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Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca2þ-activated chlor-

ide channel and a member of a large protein family comprising 10 paralogues.

Before Ano1 was identified as a chloride channel protein, it was known as the

cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal

tumours (GIST) and particularly in head and neck squamous cell carcinoma,

at very high levels never detected in other tissues. It is now emerging that

Ano1 is part of the 11q13 locus, amplified in several types of tumour,

where it is thought to augment cell proliferation, cell migration and metastasis.

Notably, Ano1 is upregulated through histone deacetylase (HDAC), corre-

sponding to the known role of HDAC in HNSCC. As Ano1 does not

enhance proliferation in every cell type, its function is perhaps modulated

by cell-specific factors, or by the abundance of other anoctamins. Thus

Ano6, by regulating Ca2þ-induced membrane phospholipid scrambling and

annexin V binding, supports cellular apoptosis rather than proliferation.

Current findings implicate other cellular functions of anoctamins, apart from

their role as Ca2þ-activated Cl2 channels.
1. Introduction
Anoctamin 1 (Ano1, TMEM16A) is a novel Ca2þ-activated chloride channel

(CaCC) with important physiological functions in epithelial cells and other cell

types [1–4]. It was also shown to be activated during cell swelling, probably sec-

ondary to an increase in intracellular Ca2þ [5]. While some detected a role of Ca2þ-

dependent anoctamins, such as Ano1 or Ano6, to volume regulation, others did

not [5,6]. Upregulation of endogenous Ca2þ-activated Cl2 channels in proliferat-

ing cells has been observed recently, but the role of these channels for

proliferation has remained unclear [7,8]. Before Ano1 was identified as CaCC, it

was already known as a protein that is coexpressed with the morphogen sonic

hedgehog during embryonic development [9]. Ano1 was also known as DOG1,

a protein strongly expressed in gastrointestinal stromal tumours and head and

neck squamous cell carcinoma (HNSCC). Expression of DOG1 correlates with

poor outcome in oesophageal squamous cell cancer [10–12]. Interstitial cells of

Cajal (ICC) are another predominant site for Ano1 expression [13–15]. It has

been reported that mice lacking Ano1 had fewer proliferating ICC [16]. Moreover,

additional data suggested that Ano1 regulates proliferation at the G1/S transition

of the cell cycle. Assuming such a pro-proliferative role, targeting of Ano1 has been

proposed as a novel method for the treatment of malignant tumours [7,17,18].
2. Ano1 is located on the 11q13 amplicon
The coding sequence of Ano1 is located within the 11q13 region, a chromosomal

locus that is frequently amplified in a number of different human cancers, such as

urinary bladder cancer, breast cancer and HNSCC [19]. The 11q13 amplicon
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Figure 1. Ano1 controls proliferation: (a) Cell proliferation measured online by impedance-based xCELLigence proliferation assay system in HNSCC (BHY, CAL33) and
colonic epithelial (HT29) cells (see electronic supplementary material). siRNA-knockdown of Ano1 expression reduced proliferation in both BHY and CAL33 cells, but
slightly augmented proliferation in HT29 cells. Staurosporine (1 mg ml21) strongly inhibited proliferation. (b) Attachment of BHY, CAL33 and H29 cells after seeding
in xCELLigence chambers (see electronic supplementary material). (c) Migration of BHY, CAL33 and H29 cells after seeding in the xCELLigence migration chamber
(see electronic supplementary material). (d ) Summary of the rate of cell migration between 10 and 30 h after seeding and inhibition of migration by TA(10 mM).
(e) Migration of CAL33 cells and effect of fetal calf serum and TA. Mean+ s.e.m. (number of cells). Symbol # denotes significant difference when compared with
BHY and serum free, respectively ( p , 0.05; ANOVA). Asterisks (*) denote significant inhibition by TA ( p , 0.05; paired t-test). (Online version in colour.)
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contains a stretch of proteins related to cell cycle, proliferation

and apoptosis (cyclin D1, ORAOV1, FGF19, FGF4, TMEM16A,

Fas-associated via death domain, PPFIA1, cortactin) [20]. The

complex structure of this amplicon has mostly been studied

in breast cancer, where multiple genes have been suggested

as driver genes [21,22]. These findings implied a link between

Ano1 expression, cell-cycle regulation and proliferation, which

has recently been demonstrated in HNSCC and other cancer

cells [11,16,23–25]. Surprisingly, downregulation of Ano1 con-

tributes to cerebrovascular remodelling by promoting basilar
smooth muscle cell proliferation, which is through inhibition

of expression of cyclin D1 and cyclin E [26]. We performed

additional experiments and compared proliferation of two

HNSCC (CAL33, BHY) and one colonic epithelial cell line

(HT29) using an online impedance-based xCELLigence pro-

liferation assay system [27] (figure 1a). Proliferation was

clearly higher in the HNSCC cell lines (cf. scale), which express

much higher levels of Ano1, when compared with HT29 cells

(cf. western blot, figure 3a) [27]. In a previous study, we did

not detect inhibition of proliferation of BHY cells by siRNA
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Figure 2. Anoctamins facilitate cell volume decrease and support diapedesis
and cell migration: model for diapedesis and migration of a tumour cell
expressing anoctamin Cl2 channels, which allow Cl2 release and osmotic
cell shrinkage. Ano1 is regulated by actin and possibly by a number of pro-
teins related to signalling/scaffolding, such as ezrin, radixin, moesin and
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[27]. Using improved Stealth siRNA (cf. electronic supplemen-

tary material), these experiments were repeated. Proliferation

was suppressed by siRNA-knockdown of Ano1 expression in

HNSCC but not in HT29 cells. These results suggest that very

effective suppression of Ano1 expression is necessary to elimin-

ate the pro-proliferative effects of Ano1, suggesting that low

expression of Ano1 is sufficient to induce this effect. While

siRNA had no effect in HT29 cells, 1 mM staurosporine

(figure 1a black arrow, dashed lines) inhibited proliferation

and induced cell apoptosis in colonic carcinoma cells, as demon-

strated in an earlier publication [28]. Thus, enhanced expression

of Ano1 does not seem to enhance proliferation in every cell type

[27,29]. However, there is increasing consent that high levels of

Ano1 lead to enhanced cell motility, distal metastasis and poor

prognosis [23,24,27,29]. Also in this study, cell attachment and

migration was enhanced with increasing expression of Ano1

(BHY . CAL33 . HT29). It is further demonstrated that

migration could be significantly inhibited by tannic acid, a

blocker of Ano1 and other anoctamins (figure 1c,d). Moreover,

migration was strongly dependent on the presence of serum

in the migration chamber and was inhibited by the Ano1 inhibi-

tor tannic acid (TA, figure 1e). Although proliferation,

attachment and migration were positively correlated with

expression of Ano1, this does not prove that Ano1 is directly

responsible for the change of these properties.
S100A11, twinfilin and catenin. (Online version in colour.)
3. Role of Ano1 for metastasis
How does Ano1 control the ability of tumour cells to migrate

and form distal metastasis? The relationship between ion

channel currents, cell volume regulation, migration and metas-

tasis is well established [30–33]. Previous findings indicate that

Ano1 is activated during hypotonic cell swelling and contrib-

utes to regulatory volume decrease (RVD), which certainly

requires a rise in intracellular Ca2þ [5,27,34]. A rise in intra-

cellular Ca2þ may activate Ano1 together with Kþ channels to

release intracellular Kþ and Cl2 ions. Resulting osmotic loss of

intracellular water will cause rapid cell shrinkage and allow pas-

sage through narrow gaps like those formed by endothelial cells

[33,35] (figure 2). Ca2þ-dependent activation of Ano1 would

support cell shrinkage at the rear end of migrating cells, thereby

further reducing cell volume and facilitating diapedesis.

Inhibition of Cl2 channels impedes cell volume changes and

thereby compromises tumour cell invasion. This has been

demonstrated for Ano1 [27] as well as other Cl2 channels [33].

Importantly, cell migration requires constant depolymerization

and repolymerization of the actin cytoskeleton, which per-

manently changes cell-matrix adhesions [36,37]. Our earlier

findings suggested that Ano1 Cl2 currents are controlled by

the actin cytoskeleton [38]. This was supported by a subsequent

report indicating that Ano1 associates with the signalling/scaf-

folding proteins ezrin, radixin, moesin and RhoA, which are

known to connect plasma membrane proteins to the cytoskele-

ton [39]. Moreover, results from a two hybrid split ubiquitin

screening suggested interaction of Ano1 with a number of

proteins related to cell attachment and migration, such as

zyxin, fibulin 1, S100A11, twinfilin and catenin (unpublished

results from the Kunzelmann laboratory, K. Kunzelman

2012, figure 2).

It was shown that members of the Rho GTPase family exert

effects on cell shape and motility by regulating actin cytoskele-

ton; the activation of Rac1 organizes cortical actin cytoskeleton
and promotes formation of lamellipodia at the leading edge, a

hallmark of a motile cell, while the activation of RhoA at the

rear influences acto-myosin complexes to allow retraction of

the trailing end. Spatial and temporal regulation of the activity

at each end create an unequal distribution of membranous,

cytoskeletal and cytoplasmic contents to induce a highly polar-

ized, motile shape that is suitable for movement and metastasis

[32]. Thus, the presence of Ano1 at the plasma membrane, its

ability to regulate cell shape and volume, and its connections

to cytoplasmic/cytoskeletal elements is likely to contribute to

cell movement and metastasis.
4. Regulation of expression of Ano1 by histone
deacetylase and clinical implications

Recruitment of histone acetyltransferases and histone deacety-

lases (HDACs) is a key element in the dynamic regulation of

genes controlling cellular proliferation and differentiation

during normal development as well as carcinogenesis [40,41].

A number of anti-cancer treatments are based on the inhibi-

tion of HDAC. HDAC inhibitors promote expression of p21 in

breast cancer cells, which inhibits the action of cyclin D1.

HDAC inhibitors may therefore also be useful for the treatment

of those HNSCC that show overexpression of Ano1 and conco-

mitant activation of cyclin D1 [23]. In fact, HDAC inhibitors

have already entered preclinical evaluation [42,43]. In recent

experiments, we found that pronounced expression of Ano1

in the HNSCC cell line BHY was largely inhibited by treat-

ment with the HDCA inhibitors valproic acid or butyric acid,

along with inhibition of cell survival and Ano1-dependent

whole cell currents (figure 3a–f). Although this does not

prove that HDAC inhibitors act through downregulation of

Ano1, these novel results again demonstrate a correlation
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Figure 3. HDAC regulates expression of Ano1: (a,b) western blots and densitometric analysis indicating expression of Ano1 in HT29 colonic epithelial and BHY HNSCC
cells, and inhibition by HDAC inhibitors valproic acid (3 mM) and butyrate (4 mM). ß-actin was used as a loading control. (c) Real-time PCR analysis of Ano1-mRNA
expression in HT29 and BHY cells. (d,e) Induction of apoptosis and inhibition of proliferation of BHY cells by valproic acid and butyric acid, as measured by apoptosis
assays (see electronic supplementary material) and cell counting. ( f ) Whole cell Ano1 Cl2 currents (Vc ¼ þ100 mV) activated by an increase in intracellular Ca2þ

owing to stimulation with the purinergic agonist ATP (100 mM). (g) Expression of Ano1 in human HNSCC samples and normal tissue as measured by immuno-
histochemistry (cf. electronic supplementary material). (h) Inhibition of proliferation of UM-SCC cancer cells by various concentrations of TSA. Mean+ s.e.m.
(number of cells). Symbol # denotes significant difference when compared with control, normal tissue, HT29 cells or absence of HDAC inhibitors, respectively
( p , 0.05; unpaired t-test).
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between Ano1 expression and proliferation. Corresponding to

the data discussed in figure 1, which did not identify a role

Ano1 expression for proliferation of HT29 colonic epithelial

cells, expression levels for Ano1 were much lower and were

not affected by HDCA inhibitors. As pointed out, expression

levels for Ano1 are much higher in HNSCC compared with

normal tissues (figure 3g). We also found a dose-dependent

inhibition of proliferation of another HNSCC cell line, UM-

SCC cancer cells, by a third type of HDAC-inhibitor, trichostatin

(TSA) (figure 3h). UM-SCC cells contain amplification of the

Ano1 gene locus similar to BHY cells. The results confirm that

the inhibitory effect of HDAC inhibitors on Ano1 expression

is independent of the HNSCC cell line used. While valproic

acid and butyric acid are rather broad, non-selective inhibitors

of HDAC, TSA selectively suppresses class I/II, suggesting

that Ano1 expression is regulated by these HDACs. Although

the mechanisms by which TSA promotes loss of cell survi-

val/growth in these cells is incompletely understood, the

present results support the use of HDAC inhibitors for the
treatment of HNSCC, which may act in part through inhibition

of Ano1 expression.
5. Ano1 and sonic hedgehog
Interesting links exist between Ano1 and the sonic hedgehog

(Hh) signalling pathway. Hh is coexpressed with Ano1 in

the zone of polarizing activity in mouse limb buds during

E10.5 and E11.5 [44]. Hh signalling controls many aspects of

development and also regulates cell growth and differentia-

tion in adult tissues. It is activated in a number of human

malignancies. Hh and Wnt signalling frequently act together

in controlling cell growth and tissue morphogenesis. Hh is also

active in ‘embryonic cancers’ such as basal cell carcinoma of

the skin, stromal cancer [45,46] and also during epithelial to

mesenchymal transition. Hh expression has been shown to be

upregulated in the neoplastic or inflammatory intestine when

stem cells compensate for epithelial damage, while suppression
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of hedgehog signalling by cyclopamine has been shown to

induce apoptosis [47,48]. It will be interesting to learn more

about the correlations between Hh signalling, Ano1 expression

and cancer.
6. Ano1 required for terminal differentiation?
In cell types others than GIST, Ano1 has been reported to be

inhibitory on cell proliferation and expression of Ano1 was

related to cellular differentiation [26,49]. These somewhat

surprising results were supported by our own results indi-

cating inhibition of cell proliferation by Ano1 in colonic

epithelial cells (figure 1a). Interestingly, one study identified

Ano1 by expression cloning in oocytes from axolotl, a sala-

mander that does not undergo terminal differentiation and

metamorphosis, and therefore maintains an amazing ability

to regenerate limbs and other parts of the body [4]. Terminal

differentiation is missing in these animals because of a com-

plete lack of thyroid hormones. Maybe more than a

coincidence, plasma thyronine levels were found to be abnor-

mally low in patients with advanced colon carcinoma [50]. It

might be worth examining whether expression of Ano1 is

regulated by these hormones.

We found evidence for regulation of Ano1 expression by

the tumour suppressor adenomatosis polyposis coli (APC) in

mouse colon. Ano1 is expressed in mouse ileum, proximal

and particularly distal colon, but its expression is largely

attenuated in APCmin/þ mice. APCmin/þ mice demonstrate

reduced tumour suppressive activity by APC, resulting in

upregulation of mTOR, thus leading to numerous large intesti-

nal polyps and ultimately cancer (figure 4a,b) [51]. APCmin/þ

mice develop particularly large polyps in the distal colon,
where we detected a pronounced decrease in Ano1 expression.

Notably, the mTOR-inhibitor rapamycin increased Ano1

expression in both proximal and distal colon (figure 4d). This

inverse correlation between low Ano1 levels and upregulation

of mTOR [51] suggests that Ano1 may be inhibitory on prolifer-

ation of mouse intestinal epithelial cells, similar to HT29 cells.

Interestingly, a fast growing subclone of T84 colonic epithelial

cells (T84 fast) is lacking expression of Ano1, when compa-

red with the slowly growing parental cells (T84 slow) [28]

(figure 5a,b). Notably, treatment of fast growing T84 cells with

the mTOR-inhibitor rapamycin reduced proliferation and

induced expression of Ano1 (figure 5c,d). These data support

the concept that effects of Ano1 on cell survival are cell-type

dependent [26,29].
7. Other anoctamins correlated to cancer
Apart from Ano1 and Ano2, much less information is available

for other anoctamins. Although a deeper understanding is

currently lacking, it should be mentioned that various anocta-

mins have a role during murine embryogenesis [9]. Ano7

(TMEM17G, NGEP) has been detected in prostate cancer

[52,53]. Studies indicate that the long version of NGEP is pre-

sent on the plasma membrane of overexpressing LNCaP cells

and is highly concentrated at cell–cell contact regions [53].

A splice form of Ano6 was identified that was associated

with metastatic capability of mammary cancers in mouse and

was related to poor prognosis of patients with breast cancer

[54]. Notably, Ano6 has recently been associated with mem-

brane phospholipid scrambling and cell shrinkage and

therefore seems to be correlated to apoptosis rather than

proliferation and cancer [55–59].
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8. Role of Ano6 in phospholipid scrambling
and apoptosis

The distribution of lipids in the outer and inner leaflets of plasma

membranes is asymmetrical: while phosphatidylcholine is

mainly found in the outer leaflet, phosphatidylserine is present

in the inner surface. During signalling events such as activation

of platelets or cellular apoptosis, the distribution is rapidly

altered leading to exposure of phosphatidylserine at the outer

surface. A lipid transporter with phospholipid scrambling

activity was proposed to be responsible for this process;

however, a convincing candidate protein with such ability was

not identified until recently. Surprisingly, a member of the

TMEM16 family, TMEM16F (Ano6) was shown to contain phos-

pholipid scrambling activity, when activated by a large increase

in intracellular Ca2þ [58]. Moreover, reconstitution experiments

in Ano6-deficient thymocytes suggested that other anoctamins

such as Ano3, Ano4, Ano7 and Ano9 retain the ability to

function as calcium-dependent phospholipid scramblase [60].

These results came as a surprise, since Ano6 has been

characterized as a Ca2þ-activated Cl2 channel. Moreover,

Ca2þ-activated Cl2 currents were also observed after over-

expression of Ano4, 7 and 9 [6,55,56,61,62]. However, Cl2

channel and scramblase activity were shown to be independent

[55]. Moreover, we demonstrated recently that Ano6 is acti-

vated during cell swelling and by pro-apoptotic stimuli and

therefore contributes to both RVD as well as apoptotic

volume decrease [5,55,56]. Notably, the amplicon 11q13 that
contains the Ano1 gene, not only carries genes that control pro-

liferation but also FADD, a gene associated with apoptosis.

Thus, anoctamins can also be regarded as a novel family of

regulators of cell proliferation and apoptosis, which may be

of particular relevance during development, activation of

immune cells such as lymphocytes, dendritic cells [63] and

macrophages, and in particular types of cancer.
9. Conclusion
Functional analysis of Ano1 and the other members of the

anoctamin family have just begun. These proteins were recog-

nized initially as cancer-associated proteins and are now

discussed in the context of ion conductance, volume regulation

and phospholipid scrambling. Because ion movement, RVD,

lipid scrambling and migration are related and are dysfunc-

tional in cancer and metastasis, anoctamins have great

potential as therapeutic drugs. Thus, it will be exciting to ana-

lyse how inhibitors of anoctamins affect cancer progression,

metastasis and the prognosis particularly of patients with

head and neck cancer.
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