) ≤ 1(y ≥ t)efθ(x)/Um ≤ Ui(x, y) when ti−1 < t ≤ ti. Since

we have , which yields

where . Thus, from Theorem 2.14.9 in van der Vaart and Wellner (1996), we have
for any r > 0,

where W is a constant that only depends on K. Note that r2e−r2
 is bounded by e−1. With

, we obtain (4.6).
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Lemma 4.4. Under Assumptions A, D, and E, for all θ we have

(4.7)

Proof. Consider the classes of functions indexed by t,

Using the argument in the proof of Lemma 4.3, we have

where , and then for any r > 0,

Thus we have

Let , so . Since

, we obtain (4.7).

Corollary 4.2. Under Assumptions A, D, and E, for all M > 0, r1 > 0, and all θ that satisfy
I(θ − θ*) ≤ M, we have
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(4.8)

Proof. From (4.4) and (4.5) we have

where the events E1, E2 and E3 are defined as

Thus

and the result follows from Lemmas 4.2, 4.3 and 4.4.

Now with , we have the following results.

Lemma 4.5. Suppose Conditions I(b, δ) and II(b, δ, d) are met. Under Assumptions B and C,
for all θ ∈ Θ with , it holds that

Proof. The proof is exactly the same as that of Lemma A.4 in van de Geer (2008), with the
λn defined in Subsection 3.1.

Lemma 4.6. Suppose Conditions I(b, δ) and II(b, δ, d) are met. Consider any random θ̃ ∈ Θ

with . Let 1 < d0 ≤ db. It holds that
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Proof. The idea is similar to the proof of Lemma A.5 in van de Geer (2008). Let ℰ̃ = ℰ(fθ̃)

and . We will use short notation:  and . Since

, on the set where  and

, we have

(4.9)

By (4.8) we know that  is bounded by  with probability at least

, then we have

Since I(θ̃) = I1(θ̃) + I2(θ̃) and , using the triangular inequality, we obtain

(4.10)

Adding  to both sides and from Lemma 4.5,

Because 0 < δ < 1, it follows that
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Hence,

which yields the desired result.

Corollary 4.3. Suppose Conditions I(b, δ) and II(b, δ, d) are met. Consider any random θ̃ ∈

Θ with . Let 1 < d0 ≤ db. It holds that

Proof. Repeat Lemma 4.6 N times.

Lemma 4.7. Suppose Conditions I(b, δ) and II(b, δ, d) hold. If , where

then for any integer N, with probability at least

we have

Proof. Since the negative log partial likelihood ln(θ) and the lasso penalty are both convex
with respect to θ, applying Corollary 4.3, we obtain the above inequality. This proof is
similar to the proof of Lemma A.6 in van de Geer (2008).

Lemma 4.8. Suppose Conditions I(b, δ) and II(b, δ, d) are met. Let N1 ∈ N ≔ {1, 2, …} and
N2 ∈ N ∪ {0}. With δ1 = (1+b)−N1 and δ2 = (1+b)−N2 , for any n, with probability at least
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we have

where

Proof. The proof is the same as that of Lemma A.7 in van de Geer (2008), with a slightly
different probability bound.

4.2. Proof of Theorem 3.1
Proof. The proof follows the same ideas in the proof of Theorem A.4 in van de Geer (2008),
with exceptions of pointwise arguments and slightly different probability bounds. Since this
is our main result, we provide a detailed proof here despite the amount of overlaps.

Define ℰ̂ ≔ ℰ(fθ̂n and ; use the notation  and

; set c ≔ δb/(1 − δ2). Consider the cases (a) c < d(δ1, δ2) and (b) c ≥ d(δ1,
δ2).

(a) c < d(δ1, δ2). Let J be an integer satisfying (1 + b)J−1 c ≤ d(δ1, δ2) and (1 + b)J c > d(δ1,

δ2). We consider the cases (a1)  and (a2)

.

(a1) If , then

for some j ∈ {1, ⋯ , J}. Let d0 = c(1 + b)j−1 ≤ d(δ1, δ2) ≤ db. From Corollary 4.1, with

probability at least  we have .

Since , from (4.9) we have

By (4.8),  is bounded by  with probability at least

Then we have
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Since , and , by

triangular inequality we obtain . From Lemma 4.5,

. Hence, .

(a2) If , from (4.10) with d0 = c, with probability at least

we have

By the triangular inequality, Lemma 4.5 and (A4),

Hence,

Furthermore, by Lemma 4.8, we have with probability at least
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that , where

(b) c ≥ d(δ1, δ2). On the set where , from equation (4.10) we have
with probability at least

that

which is the same as (a2) and leads to the same result.

To summarize, let

Note that

Under case (a), we have

Kong and Nan Page 17

Stat Sin. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Under case (b),
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We thus obtain the desired result.
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