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Abstract
Inclusion of entropy is important and challenging for protein-protein binding prediction. Here, we
present a statistical mechanics-based approach to empirically consider the effect of orientational
entropy. Specifically, we globally sample the possible binding orientations based on a simple
shape-complementarity scoring function using an FFT-type docking method. Then, for each
generated orientation we calculate the probability through the partition function of the ensemble of
accessible states, which are assumed to be represented by the set of nearby binding modes. For
each mode, the interaction energy is calculated from our ITScorePP scoring function that was
developed in our laboratory based on principles of statistical mechanics. Using the above protocol,
we present the results of our participation in Rounds 22–27 of the CAPRI (Critical Assessment of
PRedicted Interactions) experiment for ten targets (T46-T58). Additional experimental
information, such as low-resolution SAXS data, was used when available. In the prediction (or
docking) experiments of the ten target complexes, we achieved correct binding modes for six
targets: one with high accuracy (T47), two with medium accuracy (T48 and T57), and three with
acceptable accuracy (T49, T50, and T58). In the scoring experiments of seven target complexes,
we obtained correct binding modes for six targets: one with high accuracy (T47), two with
medium accuracy (T49 and T50), and three with acceptable accuracy (T46, T51, and T53).
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1 INTRODUCTION
Protein-protein interactions play an important role in many biological processes. Due to the
high cost and technical difficulty in experimentally determining the structures of protein
complexes, protein docking has played an increasingly important role in computationally
predicting the binding mode and free energy between proteins with known three-
dimensional (3D) structures. There have been a number of algorithms developed for protein-
protein docking with different speed and accuracy in the past two decades.1–6 It is widely
accepted that bound docking, which attempts to reconstruct the complex assuming that the
native conformations of the bound binding partners are known, has not been a problem, and
many of the existing scoring functions can yield a relatively high success rate in binding
mode predictions for this type of docking. However, the more realistic unbound docking, in
which the complex is predicted from unbound structures, has been much more challenging
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because of the conformational changes and structural uncertainties of individual protein
structures upon binding. Due to the difficulties of explicitly considering protein flexibility,
different docking algorithms and scoring methods have been developed to improve the
success rate in predicting correct binding modes. Furthermore, other biological information
such as mutation data, residue contacts from experiments, and evolutionary analysis has also
been used to assist in the traditional docking and scoring process. All of the developed
docking and scoring approaches call for an objective benchmark for evaluation and further
improvement. Meeting this demand, the CAPRI (Critical Assessment of PRedicted
Interaction) challenge7–10 has been providing a valuable platform for evaluating docking
and scoring protocols on realistic applications since it was launched in 2001, and is playing
a significant role in promoting the development of new docking and scoring algorithms, and
the improvement of existing methods.

In the previous rounds from 2007–2009, we have developed and evaluated a hierarchical
protocol MDockPP11 using the CAPRI targets. In MDockPP, the possible binding modes of
one protein are first globally sampled relative to the other using a Fast-Fourier Transform
(FFT)-based sampling method,12 in which only the shape complementarity is used as the
scoring function. Then the limited number of filtered binding orientations from the previous
step are further scored and refined by our atomic scoring function for protein-protein
interactions ITScorePP.13 The final predicted models were selected based on manual
inspection and any additional biological information that was available. Recently, we have
further improved our docking and scoring protocol for protein-protein interactions by
empirically considering the orientational entropic effect. Although the improvement seems
to be limited by the conformational changes of the proteins upon binding, the results indicate
a possible direction for improving existing docking and scoring algorithms.

2 MATERIALS AND METHODS
2.1 Docking and Scoring Protocol

We have used a similar hierarchical protocol for the CAPRI docking (or prediction) and
scoring experiments in the latest rounds from 2010–2013 to that in the previous rounds from
2007–2009, except that here we considered the effect of the orientational entropy at the
scoring step in the latest rounds.

For the CAPRI docking experiments, our typical protocol was as follows. The putative
binding modes were first generated using an FFT-based docking algorithm like ZDOCK
2.114 or a modified 3D-DOCK15 that is based on shape complementarity. During docking
calculations, the default parameters were used unless otherwise specified. Namely, the grid
spacing was set to 1.2 Å, and the interval of the Euler angles was set to 15°. For each
rotation, according to the FFT calculation, one relative translation of the ligand with the best
shape complementarity to the receptor was kept for further refinement. Then, the filtered
binding modes were scored and optimized at the atomic level. If available, biological
information about the binding site was also applied at this refinement step to choose binding
modes that satisfy the biological information. The ranked binding modes were then
clustered. For any two binding modes with an Lrmsd (root-mean-square deviation) less than
Rclu, only the ligand orientation with lower score was kept. Here, Å Rclu is calculated based
on the backbone atoms of the ligand protein and was set to 8 unless otherwise specified. The
top 100 binding modes after clustering were kept for manual inspection to assure that the
biological information could be properly considered. Ten binding modes were selected and
submitted to CAPRI.
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For the CAPRI scoring experiments, the protocol is similar except that the putative binding
modes, that were constructed and kindly uploaded by the CAPRI predictors, were directly
downloaded from the CAPRI site. Ten binding modes were finally submitted to CAPRI.

2.2 Ranking by considering the orientational entropic effect
In the present study, we restricted to rigid docking. Based on statistical mechanics, the free
energy can be calculated according to the partition function theory:16

(1)

Here, Z is the canonical partition function and is approximated by 16,17

(2)

where β = 1/kBT and  is the protein-protein interaction energy in the ith observed
thermodynamic macrostate corresponding to a local minimum on the protein-protein binding
energy landscape. In computational experiments, a microstate in a local minimum was
approximated by a generated orientation in a cluster of its neighboring modes whose
interaction potential energies can be calculated using our scoring function ITScorePP. The
cluster size was set to 5 Å for Lrmsd. The parameter kBT was empirically set to 10 in the
present study so that the loss of the entropy would not be overestimated or underestimated
compared to the interaction potential energy URL. Namely, the calculated free energy G
would still be comparable to the interaction potential energy URL.

To calculate the partition function, putative protein-protein binding modes were generated
by ZDOCK 2.1.14 During docking calculations, the default parameters were used except the
number of output binding modes which was set to the number of maximum rotations (i.e.
3600 for the default interval of the Euler angles) in our preliminary test. Then, the generated
binding modes were scored by ITScorePP and the ligand binding modes were optimized
using a simplex algorithm.18 Those poses within a certain RMSD Rcut from a given binding
mode serve as an approximation of the number of accessible microstates near the mode.19

Here, Rcut was set to be 5.0 Å. The RMSD was calculated based on the C α atoms to speed
up the grouping calculations. Thus, under the assumption that the energies of the binding
modes in each cluster are similar,20 one can obtain a partition function corresponding to the
i-th mode as

(3)

where  stands for the interaction energy of the k-th mode/microstate in the i-th cluster/
group. The number of modes (“k”) in each cluster (“i”) depends on the sampling method and
the scoring function in use. Then, the probability of finding the system around the i-th mode
can be expressed as

(4)
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In the present study we focused on relative ranking of the binding modes. Therefore, for
mode ranking, instead of using the absolute values of Pi, we empirically chose to use lnPi
and discarded the constant lnZ, which would not affect the ranking order but would help
ranking by magnifying the difference in mode probability:

(5)

As a preliminary test, we have applied the above method to the 35 unbound inhibitor-
enzyme pairs (or substrate-enzyme pairs) in the protein-protein docking benchmark 3.0.21

The inhibitor-enzyme complexes are relatively rigid during binding and often have a high
degree of shape complementarity because of a main-chain-main-chain interacting
mechanism.3,22 Other complexes in the protein-protein docking benchmark 3.0 are more
complicated. For example, antigen-antibody binding involves both the main-chain and
sidechain atoms and does not necessarily have the best-fit binding interface, a case that
requires special training.3,22–24 Protein flexibility is another complication. Therefore, given
the rigid-body assumption in our scoring method, the inhibitor-enzyme complexes will be
more appropriate test cases to start with and the rest complexes will be left for future
detailed study.

In this test study on the inhibitor-enzyme complexes, the final binding modes were clustered
with an RMSD cutoff of 5.0 Å. Namely, if two binding modes have an RMSD within 5.0 Å,
the one with the lower score was kept. The result is shown in Figure 1, which gives the
binding mode prediction success rate when only the top binding mode is considered. Here, a
successful prediction is defined as the lowest-scored binding mode having an Lrmsd less than
10 Å from the native structure. 25 For the purpose of references only, two other scoring
methods, ZDOCK2.1 and ITScorePP, were also shown in the figure. ZDOCK2.114 is the
simple shape complementarity-based scoring function that was used to generate putative
binding modes in the present study.

It can be seen from Figure 1 that the scoring function in ZDOCK 2.1, which is based on
shape complementarity, had the lowest success rate of 5.71% when the top binding mode
was considered. Compared to ITScorePP, with a success rate of 11.43%, the inclusion of
entropy has substantially improved the performance of binding mode predictions to a
success rate of 17.14%, supporting the efficacy of this statistical mechanics-based entropy
method.

We have further examined the improvement for each case and found that the five medium
and two difficult cases do not seem to contribute to the higher success rate where the
definition of difficult groups is based on the degree of conformational change of the
unbound structures at the interface compared to the native complex.21 In other words, the
number of the cases with improvement from entropy would be the same after removing
those seven medium/difficult cases, indicating that the conformational changes of individual
structures may strictly limit the accuracy of our method. Further improvements may be
possible if protein flexibility were properly considered.

3 RESULTS AND DISCUSSION
3.1 Overall Performance

From 2010 to 2013, we have participated in rounds 22–27 of the CAPRI experiment. We
tested our method on ten targets for binding mode predictions. Table I summarizes our
CAPRI results. For the docking (or prediction) experiments, we predicted at least one
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acceptable binding mode for six targets, including one high-accuracy prediction (Target 47),
two medium-accuracy predictions (Targets 48 and 57), and three acceptable predictions
(Targets 49, 50, and 58).

For the scoring experiments, we had a higher success rate than for the docking experiments,
based on CAPRI’s criteria of acceptability. For six of the seven targets, we made at least one
acceptable prediction, giving an overall success rate of 85.7%. For targets 46, 51, and 53,
our scoring function gave an acceptable accuracy, even though our docking protocol failed
to make a successful prediction in the ten submitted modes on these targets. Our predictions
in the scoring experiments are also more correct with a medium accuracy for Targets 49 and
50, compared to the acceptable accuracy of the predictions by our docking protocol on these
two targets, suggesting the relative accuracy and robustness of our scoring protocol.

3.2 Target 46 (Mtq2-Trm112)
Target 46 is a protein-protein complex between Mtq2 and Trm112 (PDB ID: 3Q87).26 There
were no crystal structures available for either protein. The Mtq2 was modeled based on the
crystal structure 1T4327 in the Protein Data Bank (PDB)28 using MODELLER,29 and the
Trm112 was modeled based on the crystal structure 2J6A.30. No reliable binding site
information was available from the literature. We did not make a correct prediction in the
docking experiments for this target in which our best model gave an interface RMSD of
10.356 Å, although our scoring function gave one prediction of acceptable accuracy with fnat
= 40.6%, Lrmsd = 7.621 Å and Irmsd = 3.395 Å in the scoring experiment (Figure 2).

Further examination of the crystal structures and our modeled structures reveals that both
Mtq2 and Trm112 undergo substantial conformational changes along the binding interface
when binding, which have made it one of the most difficult targets; only two groups gave
correct predictions of this target in the docking experiment. Comparison between the crystal
structure and our modeled structures shows that there is a shift for the region around the
helix 49–59 on Mtq2. There is also a significant conformational change on the C-terminus of
Trm112 where the C-terminus blocks the binding site on the modeled Trm112 but moves
away from the binding site on the crystal structure (Figure 2). These changes may account
for the failure of our docking experiment prediction on this target. However, these
conformational changes were adequately addressed in the binding modes constructed by Dr.
Bonvin’s research group who built their homologous models based on the correct templates,
which allowed our scoring function to identify one acceptable prediction in the scoring
experiment (Figure 2).

3.3 Target 47 (E2-IM2)
Targets 47 is a protein-protein complex between the DNase domain of Colicin-E2 and the
Colicin-E2 cognate immunity protein (IM2) (PDB ID: 3U43).31 We built the structures of
the Colicin-E2 and Colicin-E2 immunity protein from its homologous complex E9-IM9
(1EMV)32 using MODELLER.29 Since there were several protein complexes in the PDB
homologous to the complex of Colicin-E2 with Colicin-E2 immunity protein, the binding
site of this target was clear, making it a relatively easy target. Due to our confidence in the
biological information about the binding interface, we set the RMSD cutoff for clustering to
2.0 Å for this target. All of our ten predicted models had a high accuracy for both the
docking experiments and scoring experiments, in which the best model has a very low Irmsd
of about 0.55 Å (Figure 2). The challenging part about this target may have been the
prediction of water molecule positions at the binding interface. We used a knowledge-based
approach to predict the positions of molecules at the binding interface, which has been
detailed elsewhere. Due to the high-accuracy models we predicted for this protein-protein
complex, our method also performed well in predicting the positions of water molecules.
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3.4 Targets 48 and 49 (two conformations of T4moH-T4moC)
Targets 48 and 49 both are complexes between the toluene 4-monooxygenase hydroxylase
(T4moH) and the Rieske-type ferredoxin toluene-4-monooxygenase system protein C
(T4moC) (PDB ID: 4I57).33 The structure of T4moC is the same between Targets 48 and
49. Both use the crystal structure of unbound T4moC from PDB ID: 1VM9.34 The
difference between the two targets is the hexamer conformation of T4moH. Structures for
both of these conformations were provided by CAPRI and were built from the crystal
structure of T4moH hydroxylase as a hetero-hexamer (PDB ID: 3DHH).35 The T4moH
hydrox-ylase has two binding sites for ferredoxin, but the ferrodoxin binding modes
involving the first ABC trimer was required to be predicted. There was some biological
information available about the binding sites of both proteins. According to the literature,
the active site of T4moH hydroxylase for effector protein binding was expected to be the
binding site of T4moC.35 The mutagenesis analysis of the ferre-doxin T4moC also indicated
that the residues R65, W69, D82, and D83 may be involved in binding.36 In addition, since
we used the T4moH trimer for our docking calculations and the T4moH hydroxylase is a
hetero-hexamer, we excluded those T4moC binding modes that had severe atomic clashes
with the constructed hexamer. Having been filtered based on all the above biological
considerations, eight of our top ten selections were rated as acceptable or better binding
modes for target 48. For our best model, which was of medium accuracy, fnat = 37.5%, Lrmsd
= 3.921 Å and Irmsd = 1.653 Å. No scoring experiment was held for target 48. For target 49,
we predicted four acceptable modes for the docking experiments with the best model having
an acceptable accuracy of fnat = 31.2%, Lrmsd = 5.678 Å and Irmsd = 2.177. For the target 49
scoring experiment, we gave seven correct binding modes of which the best had a medium
accuracy of fnat = 50.0%, Lrmsd = 5.593 Å and Irmsd = 1.790.

3.5 Targets 50 (HA-HB36.3)
Target 50 is a protein-protein complex between the influenza hemagglutinin (HA) and a
designed protein HB36.3 (PDB ID: 3R2X).37 The unbound structure of the HA chains was
taken from the crystal structure 3GBN,38 and the structure of HB36.3 was modeled based on
the template 1U84 (not yet published) using MODELLER. The HB36.3 protein is a mutant
designed to bind the HA chains. Therefore, we expected the mutated residues of HB36.3 to
be located at the binding interface, to increase the binding affinity of the complex. With this
in mind, we tried to select those HB36.3 binding modes in which more mutated residues are
in contact with the protein HA chains. For this target, we made one acceptable prediction
with an accuracy of fnat = 67.3%, Lrmsd = 9.618 Å and Irmsd = 2.239 in the docking
experiments, and two correct predictions in the scoring experiments in which the best model
had a medium accuracy of fnat = 57.1%, Lrmsd = 5.650 Å and Irmsd = 1.912 (Figure 2).

3.6 Targets 51 (GH5-CBM6/CBM13/Fn3)
Target 51 is a multidomain protein including three domains GH5-CBM6, XYLAN binding-
domain CBM13, and Fn3-like domain (PDB ID: 4BXG).39 CAPRI participants were invited
to predict the domain-domain interfaces between these three domains. Three domain-domain
interfaces, i.e. CBM13/Fn3, GH5-CBM6/CBM13, and GH5-CBM6/CBM13-Fn3, were
evaluated during the assessment. In Target 35, GH5-CBM6 was provided with an
unpublished crystal structure by the authors of this target. The structure of CBM13 was built
based on the crystal structure 1KNL40 using MODELLER, and the unbound structure of
Fn3-like protein was taken from the crystal structure 3MPC.41 Due to lack of clear
information about the interaction interface and uncertainties in domain-domain interactions,
this target has been one of the most difficult targets and only three groups gave correct
predictions for the docking experiments. We did not predict any correct modes for this target
in the docking experiments, and our best model gave an Irmsd of 11.56 Å. However, our
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scoring function predicted one mode with an acceptable accuracy of fnat = 24.1%, Lrmsd =
20.501 Å and Irmsd = 3.483 for the GH5-CBM6/CBM13-Fn3 interface, indicating that
sufficient sampling of the binding modes during docking may have played an important role
in identifying the correct binding mode of this target.

3.7 Target 53 (Rep4-Rep2)
Target 53 is a protein-protein complex between an artificial α-repeat protein Rep4 and a
short α-repeat Rep2 (PDB ID: 4JW2).42 The unbound structure of Rep4 was taken from the
crystal structure 3LTJ,43 and Rep2 was built based on the template 3LTJ using
MODELLER. Although the Rep4 forms a homodimer according to its crystal structure, it
was not clear whether or not the Rep4 dimer interface is the binding interface between Rep4
and Rep2. Therefore, we did not apply this biological information during the filtering step
for the final model selection. In addition, because Rep4 is a repeat protein, there were
several possible sequence alignments between Rep4 and Rep2, which would result in
significantly different conformations of the modeled Rep2. In this target, we did not predict
any correct binding modes in the docking experiments, although our best model gave a low
Irmsd of 3.935 Å. Our scoring function was able to predict one correct mode with an
acceptable accuracy of fnat = 28.8%, Lrmsd = 5.321 Å and Irmsd = 2.517 in the scoring
experiment.

3.8 Target 54 (NCS/Rep16)
Target 54 is a protein-protein complex between a designed protein neocarzinostatin (NCS)
and an α-repeat Rep16 (PDB ID: 4JW3).42 The unbound structure of the neocarzinostatin
was taken from the crystal structure 2CBO,44 and the structure of Rep16 was built based on
the crystal structure 3LTJ43 using MODELLER. No biological information about the
binding site was found in the literature. This target also turned out to be a difficult target
with only four groups giving correct predictions in the docking experiment and no groups
giving a successful prediction in the scoring experiment. In this target, we were not able to
give any correct predictions for both the docking experiment, in which the best model had
an Irmsd of 7.832 Å, and the scoring experiment, in which the best model had an Irmsd of
5.397 Å. Since the crystal structure of this complex is not available at the time of writing,
we do not yet know the reason for the difficulty of this target. However, given that the repeat
protein Rep16 is expected to have less conformational changes in its backbone due to its
helical structure, significant conformational changes might have occurred in the
neocarzinostatin.

3.9 Target 57 (BT4661/heparin)
Target 57 is a protein-oligosaccharide complex between heparin hexasaccharide and
BT4661, a SusE-like polysaccharide binding protein from Bacteroides thetaiotaomicron
(PDB ID: 4AK2).45 The unbound conformation of BT4661 and an extended conformation
of heparin were provided by CAPRI. Heparin is highly negatively charged, so we manually
inspected all of the crystal structures containing heparin oligosaccharides that are available
in the PDB and found that in nearly every case heparin binds to a positively charged region
of the protein. In addition, the binding mode of heparin is often more solvent-exposed than
is typical for biological ligands. The BT4661 structure was found to have one promising site
for binding: a positively charged region with a concentration of four arginine residues
(R581, R582, R623, and R688). There was also a nearby positively-charged region that was
sufficiently close to the first to permit the possibility of heparin interacting with both.

To account for the flexibility of heparin, we obtained most of the putative conformations
from PDB ID: 3IRI, a set of solution structures of heparin octadecasaccharide that were built
through constrained modeling with data from analytical ultracentrifugation and small-angle
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X-ray scattering.46 We divided each of these nine solution structures into six
hexasaccharide-sized fragments consisting of saccharides 1–6, 3–8, 5–10, 9–14, 11–16, and
13–18, yielding a total of 54 putative conformations. We also included two other
conformations in the ensemble: the heparin structure from PDB: 3OJV47 and the extended
conformation of heparin provided by CAPRI. These 56 conformations were all docked to
the presumed binding site of BT4661 using MDock, the protein-ligand docking software
developed by our laboratory.48–51 For this target, we achieved one prediction of medium
accuracy (Figure 2) and one other acceptable prediction. Our medium-accuracy prediction
had the lowest Irmsd (1.369 Å) among all the predictions for this target.

3.10 Target 58 (SalG/PliG-Ec)
Target 58 is a protein-protein complex between SalG, the Atlantic salmon goose-type
lysozyme, and PliG-Ec, a goose-type lysozyme inhibitor from E. coli (PDB ID: 4G9S).52

The unbound conformations of both SalG and PliG-Ec were provided by CAPRI. A small-
angle X-ray scattering (SAXS) profile for the inhibitor-lysozyme complex was also
provided. We used the program CRYSOL to fit this experimental profile to a theoretical
SAXS profile generated for each of the docked poses.53 The default CRYSOL parameters
were used, except for the parameter specifying the angular units of the input file, which was
set to match the format of the experimental profile. The quality of the theoretical-
experimental fit was evaluated by the chi-squared test, which is handled automatically by
CRYSOL. We also evaluated the poses in terms of their consistency with the binding site
information available in the literature. SalG residues E73, D86, and D97 are known to be
part of its active site, so we presumed that the binding mode of PliG-Ec should block these
residues.54 In addition, the mutations Y47A, R115A, and R119A on PliG-Ec significantly
reduce its inhibitory activity and thus these residues were considered likely to be part of the
inhibitor-lysozyme interface.55 Our final ten selections were those non-redundant poses that
provided the best combinations of low docking scores, theoretical-experimental SAXS
agreement, and consistency with the experimental binding site information. For this target,
we achieved three acceptable predictions (Figure 2).

After the release of the native complex, we computed the Cα-RMSD between each of the
docked complexes and the native complex, and compared these RMSDs to the chi-squared
goodness of fit values between the theoretically generated SAXS profiles and the
experimental SAXS profile. This comparison showed them to be uncorrelated (correlation
coefficient r = 0.05, see Figure 3) and therefore not useful for ranking in this case.
Nevertheless, our results are consistent with the usefulness of SAXS for filtering out the
worst models. To show this in the figure, we labeled the docked complexes within 5.0 Å
Cα-RMSD of the native complex as ‘distant’ and colored their data points blue, and we
labeled the two closer docked complexes as ‘close’ and colored them black. The native
complex is colored red in this figure. The orange vertical line indicates an example cutoff at
a chi-squared goodness of fit of 1.0. Using this cutoff, the number of distant poses drops
from 248 to 29, while one of the two close poses is preserved, as is the native complex. One
challenge was the sphericity of the subunits, which can yield similar SAXS profiles for
substantially different poses when either subunit rotates in situ.

4 CONCLUSION AND DISCUSSIONS
We have further improved our hierarchical approach for protein-protein docking
(MDockPP) by considering the orientational entropic effect using an empirical statistical
mechanics-based method. This method was utilized by our group in the CAPRI experiments,
a community-wide blind test for protein-protein interactions. For the docking experiments,
we predicted correct models for six out of ten targets, including one high-accuracy, two
medium-accuracy, and three acceptable predictions. For the scoring experiments, our
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scoring function correctly identified a model with at least acceptable accuracy for six out of
seven target complexes, including one high-accuracy, two medium-accuracy, and three
acceptable models. During our participation in CAPRI, we found that biological information
about the binding site played a valuable role in the selection of correct modes (e.g. Targets
47 and 48). Protein flexibility was still a challenge and needs to be properly considered for
protein-protein docking (e.g. Target 46). Multidomain protein docking is also a challenge
due to the issue of enormous sampling. In the case of Target 58, we used SAXS data to aid
in our predictions. Its use was limited to filtering out those models predicted to have highly
different SAXS profiles from the experimentally-determined SAXS profile of the target.

Our current scoring scheme is based on the rigid-body assumption. Future studies include
the development of more advanced methods to account for protein flexibility, validation of
these methods on the protein-protein benchmark 3.0,21 and comparison with other existing
docking algorithms.
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Figure 1.
Success rates of three scoring functions (shape complementarity in ZDOCK 2.1, ITScorePP,
and ITScore+Entropy) on the 35 enzyme/inhibitor test cases when the top binding mode was
considered.
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Figure 2. Target 46
A. Comparison between the predicted complex between Mtq2 (blue) and Trm112 (red) by
our scoring experiment and the experimentally determined crystal structure (light blue),
where the complexes were aligned according to the receptor protein Mtq2. The predicted
mode has an acceptable accuracy prediction with fnat = 40.6%, Lrmsd = 7.621 Å and Irmsd =
3.395 Å; B. Comparison between the modeled (green) and crystal (light blue) structures of
Mtq2 (upper panel) and Trm112 (lower panel), in which the conformational changes are
highlighted in red for the modeled structure and magenta for the crystal structure,
respectively. Target 47: Comparison between the predicted complex of Colicin E2 (blue)
and IM2 (red) and the corresponding crystal structure (light blue) for the docking (A) and
scoring (B) experiments, where the complexes are aligned according to the receptor protein
E2. Target 50: Comparison between the predicted complex of Colicin HA chains (green
and blue) and HB36.3 (red) and the corresponding crystal structure (light blue) for the
docking (A) and scoring (B) experiments, where the complexes are aligned according to the
receptor protein HA chains. Target 57: Comparison between the predicted complex of
BT4661 (blue) and heparin (red) and the corresponding crystal structure (light blue), where
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the complexes are aligned according to the receptor BT4661. Target 58: Comparison
between the predicted complex of SalG (blue) and PliG-Ec (red) and the corresponding
crystal structure (light blue), where the complexes are aligned according to the receptor
SalG.
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Figure 3.
RMSD versus SAXS goodness of fit for the 250 docked poses of Target 58 and the native
complex. The x-axis gives the chi-squared goodness of fit between the theoretically-
predicted SAXS profile for each pose and the experimentally-determined SAXS profile of
the native complex. The y-axis gives the Cα-RMSD between each pose and the native
complex. The two close docked complexes are plotted as black triangles (see text). The
native complex is plotted as a red diamond.
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