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Cancer must be viewed as a ‘tissue’, constituted of both transformed cells and a

heterogeneous microenvironment, the ‘tumour microenvironment’ (TME).

The TME undergoes a complex remodelling during the course of multistep

tumourigenesis, hence strongly contributing to tumour progression. Ion chan-

nels and transporters (ICTs), being expressed on both tumour cells and in

the different cellular components of the TME, are in a strategic position to

sense and mediate signals arising from the TME. Often, this transmission is

mediated by integrin adhesion receptors, which are the main cellular receptors

capable of mediating cell-to-cell and cell-to-matrix bidirectional signalling.

Integrins can often operate in conjunction with ICT because they can behave

as functional partners of ICT proteins. The role of integrin receptors in the

crosstalk between tumour cells and the TME is particularly relevant in the con-

text of pancreatic cancer (PC), characterized by an overwhelming TME which

actively contributes to therapy resistance. We discuss the possibility that

this occurs through integrins and ICTs, which could be exploited as targets

to overcome chemoresistance in PC.
1. Introduction
Tumour biology can be understood only taking into account both the individ-

ual transformed cells and the ‘tumour microenvironment’ (TME). The TME is a

complex array of cells and extracellular matrix (ECM) proteins that tumour cells

construct during the course of multistep tumourigenesis [1] and strongly influ-

ences the behaviour and malignancy of the transformed cells. Moreover, the

TME may change during tumour progression, hence it may differ (structurally

and functionally) from the primary tumour to its metastases [2,3]. The TME

greatly varies among cancers of different histogenesis. For example, in leukae-

mias, it is mainly represented by the bone marrow, with the complex array of

stromal and vascular cells which constitute the bone marrow nike, where

leukaemia stem cells reside [4]. In carcinomas, a clear distinction is made

between the neoplastic cells, named as the ‘parenchyma’, and the TME, indi-

cated as the ‘tumour stroma’. An active and overwhelming tumour stroma

(in this case, addressed as ‘desmoplastic reaction’) characterizes some specific

carcinomas, such as breast, prostate or pancreatic cancer (PC) [5]. In particu-

lar, the desmoplastic reaction is one of the histopathological and functional

hallmarks of PC: histopathological analysis reveals the presence of dense col-

lagen (types I and III) bundles associated with fibroblasts, with loss of

basement integrity and invasion of malignant cells into the interstitial matrix

with exposure of collagens. The ECM in PC also contains fibronectins,

tenascin-C, laminins, mainly secreted by pancreatic stellate cells (PSCs), a cellu-

lar phenotype peculiar of PC [6]. The desmoplastic reaction in PC is associated

with an abnormal vasculature with numerous circuitous small leaky blood
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Table 1. Examples of ion channels expressed by different cell types participating to the TME complexity.

TME cells ion channel type evidence of ion channel
expression

human mesenchymal cells

endothelial cells TRPC1, TRPC4, TRPC6, TRPM7, TRPV1, and TRPV4 [12]

endothelial cells Orai1ans Stim1 (CRAC channels) [12]

endothelial cells KCa [11]

bone marrow mesenchymal cells KATP [13]

bone marrow – umbilical cord vein

mesenchymal cells

KV1.1, KV4.2, KV1.4, Kir2.1, heag1, MaxiK, hNE-Na, and

TWIK-1

[14]

mesenchymal cells nicotinic and muscarinic receptors [14]

innate immune cells

neutrophils TRP, KCa, Cl [11]

macrophages KIR, ligand-gated cation channel P2X7 [11]

specific immune cells

lymphocytes Kv1.3, KCa3.1, TRP [15 – 17]
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vessels and capillaries [7]. On the whole, the desmoplastic

reaction is one of the major contributors to PC malignancy

(see below).

Taking into account the relevance of the tumour stroma,

antineoplastic therapeutic strategies must be tuned to target

the ‘cancer tissue’, e.g. not only tumour cells, but also the

cellular constituents of the TME [8,9]. In this context, decipher-

ing the role of ion channel and transporter (ICT) proteins in

the crosstalk between the tumour cells and the various con-

stituents of the TME merits particular attention, also from a

therapeutic viewpoint.

In this review, we briefly describe the TME as well as

ICTs present in the different cells of the TME. For molecular

and functional description of ICTs, we refer to other papers

[10]. Then, we focus on adhesion receptors of the integrin

family, and on their functional interaction with ICT. Because

most of these data have been reported elsewhere [11], in this

review, we mainly focus on PC, where the TME drives

tumour progression and resistance to therapy.
2. The tumour microenvironment and its ion
channels and transporters profile

The TME comprises both cells (endothelial cells and their pre-

cursors, fibroblasts and specialized mesenchymal cells as well

as cells of the innate and specific immunity) and the proteins of

the ECM. The main ICTs expressed in the cells of the TME

have been detailed in [11] and are summarized in table 1. We

must remember the prevalent role of Ca2þ-permeable channels

(both voltage-dependent and non-selective channels of the

TRP family) in endothelial cells (ECs; reviewed in [18,19]).

The electrochemical driving force for Ca2þ entry is provided

by Ca2þ-dependent Kþ channels (KCa), and the cooperation

between Ca2þ-permeable channels and KCa can serve to sustain

the Ca2þ-dependent secretion of growth and vasodilating

factors by ECs. Because many recent studies are revealing dis-

tinctive gene expression profiles and cell-surface markers of

tumour-associated versus normal ECs [20], it is possible that

ICT can contribute to determine such difference. Owing to
the relevant role of ECs and tumour angiogenesis in tumour

progression, ICTs could be exploited to develop novel anti-

angiogenesis therapies to selectively target the ECs inside the

cancer tissue.

Inside the TME, both ‘cancer-associated fibroblasts’ [21]

and specialized mesenchymal cells, such as myofibroblasts or

the PSCs [22], are present. Although cancer-associated fibro-

blasts and specialized mesenchymal cells are not malignant,

in that they do not bear cancerogenic mutations, they can exhi-

bit epigenetic changes, which affect their behaviour [23].

Moreover, they are actively secreting ECM proteins, behaving

as the main determinant of the desmoplastic reaction. The

latter, directly or through the creation of a hypoxic environ-

ment, regulates tumour progression and dictates therapy

resistance [24].

Finally, the TME is densely infiltrated by cells of both

the innate and adaptive arms of the immune system, whose

exact role in controlling tumour progression is still debated

[25,26]. Neutrophil ion channels (mainly TRPs, KCa and Cl–

channels; reviewed in [27]) are exploited to accomplish the

antimicrobial activity which characterizes these cells of

innate immunity. Macrophages express KIR channels, which

are involved in cell adhesion, and in turn affect the Ca2þ-

dependent macrophage activation [28]. Macrophages also

express P2X7 receptors, which mediate the release of lysoso-

mal cathepsin [29]. This fact could contribute to ECM

remodelling, with a strong impact on malignant progression.

The complex array of ion channels which contribute to T lym-

phocyte activation has been thoroughly described [15,16]: a

coordinated influx of Ca2þ is indeed essential to trigger T

lymphocyte activation, and an unique contingent of ion chan-

nels (including Kv1.3 and KCa3.1 Kþ channels) orchestrate the

duration and intensity of the Ca2þ signals. Moreover, the bal-

ance of these channel types constitutes a specific functional

marker of activated lymphocytes, thus providing a possible

novel therapeutic target [11].

The ECM of the TME comprises proper matrix proteins, a

multitude of growth factors and cytokines that, more or less

directly, affect malignant cells [30]. Type I collagen, fibronec-

tin and thrombospondins are the ECM proteins which
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characterize the TME, with collagen I being the main deter-

minant of the desmoplastic reaction. ECM proteins can

affect tumour progression by controlling cell motility as

well as by dictating tumour cell differentiation programmes

[30]. The ECM of the TME is produced by both tumour

and mesenchymal cells, which also modulate their ECM by

secreting proteases [31]. TME remodelling can lead to the

release of molecules sequestered in the ECM, such as the vas-

cular endothelial growth factors [32], and many cleavage

products of ECM proteins [2], which further control tumour

angiogenesis and metastasis formation.

The crosstalk between the ECM and tumour cells, as well

as of the cellular components of the TME, is mainly media-

ted through the intervention of adhesion receptors of the

integrin family.
Soc.B
369:20130101
3. Cell adhesion molecules: the integrin family
(a) Integrin structure and function
Integrin receptors are transmembrane proteins formed by non-

covalent association of a- and b-subunits. To date, 18 a- and

eight b-subunits are known in mammals. All subunits are

type I transmembrane glycoproteins with a short cytoplasmic

tail (20–70 amino acids), a membrane-spanning helix and a

large multidomain extracellular portion [33]. The b4-subunit

is an exception because its cytoplasmic domain contains

around 1000 amino acids [34]. Integrin subunits can combine

to form at least 24 functional heterodimers, each of which

binds a specific array of ECM proteins, or cell adhesion

molecules (CAMs), that act as ‘counterreceptors’.

Integrins are more than CAMs: they can transmit bi-

directional signals across the plasma membrane. On the cell

surface, integrins are normally in the low affinity state, and

they can be activated through an ‘inside-out’ signalling path-

way. During this process, two cellular activators, talin and

kindlin, play an essential role, and the binding of talin to the

b integrin cytoplasmic tail is proposed to be the final step in

integrin activation [35]. Conversely, the binding of the integrin

extracellular ligands transmits signals inward, a process called

‘outside-in’ signalling. Outside-in signalling of integrin exerts

significant influences on cell mobility, proliferation, differen-

tiation, etc. [36]. Because the list of papers describing the

many facets of integrin-mediated signalling pathways is

immense, we refer to those [33,37,38], and only limit to sum-

marize that integrins seem to be linked to almost all of the

known signalling pathways, including induction of cytosolic

kinases, stimulation of the phosphoinositide metabolism, acti-

vation of Ras/MAPK and protein kinase C (PKC) pathways

and regulation of small GTPases. Moreover, integrin signalling

often overlaps with that triggered by growth factor or cytokine

receptors [38]. The overlap and proper integration of differ-

ently arising signals, makes physiological sense, because cells

must integrate multiple stimuli from the ECM, growth factors,

hormones and mechanical stress, to organize appropriate

responses. The same integration occurs and determines the

fate of even more in tumour cells inside the cancer tissue.

(b) Integrin relationships with ion channels
The relationships between integrins and ion channels in the

cell-to-cell and cell-to-matrix interactions have been long

described [39]. The earliest indications came from studies on
neuronal and leukaemic cells, in which many cellular processes

elicited by the engagement of adhesive proteins, such as differ-

entiation, migration and neurite extension, turned out to

depend on ion channel activation [40–43]. When associated

with integrins, ion channel function becomes bidirectional

itself: it is regulated by extracellular signals (through integrins)

and in turn controls integrin activation and/or expression

[39]. Interestingly, the same kind of complex bidirectional

signalling has been observed for some ion transporters, in par-

ticular those mediating proton fluxes [44–46], which are so

relevant in the establishment of a reversed Hþ gradient

which characterizes neoplastic malignancy [47].

The bidirectional crosstalk between integrins and ion

channels occurs through different mechanisms: it may rely

on cytoplasmic messengers, such as Ca2þ or protein kinases,

commuting between the two proteins (reviewed in [39]). For

example, T lymphocyte activation in which b1 integrins are

involved is underlied by a coordinated influx of Ca2þ,

which is controlled by and, conversely, regulates Kþ channels

[16]. The transmission of mechanical forces at focal adhesion

sites is triggered by integrins and mediated by calcium [48],

but also involves the activation of signalling molecules,

such as FAK and c-Src [49].

Another aspect of integrin/ion channel interaction is the

fact that integrins and ion channels can interact directly at

the plasma membrane level. In other words, the two pro-

teins co-assemble on the plasma membrane and give rise to

supramolecular complexes, which constitute platforms for trig-

gering and orchestrating downstream intracellular signals. The

first evidence was obtained in immune cells by Levite et al. [50],

who found that the b1 integrin subunit associated with Kv1.3

channels in T lymphocytes. Shortly afterwards, a physical link

between Kv1.3 channels andb1 integrins was described in mel-

anoma cells [51]. Our group found that the b1 integrin subunit

associates with another Kþ channel, Kv 11.1 or hERG1, on the

plasma membrane of tumour cells, either leukaemias or solid

cancers [52–56]. This complex can also involve growth factor

or chemokine receptors and, once assembled, recruits cytosolic

signalling proteins, which in turn activate intracellular signal-

ling in an integrin- and ion channel-dependent manner. This

has a clear negative impact on the leukaemia disease [54],

can trigger chemoresistance [55] or control angiogenesis and

tumour progression [56].

Another mechanism involving the interaction between

integrins and ion channels contributes to determine integrin

recycling [57]. In particular, CLIC3 chloride channels coloca-

lize with active a5b1 integrins in late endosomes/lysosomes,

allowing the integrin to be retrogradely transported and

recycled to the plasma membrane at the cell rear. This

mechanism also involves Rab25 and has a clear impact on

cancer behaviour. In fact, in PC, active integrins and CLIC3

are necessary for cancer cell invasion [57].
(c) Integrins and ion channels: role in cell migration
A most interesting aspect regards the comprehension of sev-

eral mechanisms by which integrins and different channel

types interact in controlling cell migration. Besides being a

fundamental component of embryogenesis and tissue remo-

delling in the adult, these processes are relevant in tumour

cell invasiveness and metastatic spread. As typical mediators

of cell interaction with the environment, it is not surprising

that integrins play major roles in eukaryotic cell migration.



Table 2. Examples of interactions between ion channels and integrin subunits in cells of TME.

cell type ion channel type integrin subunit type evidence of ion channel expression

endothelial cells Ca2þ channels (BKCa – increased

cytosolic Ca2þ)

b1, b3 [39,68]

endothelial cells TRPV4 b1 [11]

vascular smooth muscle cells L.type Cav1.2 a5b1 [39]

neutrophils Cl – b2 [45]

lymphocytes Kv 1.3, KCa b1 [16,50]
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Moreover, we are nowadays aware that several types of Ca2þ-

activated and voltage-dependent Kþ channels are also

implicated in the cell migration machinery. This rapidly grow-

ing field has been reviewed recently [58,59] and will not be

discussed in detail here. We limit our discussion to the fact

that Kþ channels can form complexes, and thereby modulate

several proteins involved in cell movement, such as FAK

[60,61], cortactin [62,63] and integrins themselves. Interesting

speculations can derive from studies on a9b1 integrins,

which can regulate cell movement by activating inward rectifier

Kþ channels (IRK) [64]. IRK channels, along with the integrin,

are physically linked to spermidine/xspermine N1-acetyltrans-

ferase, the key enzyme in the pathway that acetylates spermine

and spermidine to putrescine, thus controlling the intracellular

concentration of polyamines. Polyamines are critical regulators

of neoplastic growth and also the main intracellular messengers

controlling IRK activity. A functional network may hence be

figured out, where an adequate intracellular concentration of

polyamines converges to trigger a proper a9b1-dependent cell

movement, through the modulation of IRK channels [65].

(d) Integrins and ion channels in the cells
of the tumour microenvironment

Integrins and ion channels also interact at the level of the

TME. One example involves cells of the innate immune

system: neutrophils release Cl– to accomplish their antimicrobial

activity; Cl– release occurs through the activation of Cl– channels

which is, at least in part, dependent on b2 integrin-mediated

adherence to fibronectin [66]. Macrophages express KIR channels,

whose activity is modulated by VLA4 (a4b1) integrin receptors

and hence by cell adhesion, which in turn affects the Ca2þ-

dependent macrophage activation [28]. Another example is

represented by ECs and their Cl channels of the CLCA protein

family. In ECs, CLCA2 behaves as a vascular addressin for meta-

static, blood-borne, cancer cells, facilitating vascular arrest of

cancer cells via adhesion to b4 integrins, and hence promoting

metastatic spread. In addition, the b4-integrin–CLCA complex

stimulates Src-dependent cell signalling through FAK and extra-

cellular signal-regulated kinase (ERK), leading to increased

proliferation of metastatic foci [67].

A list of ion channels physically or functionally linked to

integrins in the cells of TME is reported in table 2.
4. The role of the tumour microenvironment
in the progression of pancreatic cancer

PC, mainly represented by the histological form of pancreatic

ductal adenocarcinoma, is one of the most lethal
gastrointestinal malignancies, representing the second leading

cause of death among them. The overall 5-year survival rate is

less than 6%, in the most recent American Database (http://

seer.cancer.gov/csr/1975_2006), and a median survival of

18 months from diagnosis for those operated-on patients

with no evidence of residual disease. Similar disappointing

figures are available from European surveys [69]. The malig-

nant nature of PC is mainly due to its aggressive growth and

rapid development of distant metastases, thus making treat-

ment extremely difficult. Additionally, PC is locally invasive,

surrounded by a dense desmoplastic reaction (see §1) which

can involve adjacent vital structures, limiting the chance for

complete resection. Indeed, less than 20% of patients are candi-

dates for surgical resection at the time of diagnosis, while

almost one half have metastatic disease. Moreover, of the few

patients who undergo surgery with radical intent (R0), most

will develop a recurrence within 15 months. Although surgery

remains the cornerstone of cure, the addition of adjuvant

treatments is required [70]. Chemotherapy (in Europe) or

radiochemotherapy (in North America) has been used, either

as adjuvant to surgery or as definitive treatment for unresect-

able disease, with conflicting results [71,72]. Failure of

traditional therapeutic approaches for this devastating disease

had led to many efforts towards the study of molecular biology

and targeted therapies, in order to create a multimodal thera-

peutic strategy [73]. Among target therapy drugs, only

erlotinib that targets the EGF-R, has been shown to improve

survival when used in combination with gemcitabine, com-

pared with gemcitabine alone. Nevertheless, the clinical

response rate remains modest, mainly owing to the intrinsic

chemoresistance of PC cells [74]. Investigating mechanisms

mediating chemoresistance is therefore of clinical interest in

drug development of new agents. As stated in §1 one of the

major contributors to PC malignancy and therapy resistance

is represented by the desmoplastic reaction. Further under-

standing of how the TME facilitates PC cell malignancy

will identify unique targets that may finally improve the

treatment of patients with PC [6]. Some insights are briefly

reported below.
(a) Interaction between tumour and stromal cells
in pancreatic cancer: the role of pancreatic
stellate cells

Normal development of glandular structures requires inter-

actions between stromal cells and the epithelial cells that

will eventually line the surface of the gland. In the pancreas,

mesenchymal cells stimulate adjacent pluripotent cells to

form acini, while inducing other remote cells to complete the

http://seer.cancer.gov/csr/1975_2006
http://seer.cancer.gov/csr/1975_2006
http://seer.cancer.gov/csr/1975_2006
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Figure 1. A model illustrating tumour – stroma interaction in PC as well as the involvement of integrins.
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endocrine pathway. These interactions in normal development

require specific proteins within the ECM, notably laminin.

Crosstalk between mesenchymal and epithelial compartments

occurs through soluble messengers acting on a paracrine (or

autocrine) manner, cell-surface receptor activation through

direct cell-to-cell contact, and specific ECM proteins secreted

by mesenchymal cells [75,76]. Perturbations of the normal

mesenchymal–epithelial interactions can lead to unregulated

cell growth, as occurs in cancer.

PSCs are the predominant mesenchymal cells within the PC

stroma and the main determinant of the desmoplastic reaction

[77]. PSCs originate from bone-marrow-derived mesenchymal

stem cells, and are similar to myofibroblasts found in other

tumour stroma (breast, prostate cancer). PSCs have the ability

to transdifferentiate from a ‘quiescent’, retinoid/lipid storing

phenotype in the normal pancreas to an ‘activated’, a-smooth

muscle actin producing myofibroblastic phenotype. Activators

of PSCs in vivo include cytokines (IL1, IL6, IL8 and TNF-a)

growth factors (PDGF and TGF-b) and reactive oxygen species

released by damaged inflammatory cells recruited in response

to injury to the pancreas. Activated PSCs, in turn, can produce

autocrine factors, such as PDGF, TGF-b, cytokines and proin-

flammatory molecules which may potentiate an activated

phenotype [77–79]. PSCs, besides being implicated in the gen-

esis of chronic pancreatitis, are critical for the development of

the desmoplastic reaction in PC, being the main source

of ECM proteins [78]. Moreover, because PSCs are activated

by PC cells in vitro, a synergistic relationship between the
two types of cells occurs, that favours the development and

progression of PC.
(b) Integrins in pancreatic cancer
In PC, it is well established that ECM proteins, such as collagen,

fibronectin and tenascin-C, interact with cell-surface integrins

to provide intracellular signals to both PSCs and PC cells

[80]. For example, in PSCs, b1 integrins are important not

only to modulate cell adhesion to the basement membrane,

but also to determine the proper formation and differentiation

of acini during normal development [81]. PC cells express at

least two major classes of integrins: b1-containing integrins

(mainly a2b1 and a5b1), which mediate cell adhesion to fibro-

nectin, laminin and collagen (type I and IV), and avb5, which

is mainly involved in PC cell adhesion to vitronectin [82,83].

Integrin engagement has been reported to determine the

malignant phenotype of PC cells by regulating cell pro-

liferation [82], invasion [84] as well as by cytokine secretion

[85]. For example, tenascin-C can affect PC cell growth and

migration through the activation of b1 integrin intracellular

signalling pathways [86]. Some recent evidence indicates

that intergrin involvement in PC cell invasion can also occur

through a complex interaction with EGF receptor (EGF-R)

and the modulation of Src-centred intracellular signalling path-

ways [84].

On the whole, integrins, mainly those containing the b1

subunit, being expressed both in PC cells and in PSCs, and
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regulating the production of ECM proteins by the latter, are

pivotal in regulating tumour–stroma interaction in PC. b1

integrins can hence drive different aspects of tumour cell

behaviour, including chemo- and radio-resistance (see below).

(c) Ion channels and transporters in pancreatic cancer
In the past few years, different ICT proteins have been character-

ized in PC cells: TRP cationic channels of the ‘melastatin-related’

type (TRPM) have been reported to be overexpressed in PC cells.

In particular, both TRPM8 [87] and TRPM7 [88] are overex-

pressed in pancreatic ductal adenocarcinoma cells, where they

regulate either cell proliferation or migration. TRPM7 activation

triggers a Mg2þ-sensitive ‘suppressor of cytokine signalling 3a’

(Socs3a) pathway, which regulates exocrine pancreatic epithelial

cell proliferation, both in development and cancer [89]. More-

over, Dong et al. [90] reported that TGF-b induces Ca2þ entry

in PC cells via TRPC1 channels and the Naþ/Ca2þ exchanger

NCX1, thus raising intracellular Ca2þ concentration. Ca2þ

increase is in turn essential for PKCa activation and subsequent

tumour cell invasion [90]. As described above [57], CLIC3 chan-

nels regulate integrin recycling and behave as independent

prognostic indicators in PC. This highlights the importance of

active integrin trafficking as well as Cl– channels as potential dri-

vers to cancer progression. Among voltage-gated Kþ channels,

Kv 11.1 (hERG1) is expressed in PC and identifies a patient

group with worse prognosis [91]. Because hERG1 physically

and functionally interacts with b1 integrins in different tumour

cells (see above) including PC [91], it is tempting to speculate

that it could drive PC malignancy through the modulation of

integrin-mediated signalling. Finally, the sodium hydrogen

exchanger 1 (HNE1) is expressed in PC cells [92,93] and is acti-

vated by growth factors such as neurotensin (NT). The NT/

HNE1 pathway may be implicated in the early progression

of PC by localized acidification and induction of an aerobic

glycolytic phenotype with higher metastatic potential.
A model illustrating tumour–stroma interaction in PC, as

well as the involvement of integrins, is reported in figure 1.

Those ICTs which interact with integrins to modulate the

crosstalk between PC cells and the TME are also illustrated.

(d) The tumour microenvironment drives therapy
resistance in pancreatic cancer

The altered crosstalk between stromal ECM proteins and integ-

rins expressed on both tumour and TME cells is also implicated

in mechanisms of acquired resistance to chemo- and radio-

therapy in PC. An in vitro study using different PC cell lines

cultured in the presence of collagen, fibronectin or laminin,

showed different induction of chemosensitivity, depending

on the type of substrate [94]. Indeed, inhibiting ECM-integrin

function in combination with chemotherapy may be a potential

therapeutic intervention that could specifically target the des-

moplastic reaction. One example could be the monoclonal

antibody targeting a5b1 or avb3 integrin (Vitaxin). Moreover,

PSCs are known to promote radioprotection of PC cells: this

effect is dependent on a signalling pathway triggered by b1

integrin and converging on FAK [95].

Treatment failure in PC may be due, at least in part, to our

limited understanding of how the fibrotic tissue and the stro-

mal cells present within this tumour can facilitate the rapid

progression of this cancer type. Therefore, a better understand-

ing of the mechanisms which regulate PC cell interactions with

the TME, with particular attention to the crosstalk between

integrins and ICTs, could open a new perspective to effectively

treat PC.
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