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Increasing evidence shows that spermatogenesis is costly. As a consequence,

males should optimize the use of their sperm to maximize their reproductive

outputs in their lifetime. However, experimental evidence on this prediction

is largely lacking. Here, we examine how a male moth Ephestia kuehniella
Zeller (Lepidoptera: Pyralidae) responds to the presence of rivals or

additional mates and how such response influences his lifetime reproductive

fitness. We show that when rival males are present around a copulating pair,

the male ejaculates more sperm to win a sperm competition battle but in

such an environment he inseminates fewer females, sires fewer offspring

and lives shorter. The opposite is the case when additional females are pres-

ent during copulation. These findings reveal that elevated reproductive

expenditure owing to sperm competition intensity is made at the expense

of longevity and future reproduction.
1. Introduction
In many insect species, a female obtains more than sufficient sperm from a

single mating to fertilize her full egg load [1,2]. However, the majority of

females copulate multiply [3]. Males of many insect [2] and non-insect species

[4] including humans [5] have evolved strategies to adjust ejaculate investment

in response to sperm competition because spermatogenesis is costly. In the

natural environment, sex ratio is temporally and spatially dynamic [6], which

may provide information about the risk and intensity of sperm competition

at a given time and space [7]. Theoretically [7], males should save sperm for

future copulations when additional mates are present and ejaculate more

sperm when rivals are present. Increasingly empirical studies [8–12] appear

to support this hypothesis.

Recently, two independent studies on Drosophila species [13,14] show that

males increase sperm allocation after perceiving or experiencing the presence

of other males. Price et al. [13] also indicate that males exposed to rivals achieve

higher offspring production. However, these studies have only assessed males

for one copulation rather than for their lifetime reproductive fitness. So far,

whether and how the above mentioned sperm allocation strategy benefits

males in their lifetime reproductive outputs is still poorly understood.

Empirical studies reveal that elevated reproductive expenditure is associ-

ated with accelerated ageing and reduced lifespan [15]. For example, male

investment in reproduction may be made at the expense of longevity and

future reproduction [16,17]. Therefore, the increased reproductive expenditure

on ejaculate in response to high intensity of sperm competition should acceler-

ate ageing and reduce longevity in males [17]. However, experimental evidence

for this hypothesis is still largely lacking.

In the lifespan of our study species, the Mediterranean flour moth (Ephestia
kuehniella Zeller), males can copulate with up to nine different females, and
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Figure 1. Mean (+s.e.) number of apyrene and eupyrene sperm ejaculated by male E. kuehniella under different mating conditions. For each parameter, bars with
different letters are significantly different ( p , 0.05).
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females can copulate up to four times despite the fact that

from a single copulation they receive more than enough

sperm to fertilize their full egg load [2].

On the basis of the theoretical framework and empirical

findings outlined above, we hypothesize that in E. kuehniella:

(i) a male ejaculates more sperm when rivals are present but

fewer sperm when additional mates are present, (ii) the

increased ejaculate expenditure shortens his longevity and

reduces the number of offspring he can sire in his lifespan

and (iii) the reduced ejaculate expenditure allows him to inse-

minate more females and sire more offspring in his lifespan.

This is the first study that tests male reproductive fitness in

both individual and lifetime mating scenarios in response

to sperm competition intensity.
2. Material and methods
(a) Insects
Ephestia kuehniella larvae were reared on a standard diet [2] (see

electronic supplementary material). Mature pupae were weighed

and kept individually in glass tubes until adult emergence to

ensure virginity and age. Adults were not given food or water

as they do not feed [18]. The insect colony was kept and all

experiments were carried out at 25+18C, 70+ 10% RH and

under a 14 L : 10 D photoperiod regime.

Pupal weight was considered adult body weight in this study

(see electronic supplementary material). Unless stated otherwise,

all adults used in this study were 1-day-old virgin moths with aver-

age body weight [2]. Copulations occurred during the scotophase

in plastic cylinders (8 cm diameter � 10 cm height). Illumination

during observation was provided by a 30 W red light. The plastic

cylinders were lined with porous plastic sheets for oviposition.
(b) Ejaculate expenditure in the presence of rivals or
additional mates

To determine whether the presence of rivals or additional mates

affected the number of sperm a male ejaculated in a given copu-

lation, we set up three treatments. (i) The copulation occurred in
the presence of rivals, where we released three male rivals to the

cylinder immediately after the copulation had commenced in

the previously released pair (RM). (ii) The copulation occurred

in the presence of additional mates, where we released three

females to the cylinder immediately after the copulation had

commenced in the previously released pair (AF). (iii) Negative

control where neither rivals nor additional mates were released

to the copulating pair (NC). We dissected the copulated female

under a stereo microscope (Olympus SZ III, Japan) immediately

after the copulation ended, and counted sperm she received

using the methods outlined in Cook & Wedell [19]. Thirty

replicates were performed in each treatment (see electronic

supplementary material).

(c) Effect of ejaculate expenditure on male longevity
and lifetime reproductive success

To test whether the presence of rivals or additional mates during

all copulations a male had affected his longevity and the total

number of offspring he sired, we set up three treatments as the

above experiment (RM, AF and NC). For all treatments, we

offered a 1-day-old virgin female to the male for copulation

each day until he died. The rivals and additional mates were

removed after copulation.

We then individually caged all copulated females for their life-

span in the above mentioned plastic cylinders immediately after

copulation. We collected eggs daily and incubated them in Petri

dishes (8.5� 1.5 cm). We recorded the total number of eggs

(fecundity) and fertilized eggs (fertility) a female laid in her life-

time. Those with black dots (larval heads) after 3 days of

incubation were recorded as fertilized [20]. For each treatment, we

also recorded the male longevity and number of copulations.

Fifteen replicates were performed in RM and AF, and 20 in NC.

(d) Statistical analysis
A goodness-of-fit test was performed to test the data distribution.

Data for the number of sperm ejaculated in the first experiment

were analysed using ANOVA and those for other parameters

in the second experiment analysed by MANOVA. All analyses

were done using SAS9.1. Rejection level was set at a , 0.05.

Unless stated otherwise, all values reported here are means+ s.e.
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Figure 2. Mean (+s.e.) male longevity, number of lifetime copulations and number of eggs sired by males under different mating conditions. For each parameter,
bars with different letters are significantly different ( p , 0.05).

rsbl.royalsocietypublishing.org
Biol.Lett.10:20131031

3

3. Results
Males transferred significantly more eupyrene sperm (ANOVA:

F1,84¼ 6.86, p ¼ 0.002) to females in the order of RM . NC .

AF (figure 1). Males in both RM and NC transferred signifi-

cantly more apyrene sperm than in AF (ANOVA: F1,83¼ 4.42,

p ¼ 0.015) (figure 1). The number of apyrene sperm transferred

was lower in NC than in RM but the difference between the

two treatments was not significant ( p . 0.05).

Males in RM lived significantly shorter, inseminated sig-

nificantly fewer females and sired significantly fewer

offspring in their lifespan than in AF and NC (MANOVA:

F6,92 ¼ 7.03, p , 0.0001 for overall dependent variables,

F1,47 ¼ 17.6, p , 0.0001 for longevity, F1,47 ¼ 7.49, p ¼ 0.002

for number of copulations and F1,47 ¼ 6.62, p ¼ 0.003 for

number of offspring sired, figure 2).
4. Discussion
This study shows that males in RM ejaculated more sperm

than in AF (figure 1), supporting the theoretical predictions

[7,10,11,21] that males can adjust ejaculate size in response

to sperm competition intensity and opportunities for further

copulations. In particular, our results resemble those of two

recent studies on Drosophila species where Price et al. [13]

and Garbaczewska et al. [14] show that males increased

sperm allocation after perceiving or experiencing the presence

of other males. This phenomenon may be attributed to

the theoretical predictions and experimental findings that the

paternity is determined by the relative number of competing

sperm in females from different males [8].

Price et al. [13] indicate that the increased sperm allocation

made by males exposed to rivals resulted in more offspring to

be sired, and that such sperm allocation increase only

involved fertilizing sperm with no change in non-fertilizing
sperm. Therefore, Price et al. [13] suggest that the evolution

of non-fertilizing sperm in flies may not be driven by

sperm competition. However, our previous and current

studies do not support the notion proposed by Price et al.
[13] because in E. kuehniella (i) the increased allocation of

sperm did not increase female fecundity and fertility [2],

and (ii) both fertilizing and non-fertilizing sperm increased

proportionally with the increase of sperm competition inten-

sity (figure 1). We suggest that the symmetrical increase of

non-fertilizing sperm may benefit males by reducing sperm

competition intensity because non-fertilizing sperm may

delay female remating [22].

Our results demonstrate that males in RM lived shorter,

inseminated fewer females and sired fewer offspring in

their lifetime than those in AF and NC (figure 2). This

phenomenon may be attributed to the elevated reproductive

expenditure [15] or physical stress caused by male rivals via

interfering with the mating pairs. However, unlike many

other insect orders lepidopteran adults are not aggressive

[23]. In our study, both rivals and additional mates interacted

with the mating pair by fanning wings around or antennal

contact with the pair but these interactions were very brief

(less than 3 min) compared with copulation duration of

about 2 h [24] and mainly occurred at the beginning of intro-

duction. We thus suggest that in response to high sperm

competition intensity elevated reproductive expenditure

rather than physical conflict plays the key role in the reduced

lifetime reproductive fitness.
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