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Cell survival is conditional on the maintenance of a favourable acid–base

balance (pH). Owing to intensive respiratory CO2 and lactic acid production,

cancer cells are exposed continuously to large acid–base fluxes, which

would disturb pH if uncorrected. The large cellular reservoir of Hþ-binding

sites can buffer pH changes but, on its own, is inadequate to regulate

intracellular pH. To stabilize intracellular pH at a favourable level, cells con-

trol trans-membrane traffic of Hþ-ions (or their chemical equivalents,

e.g. HCO3
�) using specialized transporter proteins sensitive to pH. In

poorly perfused tumours, additional diffusion-reaction mechanisms, invol-

ving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH.

The ability of Hþ-ions to change the ionization state of proteins underlies

the exquisite pH sensitivity of cellular behaviour, including key processes

in cancer formation and metastasis (proliferation, cell cycle, transforma-

tion, migration). Elevated metabolism, weakened cell-to-capillary diffusive

coupling, and adaptations involving Hþ/Hþ-equivalent transporters and

extracellular-facing CAs give cancer cells the means to manipulate micro-

environmental acidity, a cancer hallmark. Through genetic instability, the

cellular apparatus for regulating and sensing pH is able to adapt to extra-

cellular acidity, driving disease progression. The therapeutic potential of

disturbing this sequence by targeting Hþ/Hþ-equivalent transporters, buf-

fering or CAs is being investigated, using monoclonal antibodies and

small-molecule inhibitors.
1. Introduction
Hydrogen (Hþ) ions (or protons) are the smallest yet arguably the most reactive

ions present in living organisms. All biological solutions have a certain concen-

tration of Hþ ions ([Hþ]) arising from the balance between deprotonation and

protonation reactions of water, weak acids and weak bases. Equilibria between

Hþ ions and the unprotonated (A) and protonated (HA) forms of molecules is

described by an acid-dissociation (Ka¼ [Hþ] � [A]/[HA]) (figure 1). Values of

Ka span many orders of magnitude and, consequently, [Hþ] can vary greatly

between different solutions. For this reason, [Hþ] is usually expressed on a log-

arithmic pH scale [1]. Complex solutes, including many biologically important

molecules, are often ascribed with several Ka values, reflecting distinct proton-

binding sites. At a given pH, protonatable sites with very high or very low pKa

will be almost completely titrated or unbound, respectively. By contrast, the

concentration (in a macroscopic sense) of protonated and unprotonated sites

will be balanced if pKa is near the ambient pH. Such molecules are of major bio-

logical importance for two reasons. Firstly, the availability of HA and A

protects (buffers) solutions from large pH changes in response to acid–

base challenges. Secondly, a sustained change in pH alters the [HA]/[A]

ratio, which could have secondary effects if the biological properties of HA

and A differ substantially. The sensitivity of proteins to pH has exceptional

bearing on cells because proteins act as pH buffers, and their function can

change substantially if ionization state is altered by the binding or release of
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Figure 1. The dynamics of intra- and extracellular pH are determined by reac-
tion, transport and diffusion fluxes. For illustrative purposes, two intracellular
buffers (HA1/A1 and HA2/A2), one extracellular freely diffusible buffer (HA4/
A4), and a buffer that can cross the cell membrane (HA3/A3) are shown.
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Hþ ions (a form of post-translational modification) [2]. It is

therefore not surprising that only a narrow range of pH

is compatible with eukaryotic function.

Living tissue, unlike a simple salt solution, engages conti-

nually in the production or consumption of acids (or bases)

through chemical reactions. Because of cellular respiration

(yielding CO2 and lactic acid), most cells are net acid-producers

hence intracellular pH (pHi) has a tendency to fall. A sustained

and substantial acid–base challenge cannot be corrected by pH

buffers alone because of their finite capacity (i.e. buffering

reduces the amplitude of pH-changes but cannot, on its own,

eliminate or reverse these). Also in contrast to a simple sol-

ution, living tissue is compartmentalized into intra- and

extracellular spaces separated by the cell membrane (figure 1).

The ability of biological membranes to allow the passage of

selected molecules can give rise to pH differences between the

compartments. Selective transport of Hþ-ions (or molecules

that release or take-up Hþ ions such as CO2 or HCO3
�: the

so-called Hþ-equivalents) across membranes is thus an effective

means of changing pHi. As explained later, the usual pHi-

regulatory strategy of cells is to balance the internal production

of acid (or base) with an equal ‘corrective’ efflux of acid (or base)

across the cell membrane.

The biological potency and chemical omnipresence of Hþ

ions highlight the importance of regulating pH (where pH is

controlled to suit protein function) and of adapting biology

to a particular pH level (where gene products are selected

or changed on the basis of ambient pH). As will be explained

below, these processes are believed to play an important role

in cancer disease progression.
2. Low micro-environmental O2 tension and
pH as hallmarks of cancer

Histological studies in the 1950s by Thomlinson and Gray

established that human tumours grow around blood vessels
and that the outermost cells beyond a distance of approxi-

mately 200 mm from blood become necrotic [3]. A gradient

of O2 tension develops across the layer of viable cells,

driven by the high metabolic demand of cancer biochemistry

and relatively long diffusion distances to the source [4]. O2

gradients have often been modelled by steady-state diffu-

sion–reaction equations, where DO2
is the O2 diffusion

coefficient and function R describes reactions

DO2
�r2½O2� þ Rð½O2�Þ ¼ 0: ð2:1Þ

The presence of areas with low (,1%) O2 tension is associ-

ated with increased metastasis and poor patient survival [5],

giving rise to the notion that hypoxia is a hallmark of malig-

nant cancer. The discovery that hypoxia alters cell biology [6]

(e.g. via hypoxia-inducible factor HIF1a [7]) offered a mechan-

ism for adaptive changes, such as the switch-over to glycolytic

metabolism (Warburg effect; [8]). Tumour hypoxia has since

become a topic of considerable research, achieving promising

outcomes with respect to understanding aetiology, improving

diagnosis and developing treatments [6,9]. Among other

micro-environmental factors specifically identified in tumours,

extracellular acidity has emerged as another cancer hallmark

[10–12]. Contrary to initial expectations, the intracellular com-

partment was shown to be alkaline [13] despite low

extracellular pH (pHe). Other than in solid tumours, this

trans-membrane [Hþ] distribution (acidic extracellularly/alka-

line intracellularly) is not commonly observed in tissue. Two

questions have emerged in response to these pioneering studies:

firstly, how do solid tumours produce low pHe yet are able to

maintain pHi within favourable limits, and, secondly, how

does this trans-membrane pH-distribution affect disease

progression?
3. Production and venting of metabolic acids
Cancer cells require a substantial input of energy to support

their intensive programme of growth. This explains the

high glucose utilization rate, measured to be most typically

in the range 0.1–1 mmol (g tissue)21 min21 [14]. Under aerobic

conditions, respiration of glucose to CO2 is coupled to the

production of ATP, which consumes an Hþ ion:

ADP3�+ HPO4
2� ! ATP4�+ OH�:

This acid–base disturbance is then cancelled out by ATP break-

down elsewhere in the cell. As a result, the source of acidity

from aerobic metabolism is CO2, once it hydrates to Hþ and

HCO3
� ions. Under anaerobic conditions, glycolytic ATP pro-

duction is coupled to the chemical conversion of glucose to

anionic lactate [15]:

glucoseþ 2�ADP3�+ 2�HPO4
2� ! 2�ATP4�

þ 2� lactate�:

This reaction does not generate (or consume) Hþ ions, indicat-

ing that glycolysis per se is pH neutral. However, subsequent

ATP breakdown releases Hþ ions, explaining how anaerobic

metabolism yields acid. Depending on whether respiration is

glycolytic or mitochondrial, cancer cells may be producing

approximately 1–3 mmol . (l cell)21 min21 of acid (assuming

an extracellular/intracellular volume ratio of 1/2; [16]). For a

typical intracellular buffering capacity of approximately

30 mmol . (l cell)21 . (pH unit)21 [17], this magnitude of acid-

loading would promptly and substantially alter pHi,
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Figure 2. Venting of metabolically produced acids. (a) Hþ-lactate efflux across
the membrane is facilitated by Hþ-monocarboxylate transport (MCT). Diffusion
of Hþ and lactate away from the cell-surface is necessary for sustained MCT
activity. Mobile Hþ-buffers can facilitate Hþ diffusion and support Hþ-lactate
venting. (b) CO2 can permeate the cell membrane through the lipid bilayer or
gas channels. Spontaneous CO2 hydration is slow, but can be accelerated by exo-
facial carbonic anhydrase (CA) enzymes. Diffusion of the hydration products
alongside CO2 represents a form of facilitated CO2 diffusion.
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if uncorrected. However, most cells have the capacity to remove

respiratory end-products passively across the surface mem-

brane. CO2 has a high lipid : water partition coefficient,

allowing it to cross the lipid bilayer freely. In addition (although

not without controversy [18]), specialized gas channels such as

aquaporins (AQP) have been demonstrated to increase mem-

brane permeability to CO2 [19]. Lactic acid, despite a much

lower lipid : water partition coefficient, can cross the membrane

as Hþ-lactate, translocated by Hþ-monocarboxylate transpor-

ters (MCT), including MCT1 and the hypoxia-inducible

MCT4 [20] (according to the SoLute Carrier family naming

convention, SLC16A1 and SLC16A3, respectively).

The rate of passive CO2 and Hþ-lactate venting from

cells depends on trans-membrane concentration gradients.

In well-perfused tissues, outwardly directed trans-membrane

gradients are maintained by good diffusive coupling between

the cell surface and capillary blood. By contrast, the often

inadequate capillary perfusion of tumours gives rise to long

diffusion distances and a considerable resistance to solute

flux [21]. Extracellular build-up of CO2 or Hþ-lactate will

reduce their venting, even across membranes with high per-

meability. However, CO2 and Hþ-lactate diffusion can be

facilitated by biological adaptations that address the rate-lim-

iting steps. Extracellular lactic acid (pKa¼ 3.8) remains almost

completely ionized and the associated Hþ ion is titrated by

extracellular buffers. The overall rate of extracellular Hþ-lactate

diffusion can be rate-limited by the effective mobility of Hþ

ions (DH
app). In highly buffered solutions, DH

app depends on

the mobility of buffers [22], many of which are large proteins

diffusing substantially slower than lactate. However, low mol-

ecular weight (mobile) buffers, such as amino acids,

phosphates or CO2/HCO3
� could facilitate Hþ diffusion and

improve Hþ-lactate venting (figure 2a). Extracellular CO2 also

ionizes (pKa¼ 6.1) but to a much lesser degree than lactic

acid. Although the spontaneous hydration reaction is very

slow (time constant 5 s), it can be catalysed by exo-facial

carbonic anhydrase (CA) enzymes [23–25], such as the

tumour-associated isoforms CAIX and CAXII [26–30].

Catalysed conversion of CO2 to HCO3
� and Hþ can facilitate

overall CO2 diffusion by means of a parallel flux of Hþ þ
HCO3

�, a phenomenon first described in vitro by Gros &

Moll [31]. Akin to the diffusion of other ionized weak acids,

CA-facilitated CO2 diffusion also requires adequate mobile

buffering to carry Hþ ions in parallel to CO2 and HCO3
� [32]

(figure 2b). Net hydration by exofacial CAs will reduce

steady-state pHe and contribute towards micro-environment

acidity. Excessive extracellular acidification could become det-

rimental, but the extent of this may be curtailed by the

inhibitory (i.e. negative feedback) effect of Hþ ions on CA

activity [33–35].

Mobile buffers usually coexist with fixed buffers, therefore

DH
app is typically lower than the diffusivity of CO2, HCO3

� or

lactate. Consequently, a relatively steep [Hþ]e gradient is

needed to drive a diffusive Hþ ion flux to match the flux of

CO2, HCO3
2 or lactate. This may explain why it is important

for [Hþ]e at the core of solid tumours to reach levels as high as

250 nM, i.e. pHe ¼ 6.6 [4]. A mechanistic description of tumour

pHe must account for diffusion–reaction processes involving

Hþ ions, CO2, HCO3
�, lactate and buffers [25], and hence a

single equation (such as equation (2.1) used for modelling

hypoxia) is inadequate.

Facilitated CO2 and Hþ-lactate diffusion away from the sur-

face of cells is expected to produce a more alkaline pHi that
better supports cell proliferation. Indeed, facilitated CO2 vent-

ing appears to be a major role for CAIX and CAXII in tumour

physiology [25,36], possibly explaining the faster growth rates

measured in tumours expressing catalytically active enzyme

[35,37]. As demonstrated in skeletal muscle [38], exo-facial

CAs also improve Hþ-lactate venting by optimizing the ability

of CO2/HCO3
� to neutralize Hþ ions released by MCT. A simi-

lar MCT–CA interaction may be important in tumours.

In the scheme developed so far, Hþ-lactate and CO2 are

the principal sources of cellular acid, and their venting is

rate-limited by resistances imposed by membranes (per-

meation) and the tortuous interstitial space (diffusion).

Steady-state intracellular [Hþ] could be approximated by

½Hþ�i ¼
½Hþ�e � ½lactate��e
½lactate��i

¼
½Hþ�e � ½HCO �

3 �e
½HCO �

3 �i
:

In some cells, such as erythrocytes [39], steady-state pHi pre-

dicted by this equation is viable because plasma [Hþ],

[HCO3
�] and [lactate2] are normally well controlled in the

body. However, most cells do not have the privilege of

direct access to a well-controlled milieu and, consequently,

the predicted equilibrium pHi may not be compatible with

biological needs. Due to its stoichiometry, MCT couples the

transport of Hþ ions with the transmembrane [lactate] gradi-

ent, and any further demand for Hþ transport would have to

be met by other means. In addition, many processes, such as

cell division, require cells to manipulate pHi dynamically

and independently of pHe. For these reasons, cells in most tis-

sues, including tumours, have additional mechanisms for

regulating pHi.
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Figure 4. Flux analysis of Hþ/Hþ-equivalent membrane transport.
(a) Hypothetical pHi dependence of flux by acid-extruding and acid-
loading transporters: the shape of the pHi – flux relationship depends on the
kinetics of transport, often described mathematically by a Hill equation. Acid
extruders and acid loaders work against each other to produce net Hþ/Hþ-
equivalent flux (dotted line). Intracellular pH stabilizes at a point of zero net
flux. The angle at which the net flux curve crosses the pHi axis is a measure
of the responsiveness of the pHi-regulating apparatus to pHi disturbances.
(b) Example of flux analysis for colon HCT116 cancer cells cultured under nor-
moxia (see [17]). Fluxes can be dissected into CO2/HCO3

�-dependent (i.e.
involving HCO3

� transport) and CO2/HCO3
�-independent (i.e. involving Hþ

transport). (c) Naþ/Hþ exchange in HCT116 cells is sensitive to kinases: 0.3
pHi unit acid-shift in pHi – flux relationship following inhibition of kinases by
20 nM staurosporin (STS) (see [17]).
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4. pH regulation by membrane transport
In a solution where the concentrations and Ka of buffers are

held constant, the only means of changing pH is by adding

acid (or base). Whereas Hþ/Hþ-equivalent production (or con-

sumption) by metabolism is not a feasible means of achieving

pHi-homeostasis, cells can control their pHi by regulating the

active transport of Hþ ions or their chemical equivalents

(OH2, HCO3
� or CO3

22) across the membrane [40,41]. Exper-

imentally, it is possible to distinguish pHi-regulating proteins

that translocate Hþ (or OH2) ions from those that translocate

HCO3
� (or CO3

22) ions by measuring fluxes in the presence

and the absence of CO2/HCO3
� buffer [42] (figure 3).

For a complete regulatory system, membrane transporters

must ‘sense’ pHi and respond by producing net Hþ/Hþ-

equivalent efflux or influx when pHi is either too low or

too high, respectively. In practice, most cells express dedica-

ted acid-loading and acid-extruding transporter proteins

[40]. By working against each other, acid-extrusion and

acid-loading fluxes can correct pHi disturbances and main-

tain pHi around a steady-state point (figure 4a). Acid-

extruding transporter proteins include Naþ/Hþ exchangers

(NHE) belonging to the SLC9 family [43], Hþ-ATPase

pumps and transporters that produce net HCO3
� (or CO3

22)

influx, such as electroneutral Naþ–HCO3
� cotransport

(NBCn1/SLC4A7), electrogenic Naþ–2HCO3
� cotransport
(NBCe1/SLC4A4) and electroneutral Naþ-dependent

Cl2/HCO3
� exchange (NDCBE/SLC4A8) [44]. Cl2/HCO3

�

(or Cl2/OH2) exchangers of the SLC4A or SLC26 families

are among acid-loading transporter proteins. Many cells use

a combination of two or more acid-extruding and acid-load-

ing transporter proteins. It may be speculated that this

apparent redundancy is a demonstration of the fundamental

importance of pHi control, particularly in the light of the fact

that some nominally pHi-regulating proteins also service
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a measure of intracellular pH. (b) Intracellular pH at different depths (average of
seven spheroids; mean radius 190 mm). pH-gradient results from restricted dif-
fusion, depth-dependence of metabolic acid loading and Hþ/Hþ-equivalent
membrane transport.
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other regulatory systems (e.g. cell volume [45] or motility

[46]), the transport demands of which may—at times—be at

odds with pHi homeostasis. Different types of cancer have

been shown to express various combinations of pHi-regulat-

ing transporters [17,47–50] (e.g. figure 4b). Despite the

heterogeneity of pHi-regulatory mechanisms, some appear

to be constitutive (e.g. HCO3
�-dependent flux, [17,47]),

whereas others (e.g. NHE1) emerge as highly dependent on

the cell type and conditions.

The energy for actively translocating Hþ/Hþ-equivalents

across the membrane is ultimately financed by ATP con-

sumption. In the case of primary active Hþ-ATPase pumps,

the transport process is directly coupled to ATP hydrolysis.

For the other pHi-regulating proteins, transport is driven by

the energy stored in the electrochemical gradient of coupled

ions (i.e. inward [Naþ] or [Cl2] gradients). The free energy

stored in ATP and trans-membrane [Naþ] or [Cl2] gradients

can affect the magnitude of Hþ/Hþ-equivalent flux produced

by pHi regulators but a more physiologically important

modulator of flux is the occupancy of the proteins’ pHi

sensor. This can take the form of a binding site involved in

the transport-cycle or a dedicated allosteric regulatory site.

In the case of Cl2/HCO3
� exchanger AE2 (SLC4A2), the allo-

steric pHi sensor has been described at the molecular level [51].

By coupling the activity of pHi-regulating proteins with signal-

ling cascades, cells gain the ability to fine-tune the steady-state

pHi in response to intrinsic (e.g. metabolic status [17,52]) or

extrinsic (neural or hormonal [53–55]) influences. NHE1, for

example, is sensitive to a wide range of signals [43,54,55] (e.g.

figure 4c). Factors associated with the tumour milieu, such as

extracellular acidity [56], hypoxia [17] and limited HCO3
�

supply [48,56], can also greatly affect Hþ/Hþ-equivalent flux.

These findings highlight the importance of investigating pHi

regulation in the context of the tumour milieu.

In summary, the resting pHi of a cell can be defined as the

steady-state point at which net metabolic acid production is

balanced by net membrane Hþ/Hþ-equivalent transport.

These fluxes are likely to show considerable regional variation

in solid tumours, resulting in the potential for large pHi gradi-

ents alongside pHe non-uniformity. This important aspect

of tissue pH regulation cannot be investigated by measuring

pH in suspensions or two-dimensional monolayers prepared

from cultured cells. A more instructive approach to study-

ing pH non-uniformity in tissue is to image cancer-derived

multicellular three-dimensional spheroids for pHi and pHe

(figure 5) [25,36,56].

Active transport of Hþ/Hþ-equivalents is a means by

which cancer cells can maintain an alkaline pHi, despite the

substantial metabolic acid production and low pHe. How-

ever, the capacity of membrane transport to exercise full

and autonomous control of pHi is limited by at least two fac-

tors. Firstly, active transport can place a substantial energetic

burden on cells. The scale of this can be appreciated from the

magnitude of fluxes typically produced by pHi regulators. To

change pHi, membrane transporters must alter the concen-

tration of free and buffer-bound Hþ ions. In cytoplasm with

a typical buffering capacity of 30 mmol. l21 pH21, for each

free Hþ ion there are approximately 105 buffer-bound Hþ

ions. Consequently, Hþ/Hþ-equivalent transport must be of

the order of several mmol. l21 min21 to change pHi by a frac-

tion of a unit per minute. Cancer cells are already challenged

by a high demand for ATP and restricted respiratory sub-

strate supply, and this may mean that pHi regulation
cannot operate at full capacity. Indeed, Naþ/Hþ exchanger

activity is reduced at low intracellular [ATP] [52].

A second limiting factor is the effect that pHi regulators have

on extracellular pH. From a tissue point of view, membrane-

bound pHi regulators neither produce nor consume Hþ/Hþ-

equivalents, but change the distribution of Hþ ions between

the intracellular and extracellular compartments. During Hþ/

Hþ-equivalent membrane transport, pHi and pHe will change

in opposite directions. The magnitude of the pHe change

will depend on extracellular buffering and Hþ diffusion. In

spheroids, which reproduce many aspects of the tissue microen-

vironment, the intrinsic extracellular buffering capacity is

estimated to be equivalent to 5–10 mmol . (l interstitium)21.

(pH unit)21 [21,56], i.e. lower than in the cytoplasm. As most

fixed buffers reside on the surface of membranes, buffering

capacity will depend on the degree of cell–cell packing (decreas-

ing in ‘looser’ regions). Combined with weak diffusional

coupling across the tumour interstitium, pHe changes may

be considerable and add to the acidosis imposed by CO2

and Hþ-lactate venting (explaining why glycolysis-deficient

tumours still generate low pHe [57,58]). Displacements of

pHe can slow the transport cycle, either by means of trans
inhibition or activation of allosteric sites [51,55,59]. For

instance, acid extrusion by Naþ/Hþ exchange is inhibited

sharply at reduced pHe [60]. In multi-cellular spheroids,

this inhibitory effect can be lessened by increasing extra-

cellular mobile buffering capacity [56]. Since CO2/HCO3
�

is the principal extracellular mobile buffer, the activity of

exofacial CAs can have a substantial impact on the feedback
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between pHe and pHi-regulating transporters. The sensitivity

of at least some pHi regulators to cellular energetics and to

pHe may protect cancer cells from ATP depletion and exces-

sive extracellular acidification beyond a point that is more

damaging than a partially regulated pHi. In a growing

tumour, where diffusion distances and metabolic rate

change continuously, these safety checks can be important

for the process of somatic evolution which seeks the most

viable phenotype.
.org
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5. pH sensing, pH-driven selection and
clinical perspectives

Cancer cells must be able to detect and respond to micro-

environmental factors so that these can then guide somatic

evolution. In the case of hypoxia, HIF is a transducer between

O2 tension and cellular effects. The pH sensors involved

in cancer disease progression have proved to be more

challenging to identify, possibly because of difficulties in dis-

tinguishing bona fide pH sensors from the plethora of

proteins that bind Hþ ions [2]. Cells sensing an alkaline pHi

have been shown to proliferate [61], enter the cell cycle

[62,63], differentiate [64], migrate [65,66], reduce apoptosis

[67] and clastogenesis [68], and undergo malignant trans-

formation [69,70]—events that are critical in cancer

formation and metastasis. Considering the complexity of

these processes, the observed pHi sensitivity may involve a

number of Hþ-binding molecular switches. pH sensing is

not confined to the cytoplasm: Hþ sensing G-protein-coupled

receptors [71], Hþ sensing ion channels (ASICs) [72] and the

pH sensitivity of a number of ion channels [73] offer a means

by which cells could respond to the pH of the tumour milieu.

Among the titratable sites on proteins, the imidazole group

of histidine is an attractive candidate for pH-sensing moieties

[74]. Although histidine makes up less than 3% of most pro-

teins, it is commonly found in active or binding sites [75].

The reason for this can be traced to imidazole’s pKa of 6.5,

which means that even small changes in pHi can greatly

affect its ionization state and ability to make salt bridges with

other amino acids or prosthetic groups. With its unique chemi-

cal properties, histidine does not substitute well with any other

amino acid [75]. Considering its prominence in active/binding

sites, histidine mutations are expected to alter protein function.

Among the three most common missense mutations in the

tumour suppressor protein p53, two involve substitutions to

histidine (Arg175! His, Arg275! His) [76]. A well-described

Arg337! His mutation destabilizes p53 tetramerization and

hinders its interaction with DNA because a critical salt bridge

with Asp352 is no longer stable at normal pHi [77].

Over the long course of cancer disease progression, cells

accumulate genetic changes that are retained if selected

positively by the micro-environment [78–80]. If extracellular

acidity (a complex derivative of diffusion distance, buffering,

metabolic rate and membrane transport) were a major selec-

tion pressure (as hinted by its prominence as a cancer

hallmark) then at least some mutations are likely to relate

to genes or gene regulators for Hþ/Hþ-equivalent transpor-

ters, pH sensors or proteins involved in acid-yielding

metabolic pathways [79]. Poor prognosis for tumours with

low pHe may indicate that acidity has identified a population

of cells with the appropriate pH sensing and regulatory

apparatus necessary to thrive and even become resistant to
drugs (e.g. weakly basic drugs such as doxorubicin [81,82]).

As cancer cells (and possibly stromal cells [83]) have ultimate

control over pHe, the direction and rate of change of this

selection pressure can be adapted to optimise disease pro-

gression. The higher acid-per-ATP yield of glycolysis, when

compared with mitochondrial respiration, may explain the

prominence of the Warburg effect in cancer [84]. In summary,

the plasticity of pHi regulation and versatility of protein pH

sensitivity offer a mechanism for cancer cells to exploit

pH as a selection pressure. By contrast, the genetic stability

of normal host cells would hinder their adaptability to the

micro-environment.

Growing evidence for the importance of pH in cancer

biology has solicited many ambitious ideas for therapy

targeting pH-handling proteins with low molecular weight

inhibitors or monoclonal antibodies [85–87]. The strategy of

blocking acid extrusion from cancer cells and allowing intra-

cellular acid to accumulate to lethal levels may be achieved

readily in vitro, but efficacy in vivo would need to overcome

major obstacles. Firstly, acid–base handling proteins are also

important for normal cells and inhibition could lead to unac-

ceptable systemic toxicity. It is therefore essential to identify,

at the molecular level, acid–base handling mechanisms in

cancer that differ substantially from normal cells. For instance,

hypoxia-induced MCT4 and CAIX are associated with

tumours. Alternatively, drugs could be tailored chemically to

become more efficacious in the tumour milieu, e.g. through

chemical activation at low pH and/or O2 tension. A second

obstacle is the redundancy in mechanisms for acid extrusion

that could compensate for the targeted protein, particularly

in cancer cells which have the means to change and adapt

dynamically. This raises the question of whether therapy tar-

geted at manipulating pHi will have the desired clinical

efficacy. The hypothesis of acid-driven disease progression

has highlighted the importance of extracellular pH as a target

for therapy. Unlike interventions that alter intracellular pH

by targeting one (or more) of many membrane-bound trans-

porter proteins, extracellular pH could be manipulated by

altering Hþ diffusivity or buffering capacity. Raising mobile

buffering capacity with systemic bicarbonate offers an attrac-

tive means of changing the course of acid-driven somatic

evolution by ablating the underlying selection pressure [88].

The steady flow of new data in support for the prominent

role played by Hþ ions in cancer will keep pH in the spotlight

for novel therapeutic approaches for years to come.
6. Concluding remarks
Tissues can regulate and adapt to a particular pH distribution

through a two-way interaction between pH and proteins.

By continuously evolving superior phenotypes, cancer cells

can exploit this interaction to out-compete host cells and

metastasize. As the common denominator of a vast array of

chemical reactions and transport processes, it is challenging

to understand how the concentration of Hþ ions is regulated

and sensed. However, the combination of physiological, bio-

chemical, genetic and computational approaches is supplying

new ideas on how to exploit the pH/biology interaction in

the management of cancer.
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