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Cancer involves defects in the mechanisms underlying cell proliferation,

death and migration. Calcium ions are central to these phenomena, serving

as major signalling agents with spatial localization, magnitude and temporal

characteristics of calcium signals ultimately determining cell’s fate. Cellular

Ca2þ signalling is determined by the concerted action of a molecular Ca2þ-

handling toolkit which includes: active energy-dependent Ca2þ transporters,

Ca2þ-permeable ion channels, Ca2þ-binding and storage proteins, Ca2þ-

dependent effectors. In cancer, because of mutations, aberrant expression,

regulation and/or subcellular targeting of Ca2þ-handling/transport pro-

tein(s) normal relationships among extracellular, cytosolic, endoplasmic

reticulum and mitochondrial Ca2þ concentrations or spatio-temporal patterns

of Ca2þ signalling become distorted. This causes deregulation of Ca2þ-

dependent effectors that control signalling pathways determining cell’s

behaviour in a way to promote pathophysiological cancer hallmarks such

as enhanced proliferation, survival and invasion. Despite the progress in

our understanding of Ca2þ homeostasis remodelling in cancer cells as well

as in identification of the key Ca2þ-transport molecules promoting certain

malignant phenotypes, there is still a lot of work to be done to transform fun-

damental findings and concepts into new Ca2þ transport-targeting tools for

cancer diagnosis and treatment.
1. Introduction
Ca2þ signalling is imperative for normal cellular behaviour. In non-excitable tis-

sues, it is required for supporting specific cellular function, such as sensation,

secretion, absorption, transcellular transport, as well as for maintaining stable

tissue homeostasis characterized by balanced cell proliferation, cell death, cell

motility, oxygen and nutrient supply. During carcinogenesis, Ca2þ signalling

of some malignant cells is significantly remodelled in a way that compromises

normal physiological functions at the same time enabling them to overwhelm

normal cells by giving them unconditional advantages for uncontrolled multi-

plication, evasion of programmed cell death, adaptation to oxygen and

nutrients sparse conditions, invasion and spreading beyond the primary

tumour site. It would probably be an overstatement to assert that remodelling

of Ca2þ signalling is the prime reason for such transformation in cell’s behav-

iour; it is rather a consequence of dynamic changes in the genome, the

influence of epigenetic, environmental factors or adaptive responses that pro-

voke cancer. Nevertheless, as malignant remodelling of Ca2þ signalling helps

to sustain cancer hallmarks, learning its intimate mechanisms and identifying

the molecular players involved poses an opportunity for therapeutic halting

the progression of certain hallmarks or even reversing them.
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Cellular Ca2þ signalling takes a variety of forms in space

and time. It is based on Ca2þ circulation among four primary

compartments: extracellular space, cytoplasm, endoplasmic

reticulum (ER, including Golgi) and mitochondria, and

involves numerous Ca2þ-handling and Ca2þ-sensing proteins

specific for each compartment that provide for: (i) active

energy-dependent Ca2þ transport between the compartments

against a concentration gradient (Ca2þ pumps and coupled

exchangers), (ii) passive Ca2þ streaming down a concentration

gradient (Ca2þ-permeable ion channels), (iii) Ca2þ storage

(Ca2þ-binding proteins), (iv) activation of downstream targets

(Ca2þ-dependent effectors). Tightly controlled combined

action of the proteins participating in Ca2þ-handling and

formation of local Ca2þ-regulated signalling complexes enables

Ca2þ signals coding in space and time for effective regulation of

the processes as diverse as life and death [1].

Not only dynamic and spatially non-homogeneous changes

of Ca2þ concentration in various compartments have signalling

significance, but steady-state content of Ca2þ in the cytoplasm

([Ca2þ]C), in the ER lumen ([Ca2þ]ER), in mitochondrial matrix

([Ca2þ]M) also impact a cell’s fate. Indeed, sustained elevation

of [Ca2þ]C in the form of overload, saturating all Ca2þ-depen-

dent effectors, prolonged decrease in [Ca2þ]ER, causing ER

stress response, and high [Ca2þ]M, inducing mitochondrial per-

meability transition (MPT), are considered to be pro-death

factors [2–5]. At the same time such features of calcium homeo-

stasis as (1) moderate to low basal [Ca2þ]C on which background

cytosolic calcium oscillations, waves, sparks, spikes, flickers,

etc. can occur, (2) substantial ER luminal Ca2þ content that war-

rants correct proteins’ processing and uncompromised ability

for Ca2þ release, and (3) low-level of [Ca2þ]M to sustain mito-

chondrial Ca2þ uptake for efficient maintenance of cell

bioenergetics are thought to be important for supporting life-

related processes such as secretion, proliferation, differentiation

and motility [6–11]. Even the a steady-state extracellular calcium

([Ca2þ]O) level has significant value role for normal tissue

homeostasis and prevention of tumourigenesis [12].

In cancer, because of mutations, aberrant expression,

regulation and/or subcellular targeting of Ca2þ-handling/

transport protein(s), Ca2þ signalling can become distorted.

This causes deregulation of Ca2þ-dependent effectors promoting

certain pathophysiological cancer hallmark(s). Most of the rel-

evant data were obtained in the studies on primary cancer

cells and cancer cell lines derived from common solid tumours.

However, as the mechanisms of Ca2þ homeostasis and signal-

ling in haematocytes are rather similar to other non-excitable

cells, the general conclusions regarding pro-malignant remodel-

ling of Ca2þ signalling are probably applicable to the

haematological malignancies as well.

It should be noted, however, that the role of Ca2þ-

transport proteins in cancer is context-specific, and the same

transporter, depending on the presence of certain regulatory

signals and/or partner proteins, and formation of local signalling

complexes may participate in the promotion of different cancer

hallmarks and even several simultaneously [13].
2. Ca2þ remodelling that promotes proliferation
Quiescent cells are commonly characterized by very localized,

modest in size and short-lived in time [Ca2þ]C increases taking

the form of sparks, spikes, puffs, flickers [6–11], which are

necessary to sustain baseline physiological activity. Switching
from a quiescent to an active proliferative state in response to

mitogenic growth signals involves global dynamic [Ca2þ]C

elevations owing to activation and complex interactions of all

molecular components of the Ca2þ-handling toolkit specific

for a given cell type. Among the direct effectors for such Ca2þ

signalling are calmodulin (CaM) and Ca2þ/calmodulin-depen-

dent protein kinases II (CaMKII), protein phosphatase 2B

(calcineurin) and protein kinase C (PKC), which in turn regulate

activation of transcription factors controlling the cascade of

genes expression required for cell-cycle progression [14].

In cancer, it is not only the proliferation of tumour cells

that stops depending solely on external growth signals via

development of significant growth autonomy [15,16], but

the Ca2þ-handling toolkit undergoes profound remodelling

(figure 1) to favour activation of Ca2þ-dependent transcrip-

tion factors, such as the nuclear factor of activated T cells

(NFAT), c-Myc, c-Jun, c-Fos that promote hypertrophic

growth via induction of the expression of the G1 and G1/S

phase transition cyclins (D and E) and associated cyclin-

dependent kinases (CDK4 and CDK2) [14]. Consistent with

this notion, it was shown that the proliferation-promoting

action of a1-adrenoreceptor (a1-AR) agonists on prostate

cancer (PCa) cells is based on preferred coupling of the a1-

AR-coupled signalling pathway to activation of a member

of transient receptor potential (TRP) channel family, TRPC6,

Ca2þ influx through which in turn specifically regulates

NFAT in a Ca2þ/calcineurin-dependent manner [17]. In

addition, in LNCaP PCa cells yet another highly oncogenic

TRP member, TRPV6 [18], was shown to support high pro-

liferation rates apparently by providing constitutive Ca2þ

influx required for subsequent downstream NFAT activation

[19]. TRPV6 expression in PCa cells is also positively regu-

lated by vitamin D3 receptor (VDR) activation to enhance

[Ca2þ]C and proliferation of cells [20].

In MCF-7 breast cancer cells, TRPV6 function required for

supporting both proper [Ca2þ]C and cell proliferation was

shown to depend on interaction with its newly identified

partner protein, Numb1, which negatively regulates TRPV6

activity [21], highlighting the significance of channel regulators

in determining their oncogenic potential.

Constitutive activation of the Ca2þ/calcineurin/NFAT sig-

nalling pathway has been also implicated in the mechanism

of upregulated transcription of oncogenic c-myc in pancreatic

carcinomas, ultimately resulting in accelerated G1/S phase

transition, increased cell proliferation and enhanced ancho-

rage-independent growth [22], although the mechanisms

for elevated [Ca2þ]C in these cells remain undetermined. In

MCF-7 breast cancer cells, G1 phase progression and G1/S tran-

sition were shown to depend on the ORAI3 Ca2þ-permeable

channel that contributes to store-operated Ca2þ entry (SOCE)

in these cells [23,24]. It positively regulates the expression of

cyclins (D1, E), CDK4 and 2, and suppresses cyclin-dependent

kinase inhibitors (CDKIs) such, p21 and p53 by regulating the

expression and the activity of c-myc [24,25].

Many Ca2þ-transport proteins have been implicated in

the proliferation of cancer cells, including sarco(endo)plasmic

reticulum (SERCA) [26], the Golgi network secretory path-

way (SPCA) [27] and plasma membrane (PMCA) [28] Ca2þ-

ATPases (pumps), the inositol 1,4,5-trisphosphate receptor

(IP3R) [29,30] and ryanodine receptor (RyR) [31] Ca2þ release

channels of the ER, STIM and ORAI constituents of plasma-

lemmal store-operated (SOC) channels [13,23–25,32,33],

T-type voltage-gated calcium channels (VGCCs) [34,35],
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Figure 1. Ca2þ transport remodelling in promotion of cancer cell proliferation. Black arrows show the sequence of events; step-by-step following of black arrows
enables a specific pathway to be traced; upward arrows in the boxes indicate increased expression and/or function of certain protein(s) or stimulation of a specified
process. The boxes related to Ca2þ entry and Ca2þ release mechanisms are coloured in blue and green, respectively. See text for details. ER, endoplasmic reticulum;
IP3R, inositol trisphosphate receptor-channel; NFAT, nuclear factor of activated T cells; ORAI1 and ORAI3, channel-forming proteins of SOC; PLC, phospholipase C;
SERCA, sarco(endo)plasmic reticulum calcium ATPase; SOC, store-operated channels; SPCA2, secretory pathway calcium ATPase 2; STIM1, stromal interaction molecule 1
(ER Ca2þ sensor in SOC activation); TRP, various members of transient receptor potential channel family; RYR, ryanodine receptor-channel; VGCC, voltage-gated
calcium channels. (Online version in colour.)
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various TRP-members [36] such as TRPV6 [19], TRPC1,

TRPC3 and TRPC6 [17,37–40], TRPM2 [41], TRPM7 [40,42],

TRPM8 [40,43] (figure 1). Enhanced proliferation of cancer

cells is commonly correlated with higher expression of

those proteins from the Ca2þ-handling toolkit which partici-

pate in [Ca2þ]C increases by providing Ca2þ influx or Ca2þ

release, or which sustain ER Ca2þ filing.
3. Ca2þ remodelling in conferring apoptosis
resistance

The Ca2þ-dependence of apoptosis is well defined in numer-

ous original studies and comprehensively illuminated in

numerous review articles [2–5]. It commonly involves initial

cytosolic Ca2þ overload owing to massive entry and/or vast

release and can subsequently progress via three largely inter-

related and interdependent pathways: mitochondrial,

cytoplasmic and ER stress-related (reviewed in [2–5,44]).

Thus, cancer cells may evade apoptosis through decreasing

calcium influx into the cytoplasm. This can be achieved by

either downregulation of the expression of plasma membrane

Ca2þ-permeable ion channels or by reducing the effectiveness

of the signalling pathways that activate these channels. Such

protective measures would largely diminish the possibility of

Ca2þ overload in response to pro-apoptotic stimuli, thereby
impairing the effectiveness of mitochondrial and cytoplasmic

apoptotic pathways. Yet another defence mechanism against

apoptosis would involve cancer cell adaptation to the

reduced basal [Ca2þ]ER without induction of pro-apoptotic

ER stress response that usually accompanies ER luminal

calcium imbalance.

In full agreement with these general considerations, it

was shown that PCa cells, upon transition to more aggressive

androgen-independent phenotype, which is characterized by

substantial enhancement of cell survival, downregulate their

SOCE by decreasing the expression of the principal plasma

membrane SOC-channel-forming subunit, ORAI1 protein

[45], as well as of the ER Ca2þ sensor regulating SOC activation,

STIM1 protein [46] (figure 2). Moreover, as the ER luminal

Ca2þ-binding protein calreticulin presents androgen-response

gene in the prostate [47], its lowered expression in androgen-

independent PCa cells compromises the Ca2þ storage capacity

of the ER and initiates a chain of adaptive responses in the

expression of other ER Ca2þ-handling proteins to keep ER

Ca2þ filling at a lower level [48,49]. The latter include lowered

SERCA2b expression to reduce Ca2þ uptake and higher

expression of ER-resident Bcl-2 protein that is likely to promote

Ca2þ leak from the ER [48] (figure 2).

However, the Ca2þ-handling toolkit in apoptosis resistant

cancer cell phenotypes undergoes remodelling not only in a

way that limits Ca2þ influx and maintains low [Ca2þ]ER. There
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are number of instances when apoptosis resistance is conferred

by higher expression of Ca2þ entry channels (figure 2). Indeed, it

was shown that TRPV6 and ORAI3 not only promote prolifer-

ation, but also increase survival of PCa and breast cancer cells,

respectively [19,20,24]. ORAI3-conferred survival of breast

cancer cells involved Ca2þ-dependent increase of c-Myc

expression and activity resulting in the inhibition of pro-apopto-

tic Bax protein expression [24,25]. It was also demonstrated that

higher levels of TRPA1 channel confer apoptosis resistance and

promote survival of small cell lung carcinoma (SCLC) cells via

TRPA1-mediated Ca2þ entry leading to stimulation of ERK1/

2 via Src [50].

Enhanced apoptosis resistance of cancer cells associated with

overexpression of certain types of plasma membrane Ca2þ-

permeable channels may in part result from the formation of

localized ‘Ca2þ-dependent anti-apoptotic signalling complexes’

to which these channels provide a preferred, spatially restricted

supply of Ca2þ. An example of such relationships was described

in leukaemic T cells, in which SOC-channel-forming ORAI1

protein and ORAI1-activating ER Ca2þ sensor STIM1 co-localize

with CD95/FADD/caspase death-inducing signalling complex

(DISC) in the confined plasma membrane microdomains to

which ORAI1 provides polarized Ca2þ entry [51] (figure 2).

Yet another mechanism for the enhanced apoptosis resist-

ance of cancer cells due to overexpression of plasma

membrane Ca2þ-permeable channels may in part involve the
reduction of the significance of Ca2þ-dependent ER-stress

response apoptosis initiation, as Ca2þ entry through the chan-

nel may serve as a source of Ca2þ to sustain ER store refilling

(figure 2). Consistent with this notion, expression of the

TRPV1 channel is positively correlated with grading of

human glioma (astrocytoma) [52,53]. However, exogenous

TRPV1 agonists, as well as its endogenous agonists, endocanna-

binoids, were shown to trigger the apoptosis of glioma cells, not

apparently because of Ca2þ entry via plasma membrane-loca-

lized TRPV1, but primarily via ER-stress owing to TRPV1

localization in the ER membrane [52].

Mitochondrial Ca2þ uptake evoked by pronounced Ca2þ

entry or IP3R-mediated surges of [Ca2þ]C can trigger MPT

and, in turn, the release of mitochondrial apoptosis-inducing

factors. MPT, which is specifically associated with IP3R acti-

vation, relies on privileged Ca2þ signal transmission from IP3R

to mitochondria in the ER-mitochondrial contact sites. Thus,

the enhanced apoptosis resistance of cancer cells must involve

downregulated expression or activation IP3R that compromise

IP3R-mediated release (figure 2). Consistent with this notion,

in bladder cancer cells the acquisition of cisplatin resistance

was shown to result from cisplatin-induced downregulation of

IP3R1 expression [54]. Moreover, the common anti-apoptotic

protein Bcl-2 can directly interact with IP3R and inhibit chan-

nel opening and ER Ca2þ release, thereby contributing to the

reduction of Ca2þ-mediated apoptosis [55,56] (figure 2).
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An anti-apoptotic role has also been ascribed to the

expression of PMCA2 and PMCA4 calcium pumps in breast

cancer cells [57,58,59]. Interestingly, PMCA2-induced apopto-

sis resistance is by direct interaction with calcineurin leading

to NFAT inhibition and concomitant decrease in NFAT-depen-

dent expression of pro-apoptotic Fas ligand (FasL) [58], while

PMCA4 regulates the NFkB nuclear translocation [59].

Cancer cell survival can be also enhanced by autophagy, an

intracellular self-digestive process that normally maintains the

balance between the synthesis, degradation and subsequent

recycling of cellular products. In advanced cancer, it partici-

pates in selection of the cells with increased tolerance to

tumour-specific hypoxia and nutrient deficiency subsequent

to disorganized angiogenesis. As a result, metastatic potential

and resistance to anti-cancer theray will probably increase.

The IP3R calcium release channel of the ER is considered a

key player in autophagy [60,61]. The IP3R is known to reside in

the ER membranes within ER–mitochondria contact sites and

to provide basal constitutive low-level Ca2þ signalling to

sustain mitochondrial Ca2þ uptake required for efficient mito-

chondrial respiration and maintenance of normal cell

bioenergetics [61]. Blocking IP3Rs or suppressing IP3 pro-

duction abolishes this signal, leading to lowered ATP

production and an increased AMP/ATP ratio which in turn

activates AMPK and induces autophagy [62]. Thus, disruption

of IP3R-mediated ER–mitochondria crosstalk and compro-

mised cell bioenergetics which may take place in advanced

cancer under hypoxic and nutrient-deficient conditions may

activate autophagy as pro-survival mechanism.
4. Ca2þ remodelling in promotion cell migration
and metastasis

Metastatic dissemination from the primary tumour site to mul-

tiple tissues is the main cause of mortality in cancer. Tumour

cells become invasive by acquiring high migratory potential

along with the increased ability to degrade extracellular

matrix (ECM).

Ca2þ signalling is critical for regulating cell migration

and invasion. In malignant cells, it is remodelled in a way

that promotes the turnover of focal adhesions, enhances con-

tractile forces and facilitates proteolysis of ECM components

[63]. Ca2þ-dependent regulation of the molecular machinery

of migration is provided by calcineurin, CaMKII, proline-rich

tyrosine kinase-2 (PYK2), Ca2þ-dependent protease, calpain,

which regulate focal adhesion dynamics and S100 family

of EF-hand calcium-binding proteins (especially S100A4)

which promotes cell migration via interaction with cytoskeletal

proteins, including actin [63].

The links among the expression and function of certain

Ca2þ permeable channels and cancer cells migration, inva-

sion and metastasis are still largely phenomenological, and

the mechanisms of their involvement are not fully under-

stood. The following Ca2þ permeable channels have been

implicated in the enhanced migration of various types of

cancer cells (figure 3): TRPC1 [64], TRPM7 [65–71], TRPM8

[43,72,73], TRPV1 [74], TRPV2 [75], TRPV6 [40], STIM1 and

ORAI1 SOC constituents [13,76–79], some types of VGCCs

[35,80]. Owing to the presence of mechanical stimulus-

dependent and Mg-ATP-dependent modes of activation

TRPM7 was especially implicated in providing spatially

restricted Ca2þ entry in response to local membrane stretch
in front of migrating cells [66,69] as well as promoting

m-calpain-mediated disassembly of peripheral adhesions

under decreased intracellular Mg-ATP levels [65] typically

found in hypoxic tumour conditions. Moreover, high levels

of TRPM7 expression per se was established as a prognostic

marker for breast cancer [70] and pancreatic ductal adeno-

carcinoma (PDAC) [71] progression. The presence of TRPM7

was shown to be directly linked to metastasis formation in a

mouse xenograft model of human breast cancer [70] and

PDAC cell migration [71]. In MDA-MB-231 breast cancer

cells, TRPM7 was found to regulate myosin II-based cellular

tension, thereby modifying focal adhesion number, cell–cell

adhesion and polarized cell movement [70].

High pro-migratory and pro-invasion potentials have been

also ascribed to TRPV1, TRPV2, TRPV6 and TRPM8 channels

(figure 3). Higher expression of TRPV2 in PCa cells or TRPM8

in squamous cell carcinoma correlated with the induction of

MMP-2, MMP-9 and cathepsin B [73,75]. Using laser capture

microdissection of breast tumour tissue, it was established

that higher expression of TRPV6 channel tend to localize in

the invasive areas, compared with the non-invasive ones, and

TRPV6 silencing was able to inhibit migration and invasion of

breast cancer cells [40]. However, with respect to TRPV1 chan-

nel diverging results have been reported, suggesting that its role

in malignant motility and invasion may be cancer cell-specific.

Indeed, activation of the TRPV1 channel was shown to promote

migration of human hepatoblastoma cells in response to hep-

atocyte growth factor treatment [74]. On the other hand, in

urothelial cancer TRPV1 downregulation rather than enhance-

ment was found to correlate with more aggressive and

invasive tumour phenotype suggesting that such downregula-

tion may present an independent negative prognostic factor for

bladder cancer patients [81].

Recently, SOCE and its STIM and ORAI constituents have

emerged as important regulators of malignant cell migration

(figure 3). Enhanced STIM1-ORAI1-mediated SOCE promoted

higher rate of focal adhesion turnover and fast migration of

metastatic breast cancer cells via activation of GTPases Ras and

Rac [76] and of cervical cancer cells via engagement of calpain

and PYK2 [13]. Higher migration of cervical cancer cells owing

to STIM1 overexpression was shown to correlate with its

accumulation in the ER punctae translocated towards plasma

membrane of migratory cells and increasing cytosolic Ca2þ

spikes [78]. This resulted in more effective recruitment and

association of active focal adhesion kinase (pTyr397-FAK) and

talin at focal adhesions to facilitate force transduction from

integrin signalling, and to promote actomyosin formation [78].

Ca2þ-entry pathways often interact with Ca2þ release

mechanisms to produce [Ca2þ]C signals required for migration.

For instance, localized [Ca2þ]C flickers at the front of migrating

fibroblasts occurred because of interaction of TRPM7-mediated

Ca2þ influx and Ca2þ release via type 2 IP3R (IP3R2) [66,69],

whereas global [Ca2þ]C increase associated with enhanced

migration of nasopharyngeal carcinoma cells depended on

activation of TRPM7 and CICR involving RyRs [67] (figure 3).

Of other Ca2þ release channels, type 3 IP3R (IP3R3) was

implicated in the invasive behaviours of glioblastoma cells

[82] and in the peritoneal dissemination of gastric cancers

[29]. IP3R3 was shown to be over-expressed in glioblastoma

cells, and its pharmacological or siRNA-mediated inhibition

suppressed [Ca2þ]C increases and migration of glioblastoma

cells with IP3R3 inhibition by caffeine representing the most

effective pharmacological tool [82].
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In addition, [Ca2þ]C increase owing to mobilization from

ER stores was shown to promote migration of HeLa and

MDA-MB-231 cancer cells via Ca2þ-dependent activation of

S100A4 (figure 3) and facilitation of its interaction with

target cytoskeletal proteins [83].
5. Ca2þ remodelling in tumour vascularization
Vascularization is critical for tumour growth and metastasis.

Angiogenesis relies on proliferation and motility of vascular

endothelial cells (ECs), which can be activated by diverse extra-

cellular signals. Tumour cells secrete several peptides and

growth factors with mitogenic or pro-angiogenic effects on

ECs in vitro and in vivo, such as endothelin-1, angiotensin II,

basic fibroblast growth factor (bFGF) as well as the vascular

endothelial growth factor (VEGF) family of proteins, which are

the most potent EC mitogens [84–86]. These factors can act in

a paracrine-type manner owing to their release by tumour and

stroma cells as well as in an autocrine fashion on ECs.

Intracellular Ca2þ signals are involved at different critical

phases of regulation of the complex process of angiogenesis

and tumour progression [87–89], and VEGF acts directly on

ECs to induce Ca2þ signalling involving Ca2þ entry and IP3R-

mediated release [90–92]. Carboxyamidotriazole (CAI), an

orally active agent with anti-neoplastic and anti-angiogenic

activity, is one of the few anti-cancer agents with clear Ca2þ
homeostasis-targeting properties. It is known to act via disrup-

tion of Ca2þ-mediated signal transduction owing to inhibition

of non-voltage-operated Ca2þ channels, which causes suppres-

sion of VEGF signalling in ECs, endothelial proliferation

and angiogenesis [90]. CAI inhibits [Ca2þ]C increases during

VEGF-A-induced EC proliferation [90], consistent with the

requirement of Ca2þ influx for angiogenesis. This agent demon-

strated the potential to inhibit tumour cell growth, invasion and

metastasis, and clinical trials [93] suggest that it may have utility

as a maintenance therapeutic agent for some types of cancer.

CAI appeared to be quite specific for SOC channels [94],

which in ECs are composed of STIM1 and ORAI1 proteins

[95]. Thus, abnormalities in the expression and/or function of

STIM1 and ORAI1, which were shown to mediate VEGF-

evoked calcium entry promoting EC migration, tube formation

and angiogenesis [91], and might be involved in the enhancing

the pro-angiogenic response of ECs in tumours (figure 4).

Indeed, upregulated mRNA and protein levels of ORAI1,

STIM1 and TRPC1 (which is also known to contribute to

SOCE) accompanied by the increase in CAI-sensitive SOCE

were detected in endothelial progenitor cells from patients

with renal cellular carcinoma [96].

A number of the TRP-channel family members are

expressed in ECs contributing the angiogenic process by provid-

ing agonist- or mechanical stretch-induced Ca2þ entry [85,88,97]

(figure 4). In particular, TRPC1 and TRPC4 channels, which

exhibit a store-dependent mode of gating, have been implicated
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in Ca2þ influx required for the pro-angiogenic response of ECs.

The involvement of diacylaglycerol-gated TRPC3 or TRPC6 was

implicated in VEGF-induced permeability of microvascular ECs

[98,99]. ECs also express members of TRP family (TRPM and

TRPV), as well as STIM and ORAI involved in different aspects

of malignant pro-angiogenic behaviours such as EC prolifer-

ation, migration and permeability [88,89,97] (figure 4). In

addition to directly promoting EC proliferation, migration and

permeability, Ca2þ influx through TRPs might stimulate ECs

to produce and release the angiogenic growth factors VEGF,

FGF and PDGF, which in turn might stimulate angiogenesis

in an autocrine or paracrine manner (figure 4). It was also

shown that Ca2þ influx through the reverse mode of the

NCX1 Naþ/Ca2þ exchanger is required for VEGF-induced

ERK1/2 phosphorylation and downstream EC functions in

angiogenesis [100].
6. Clinical prospects
Despite significant achievements in understanding remodel-

ling of Ca2þ signalling in cancer progression and cancer
hallmarks, the practical utility of these findings for clinicians

still remains very limited [101]. Given the ubiquity of the

Ca2þ handling toolkit and its involvement in the physiologi-

cal activity of normal cells, selective targeting of its

components in cancer cells presents the major challenge.

Despite the existence of numerous pharmacological and mol-

ecular biological research tools for targeting Ca2þ transport

proteins with the purpose of reducing or reversing malignant

behaviours of cancer cells in in vitro conditions with some of

them even demonstrating profound anti-neoplastic effects in

in vivo animal models, because of poor specificity, significant

adverse effects and/or problems with selective delivery these

research tools cannot be used clinically.

In addition to the prospective clinical tools and strategies

described before [101], recently synthetic vanilloids were pro-

posed as therapeutics for high-grade astrocytoma [52]. By

activating the ER-localized TRPV1 channel, which is signifi-

cantly over-expressed in this type of cancer cell, they induce

ER-stress thereby promoting tumour cell death [52]. As pro-

longed cytosolic Ca2þ overload and/or ER Ca2þ depletion

represent strong pro-death factors, overactivating the existing

Ca2þ-permeable channels in cancer cells seems in general
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to be a promising approach for cancer treatment. One of the

realizations of this approach is based on using SERCA pump

inhibitors from plant-derived sesquiterpene lactones and

their derivatives which promote Ca2þ-dependent apoptosis

by preventing ER Ca2þ uptake [102]. As systemic adminis-

tration of these compounds can produce significant toxicity

to normal cells, to enable their use for PCa treatment it was

proposed that they should be combined with a targeting

peptide representing the substrate for prostate cancer-specific

serine protease, prostate-specific antigen [103].
 g
Phil.Trans.R.Soc.B

369:
7. Conclusion
Remodelling of Ca2þ signalling in cancer helps to sustain most

of the cancer hallmarks. Identification of key Ca2þ-transport

molecules which altered expression and/or function underlies

pathological changes provides promising targets for cancer

treatment. However, the ubiquity of molecular players
involved in maintaining normal as well as pathologic Ca2þ

homeostasis so far prevents their selective targeting in cancer

cells without significant adverse effects. Although Ca2þ trans-

port is still a novel area of research in oncology, rapid

development of the field ensures that improved molecular

Ca2þ transport-targeting tools for cancer diagnosis and treat-

ment will eventually be developed.
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