

NIH Public Access Author Manuscript

Biochim Biophys Acta. Author manuscript; available in PMC 2014 February 07.

Published in final edited form as:

Biochim Biophys Acta. 2009 September ; 1792(9): 825-826. doi:10.1016/j.bbadis.2009.08.005.

CDG nomenclature: Time for a change!

Jaak Jaeken^{a,*}, Thierry Hennet^b, Gert Matthijs^c, and Hudson H. Freeze^d

^aCenter for Metabolic Disease, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium ^bInstitute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland ^cCenter for Human Genetics, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium ^dBurnham Institute for Medical Research, La Jolla, CA 92037, USA

> Congenital disorders of glycosylation (CDG) are a rapidly growing disease family with about 40 diseases reported since its first clinical description in 1980 [1]. The large majority of these are diseases of protein hypoglycosylation, but in recent years several defects in lipid glycosylation have also been identified [2,3]. Most protein glycosylation disorders are due to defects in the N-glycosylation pathway, the remaining ones affecting the O-glycosylation pathway or combined N-and O-glycosylation pathways. No defects in C-glycosylation have been detected yet. The first described CDG patients were shown to have an abnormal serum transferrin (Tf) isoelectrofocusing (IEF) pattern with increases in the di-and asialotransferrin fractions [4]. They were found to have deficient phosphomannomutase (PMM) activity [5] and mutations in the PMM2 gene [6]. PMM-deficient patients were designated as CDG-Ia. Subsequently, a patient was discovered with a serum Tf IEF pattern characterized by increases not only of the even (2 and 0) but also of the uneven (3 and 1) sialoTf bands [7]. Since these patterns were qualitatively different, we called the latter a type 2 pattern as opposed to the type 1 pattern seen in PMM deficiency. In the patient with the type 2 pattern, a deficiency was demonstrated to be in a Golgi glycosyltransferase, namely Nacetylglucosaminyltransferase II [8]. This disease was labeled CDG-IIa. New patients were classified as CDG-I or CDG-II according to the Tf IEF pattern, and each new defect took the next letter of the alphabet.

> We presently count 14 CDG-I diseases (CDG-Ia up to CDG-In), and 8 CDG-II diseases (CDG-IIa up to CDG-IIh). Since this nomenclature is based on the Tf IEF pattern, it relates only to N-glycosylation diseases associated with deficient sialylation. Gradually it became clear that CDG-I defects were limited to defects in pre-ER or ER proteins whereas CDG-II defects were caused by defects in Golgi or Golgi-associated proteins. However, some of these disorders also show abnormal O-glycosylation such as the COG defects (review in [9]) and the V-ATPase defect in cutis laxa type II [10]. Also, it appeared that a patient with an alpha-glucosidase I deficiency in the ER had a normal Tf IEF pattern [11]. Still this patient was labeled as CDG-IIb, which is an inconsistency of this classification. For this reason and for a number of other reasons explained elsewhere [12], we strongly suggest that this nomenclature should be discontinued in favor of a transparent designation of glycosylation disorders and that it be applied to new and established types of CDG. We propose using only the official gene symbol (not in italics) followed by '-CDG' (list of approved gene names at http://www.genenames.org). A classification of the known types of CDG, along with the traditional and new nomenclature, is shown in Table 1 (adapted from [12]).

^{*}Corresponding author. Tel.: +32 16 343820; fax: +32 16 343842. jaak.jaeken@uzleuven.be (J. Jaeken).

References

- 1. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, et al. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arylsulfatase A and increased CSF protein: a new syndrome. Pediatr Res. 1980; 14:179.
- 2. Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006; 7:537–551. [PubMed: 16755287]
- 3. Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet. 2007; 8:261–278. [PubMed: 17506657]
- 4. Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984; 144:245–247. [PubMed: 6543331]
- 5. Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995; 377:318–320. [PubMed: 8549746]
- Matthijs G, Schollen E, Pardon E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet. 1997; 16:88–92. Erratum in Nat Genet 1997; 16: 316. [PubMed: 9140401]
- Ramaekers VT, Stibler H, Kint J, Jaeken J. A new variant of the carbohydrate deficient glycoproteins syndrome. J Inherit Metab Dis. 1991; 14:385–388. [PubMed: 1770799]
- Jaeken J, Schachter H, Carchon H, De Cock P, Coddeville B, Spik G. Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised Nacetylglucosaminyltransferase II. Arch Dis Child. 1994; 71:123–127. [PubMed: 7944531]
- Zeevaert R, Foulquier F, Jaeken J, Matthijs G. Deficiencies in subunits of the conserved oligometric Golgi complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab. 2008; 93:15–21. [PubMed: 17904886]
- Kornak U, Reynders E, Dimopoulou A, et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H⁺-ATPase subunit ATP6V0A2. Nat Genet. 2008; 40:32–34. [PubMed: 18157129]
- De Praeter CM, Gerwig GJ, Bause E, et al. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet. 2000; 66:1744– 1756. [PubMed: 10788335]
- 12. Jaeken J, Hennet T, Freeze H, Matthijs G. On the nomenclature of Congenital Disorders of Glycosylation (CDG). J Inherit Metab Dis. 2008; 31:669–672. [PubMed: 18949576]

Table 1

Proposed nomenclature for CDG (nomenclature to be superseded is included in italics and enclosed in parenthesis).^a

Disease name	Defective protein	ОМІМ
A. Defects in protein N-glycosylation	•	
PMM2-CDG (CDG-Ia)	Phosphomannomutase 2	601785
MPI -CDG (CDG-lb)	Phosphomannose isomerase	602579
ALG6-CDG (CDG-Ic)	Dol-P-Glc: Man ₉ -GlcNAc ₂ -P-P-Dol glucosyltransferase (glucosyltransferase 1)	603147
ALG3-CDG (CDG-Id)	Dol-P-Man: Man ₅ -GlcNAc ₂ -P-P-Dol mannosyltransferase (mannosyltransferase 6)	601110
ALG12-CDG (CDG-Ig)	Dol-P-Man: Man ₇ -GlcNAc ₂ -P-P-Dol mannosyltransferase (mannosyltransferase 8)	607143
ALG8-CDG (CDG-Ih)	Dol-P-Glc: Glc ₁ -Man ₉ -GlcNAc ₂ -P-P-Dol glucosyltransferase (glucosyltransferase 2)	608104
ALG2-CDG (CDG-Ii)	GDP-Man: Man ₁ -GlcNAc ₂ -P-P-Dol mannosyltransferase (mannosyltransferase 2)	607906
DPAGT1-CDG (CDG lj)	UDP-GlcNAc: Dol-P-GlcNAc-P transferase	608093
ALG1-CDG (CDG-Ik)	GDP-Man: GlcNAc ₂ -P-P-Dol mannosyltransferase (mannosyltransferase 1)	608540
ALG9-CDG (CDG-Il)	Dol-P-Man: Man ₆ -and Man ₈ -GlcNA ₂ -P-P-Dol mannosyltransferase (mannosyltransferase 7-9)	608776
RFT1-CDG (CDG-In)	Flippase of Man ₅ GlcNAc ₂ -PP-Dol	611633
MGAT2-CDG (CDG-IIa)	N-acetylglucosaminyltransferase 2	602616
GCS1-CDG (CDG-IIb)	Glucosidase 1	606056
TUSC3-CDG	Oligosaccharyltransferase subunit	601385
MGAT1-CDG	Oligosaccharyltransferase subunit	300716
B. Defects in protein O-glycosylation	•	•
*O-xylosylglycan synthesis		
• EXT1/EXT2-CDG (multiple cartilaginous exostoses)	Glucuronyltransferase/N-acetylglucosaminyltransferase	608177/608210
• B4GALT7-CDG	β-1, 4-galactosyltransferase 7	604327
*O-N-acetylgalactosaminylglycan synthesis		
•GALNT3-CDG (familial tumoral calcinosis)	Polypeptide N-acetylgalactosaminyltransferase 3	601756
$*O\-xylosyl/N\-acetylgalactosaminylglycan synthesis$		
•SLC35D1-CDG (Schneckenbecken dysplasia)	Solute carrier family 35 (UDP-glucuronic acid/UDP- <i>N</i> -acetylgalactosamine dual transporter), member D1	610804
*O-mannosylglycan synthesis		
•POMT1/POMT2-CDG (cong. Muscular dystrophy spectrum)	O-mannosyltransferase 1	607423
•POMGNT1-CDG (cong. Muscular dystrophy spectrum)	<i>O</i> -mannose β-1, 2- <i>N</i> -acetylglucosaminyltransferase	606822
•FKTN-CDG (cong. muscular dystrophy spectrum)	Fukutin	607440
•FKRP-CDG (cong. muscular dystrophy spectrum)	Fukutin-related protein	606596
•LARGE-CDG (cong. muscular dystrophy spectrum)	N-acetylglucosaminyltransferase-like protein	603590

Biochim Biophys Acta. Author manuscript; available in PMC 2014 February 07.

Disease name	Defective protein	OMIM
*O-fucosylglycan synthesis		
•LFNG-CDG (spondylocostal dysostosis type 3)	O-fucose-specific β-1, 3-N-acetylglucosaminyltransferase	602576
•B3GALTL-CDG (Peters plus syndrome)	O-fucose-specific β-1, 3-glucosyltransferase	610308
C. Defects in glycosphingolipid and glycosylphosphatidyli	nositol anchor glycosylation	
ST3GAL5-CDG (Amish infantile epilepsy)	Lactosylceramide α-2, 3 sialyltransferase (GM3 synthase)	609056
PIGM-CDG (glycosylphosphatidylinositol deficiency)	Phosphatidylinositolglycan, class M	610273
D. Defects in multiple glycosylation and other pathways		•
DPM1-CDG (CDG-Ie)	GDP-Man: Dol-P-mannosyltransferase (Dol-P-Man synthase 1)	603503
MPDU1-CDG (CDG-If)	Lec35 (Man-P-Dol utilization 1)	608799
B4GALT1-CDG (CDG-IId)	β-1, 4-galactosyltransferase 1	607091
GNE-CDG (hereditary inclusion body myopathy)	UDP-GlcNAc epimerase/kinase	600737
SLC35A1-CDG (CDG-IIf) (CMP-sialic acid transporter deficiency)	CMP-sialic acid transporter	605634
SLC35C1-CDG (<i>CDG-IIc</i>) (GDP-fucose transporter deficiency)	GDP-fucose transporter	605881
*Dolichol pathway -DK1-CDG (CDG-Im)	Dolichol kinase	610768
*COG ^b complex		
•COG7-CDG (<i>CDG-IIe</i>)	Component of conserved oligomeric Golgi complex 7	606978
•COG1-CDG (<i>CDG-IIg</i>)	Component of conserved oligomeric Golgi complex 1	606973
•COG8-CDG	Component of conserved oligomeric Golgi complex 8	606979
•COG4-CDG	Component of conserved oligomeric Golgi complex 4	606976
•COG5-CDG	Component of conserved oligomeric Golgi complex 5	606821
*V-ATP _{ase}		
•ATP6VOA2-CDG (cutis laxa type II)	V0 subunit A2 of vesicular H(+)-ATPase	611716
•SEC23B-CDG (CDAII)	COPII component SEC23B	610512

^aAdapted from [12].

^bConserved oligomeric Golgi.