
rstb.royalsocietypublishing.org
Review
Cite this article: Schwab A, Stock C. 2014 Ion

channels and transporters in tumour cell

migration and invasion. Phil. Trans. R. Soc. B

369: 20130102.

http://dx.doi.org/10.1098/rstb.2013.0102

One contribution of 17 to a Theme Issue

‘Ion channels, transporters and cancer’.

Subject Areas:
physiology, health and disease

and epidemiology

Keywords:
migration, invasion, ionic signalling,

transportome, metastasis

Author for correspondence:
Albrecht Schwab

e-mail: aschwab@uni-muenster.de
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Ion channels and transporters in tumour
cell migration and invasion

Albrecht Schwab and Christian Stock

Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b,
Münster 48149, Germany

Cell migration is a central component of the metastatic cascade requiring a

concerted action of ion channels and transporters (migration-associated

transportome), cytoskeletal elements and signalling cascades. Ion transport

proteins and aquaporins contribute to tumour cell migration and invasion

among other things by inducing local volume changes and/or by modulating

Ca2þ and Hþ signalling. Targeting cell migration therapeutically bears great

clinical potential, because it is a prerequisite for metastasis. Ion transport pro-

teins appear to be attractive candidate target proteins for this purpose because

they are easily accessible as membrane proteins and often overexpressed or

activated in cancer. Importantly, a number of clinically widely used drugs

are available whose anticipated efficacy as anti-tumour drugs, however, has

now only begun to be evaluated.
1. Introduction
Tumour progression towards metastatic disease follows a well-defined sequence

of events [1]. The metastatic cascade includes several critical steps that rely on the

ability of tumour cells to migrate: local invasion of the affected tissue following

the disruption of the basement membrane as well as intra- and extravasation of

blood or lymph vessels (figure 1). Without their ability to move, tumour cells

would not be able to metastasize. However, tumour cells do not necessarily act

independently. They also can migrate collectively as a group [2]. Moreover,

there is an intense mutual communication between tumour and stromal cells,

and the tumour microenvironment that is typically characterized by local acidosis

and hypoxia [3–5]. Thus, in pancreatic ductal adenocarcinoma (PDAC), recipro-

cal activation of stromal stellate cells and cancer cells strongly promotes tumour

progression [6]. Metastases in PDAC may even contain tumour cells and pancrea-

tic stellate cells [7]. Monitoring the collective invasion of co-cultured fibroblasts

and squamous cell carcinoma cells revealed that the invading cell group is

always led by fibroblasts [8]. Thus, the ability to migrate is equally important

for cancer and stromal cells.

This review highlights the role of ion channels and transporters in the steps

of the metastatic cascade that rely on the ability of tumour and stromal cells to

migrate. Local fluctuations of the cell volume as well as pH and Ca2þ signalling

evolved as common mechanisms linking ion transport proteins to the metastatic

behaviour. We refer to three recent reviews [9–11] for a broader overview of ion

transport in cell motility.
2. Ionic mechanisms of cell migration
Most malignant tumours are of epithelial origin. Hence, carcinoma cells have lost

their epithelial polarization during epithelial–mesenchymal transition (EMT).

Mesenchymal cells can detach and move away from the epithelial layer [12].

EMT involves a coordinated gene expression programme in association with

the early steps of transformation which also can include proteins involved in

ion transport. Thus, the ectopic expression of carbonic anhydrase (CAIX) is

accompanied by a loss of cell–cell contacts. Subsequently, CAIX, pH-regulating

transport proteins (e.g. NBCe1, AE2, NHE1, MCTs) and aquaporins are
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Figure 1. Involvement of cell migration in the metastatic cascade. During
malignant transformation, cells of the primary tumour lose their contacts
with the neighbouring, healthy cells and become motile. They degrade base-
ment membranes, invade and cross extracellular matrices in order to
eventually intravasate into blood or lymph vessels. Only few cells survive the
intravascular milieu and adhere to the vessel wall at a distant site where
they extravasate and invade to form a metastasis. Those steps of the metastatic
cascade that rely on migration are labelled with a hooklet (tick symbols). (Online
version in colour.)
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reallocated to the cell front where they elicit functions relevant

for cell migration (see below [13]).

Cell migration can be modelled as a repeated cycle of pro-

trusion of the cell front and retraction of the cell rear. This

involves a complex interplay of multiple components of the

cellular migration machinery that are tightly regulated in

space and time. Immediately at the leading edge, actin fila-

ments polymerize while simultaneously depolymerizing

towards the lamellipodial rear. This process is controlled by

proteins that bind actin monomers, sever and branch existing

filaments or nucleate the formation of new ones. The inter-

action of actin filaments with cytoskeletal motor proteins

such as myosin generates force that is transmitted via focal

adhesion complexes onto the surrounding extracellular

matrix (ECM). In moving cells, new contacts are formed at

the cell front, whereas others are released at the rear part.

We refer to recent reviews that provide in-depth overviews of

the cytoskeleton [14] and cell adhesion [15] in migrating cells.

Cytoskeletal and cell adhesion dynamics are regulated by

ionic mechanisms, and thereby depend on the activity of

the respective transport proteins. These will be described in

the following paragraphs with special emphasis on pH- and

Ca2þ-dependence and the role of local changes of cell volume

played therein. However, the involved transport proteins do

not only regulate the intra- and extracellular pH and Ca2þ

homeostasis. Many of them are pH- and/or Ca2þ-sensitive

themselves. Moreover, intracellular Ca2þ and Hþ concen-

trations are physico-chemically coupled, and therefore cannot

be changed entirely independently from each other [16]. The

role of the mutual feedback of functionally cooperating
transport proteins, the ‘transportome’, including their sig-

nalling pathways in cell migration has only begun to be

appreciated. We will not discuss the interaction of Kþ channels

with integrins as this is covered elsewhere in this issue [17].

(a) pH-dependent regulation of the cytoskeleton
in tumour cell migration

Intracellular and extracellular pH homeostasis is particularly

important in cancer as outlined elsewhere in this issue

[4,5,18]. As the ionization state of all cellular and extracellular

proteins including their function in (patho)physiological pro-

cesses depends on pH, (directional) tumour cell migration is

controlled by intra- and extracellular pH [19–23].

Cofilin regulates cell motility pH dependently [24]. It

generates new sites of actin filament assembly by severing

actin filaments and producing free barbed filament ends.

This promotes dynamic actin polymerization and membrane

protrusion at the cell front or at the tip of invasive structures

[25]. The inhibition of cofilin activity by PI-(4,5)-P2 binding is

removed upon an intracellular alkalinization [26]. The local

intracellular alkalinization in the lamellipodium required

for cofilin activation is generated by the activity of the

Naþ/Hþ exchanger NHE1 that accumulates at the front of

migrating tumour cells and fibroblasts [27–31]. NHE1 is

upregulated in numerous tumours [22,32,33] and is required

for motility of melanoma, breast cancer and cervix carcinoma

cells [34]. Another way of pH-dependent regulation of cofilin

involves cortactin. An NHE1-mediated increase in pHi trig-

gers the release of cortactin-bound cofilin. Cofilin then

induces barbed end generation, thereby promoting actin

polymerization [35]. Gelsolin is another actin-binding protein

that is activated by an acidic pH and that controls actin

assembly and disassembly [36]. Because NHE1 activity con-

tributes to the generation of an intracellular pH gradient

along the moving direction of migrating cells with more alka-

line pH values in the lamellipodium [37], we assume that

cofilin is more relevant for regulating actin dynamics at the

leading edge, whereas gelsolin is more active at the acidic

rear end. Finally, actin self-assembly and binding of myosin

to actin is promoted by neutral or slightly acidic pHi values

[38,39]. These examples demonstrate that actin dynamics

underlying the outgrowth of lamellipodia or invadopodia

relies on an optimal intracellular pH environment [11,40],

which, in turn, is adjusted by the activity of pH regulating Hþ

(NHE1) and/or HCO3
2 transporters, possibly in cooperation

with carbonic anhydrases or monocarboxylate transporters

[13,32,41–43].

(b) Ca2þ-dependent regulation of the cytoskeleton
in tumour cell migration

The intracellular calcium concentration ([Ca2þ]i) has a great

impact on the migration machinery of ‘normal’ (e.g. keratino-

cytes), tumour and stromal cells, too, because many of its

elements such as myosin II [44], myosin light chain kinase

[45], calpain [46], Ca2þ/calmodulin-dependent protein kinase

II [47,48], focal adhesion kinase [49] or ion channels (e.g. KCa

or TMEM16 channels) are Ca2þ-sensitive. Ca2þ regulation of

cell migration involves a tight spatial and temporal control.

In addition to a global front–rear gradient with [Ca2þ]i increas-

ing towards the rear end of migrating cells [50,51], there are

also local Ca2þ microdomains [45,52–54]. Spatial gradients of
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[Ca2þ]i are superimposed by temporal changes, or oscillations

of [Ca2þ]i that contribute to dynamic responses of the cellular

migration apparatus [45,55]. One of the major mechanisms

by which [Ca2þ]i signalling impacts on cell migration is the

modulation of cytoskeletal dynamics.

a-Acitinin is an actin-binding protein controlling lamelli-

podial dynamics and directional migration [56]. It is Ca2þ-

sensitive with an increase of [Ca2þ]i, causing an inhibition

of actin bundling activity [57]. Moreover, [Ca2þ]i is involved

in the generation of a myosin-II-dependent contractile force

during the retraction of the rear part of migrating cells [58].

On a smaller scale, retraction also occurs at the cell front.

Here, local Ca2þ pulses of minute amplitudes that originate

a few mircometres behind the leading edge induce the retrac-

tion of confined areas of the lamellipodium by activating

MLCK and myosin-II-mediated contraction [45]. Interest-

ingly, STIM1, a component of the store-operated Ca2þ entry

(SOCE) channel, continuously appears close to the leading

edge of PDAC cells [59]. Calcium-dependent development

of mechanical force also has a large impact on cell adhesion

which is detailed below. In neutrophil granulocytes, the ablation

of TRPC6 channels caused a severe impairment of the cells to

chemotax towards the KC (CXCL1) [60]. Local TRPM7-

mediated Ca2þ sparks at the cell front are required for directional

migration of fibroblasts towards a source of platelet-derived

growth factor (PDGF) [53]. While the two latter studies were

not performed with tumour cells, they are nonetheless instruc-

tive for tumour pathophysiology. First, they reveal signalling

cascades that are also encountered in tumours such as PDAC

[61]. Second, the ability of tumour or stromal cells to chemotax

secures their mutual communication in response to paracrine

growth factor stimulation in the tumour microenvironment.

Chemotaxis of tumour cells also requires the activity of ion

channels such as TRPC1 and/or KCa3.1 channels [62–65].
(c) pH-dependent regulation of tumour cell adhesion
Integrins are integral components of focal adhesions.

Depending on their subunit composition, they mediate the

interaction with different proteins of the ECM. Multiple

integrins, such as a2b1, a5b1 or anb3, are pH-dependent

in melanoma [19] and in other cells [66,67]. Increased

adhesion at acidic extracellular pH values is explained by

conformational changes that lead to an enhanced aviditity

of the integrin headpieces to ECM proteins [67] or by a pH

dependence of the mechanical stability of focal adhesions

[68]. Conceptually, it is important that integrins protrude

only 20 nm into the extracellular space [69]. Therefore, it is

not surprising that the pericellular pHe inside the glycocalyx

is more important for cell adhesion than the pH of the extra-

cellular bulk solution surrounding migrating melanoma

cells [19,21]. The pericellular pHe even confers asymmetry

upon migrating tumour cells, because it is more acidic at

the cell front than at the rear end [21,28]. The global peri-

cellular front–rear pH gradient is superimposed by acidic

pHe nanodomains generated by NHE1 activity. Because

these nanodomains are restricted to focal adhesions, we

assume that NHE1 activity locally stabilizes the integrin-

mediated interaction between cell surface and ECM [70]. In

melanoma and in endothelial cells, this pericellular pHe gra-

dient is accompanied by a complementary intracellular pH

gradient. pHi is more alkaline at the cell front than at the

rear part [37,71]. The alkaline pHi at the cell front leads to
a higher focal adhesion turnover owing to the lower affinity

of talin for binding actin [40].

(d) Ca2þ-dependent regulation of tumour cell adhesion
The maturation and dynamic turnover of focal adhesions are

modulated by the [Ca2þ]i [45,49,53,54,72]. This occurs in part

because of a global gradient with [Ca2þ]i being usually

higher at the rear end than at the front [50–53] which restricts

the disassembly of focal adhesions by Ca2þ-sensitive family of

calpain phosphatases to the rear part of migrating cells [73,74].

Alternatively, local Ca2þ elevations affect focal adhesion

dynamics, possibly by mediating tyrosine phosphorylation of

FAK [54]. Adhesion of cancer cells to the ECM is also mediated

by invadopodia that share many similarities with podosomes

found in ‘normal’ cells such as macrophages [75]. In microglial

cells, the formation of invadopodia depends on the presence of

extracellular Ca2þ whose transport into invadopodia is likely

mediated by Orai1 [76].

(e) Cell volume dynamics during cell migration
As outlined above, cell migration can be viewed as a repeti-

tive cycle of protrusion of the cell front and retraction of

the rear part. The rear part often lags behind for quite some

time before retracting at a much faster speed. Such shape

changes are particularly prominent when cells are moving

within a three-dimensional environment where tumour cells

or stromal cells may extend processes as long as 100 mm

before the cell body eventually catches up. This fast retraction

of the rear part coincides with or follows an elevation of the

[Ca2þ]i [55,77] which is likely to be caused by the activation

of mechanosensitive Ca2þ channels. Their molecular identity

has not yet been conclusively determined. TRPC1 [78],

TRPM7 [53] and TRPV4 [79] channels are possible candidates.

In addition to triggering the Ca2þ-dependent mechanisms out-

lined above, the elevation of [Ca2þ]i also leads to an activation

of Ca2þ-sensitive ion channels such as KCa3.1 [80], KCa2.3 [81],

ClC3 [48,82] or TMEM16A/ANO1 [83–85]. Studies of cell

volume regulation revealed that cell shrinkage can be elicited

by the simultaneous activation of Kþ and Cl2 channels [86].

Therefore, a hydrodynamic model was postulated according

to which ion channels and transporters elicit local changes of

cell volume that act in concert with cytoskeletal mechanisms

underlying rear end retraction and/or the protrusion of the

cell front [80,87,88]. This model was confirmed experimentally

by several groups [89–93]. The observation that aquaporins are

essential components of the cellular migration apparatus [94]

lent further strong support to this model. Aquaporins provide

the route for osmotically driven water influx or efflux, leading

to local cell swelling at the cell front or shrinkage at the rear

part, respectively.
3. Ionic mechanisms of tumour cell invasion
Tumour cell invasion is frequently linked to invadopodia

[75]. They are sites of proteolytic degradation of the ECM,

and thereby facilitate migration through a three-dimensional

network of matrix fibres (figure 2). Traditionally, the role of

invadopodia in tumour cell invasion is reflected by the pres-

ence of several proteases (e.g. MT1MMP, MMP2). The

‘microscopic’ NHE1-mediated acidification at the cell surface

of lamellipodia and invadopodia facilitates the action of
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Figure 2. Hypothetical model of invadopodium formation involving pH, Ca2þ

and volume regulation. Phosphorylation of cortactin (P) modulates the interaction
between NHE1 and cortactin. Stimulated NHE1 activity increases pHi and triggers
the release of cortactin-bound cofilin. Cofilin then promotes actin polymerization.
Cdc42, a small, pH-dependent Rho-GTPase, regulates actin polymerization by
binding to the neural Wiskott – Aldrich syndrome protein (NWASP) which then
activates the Arp2/3 complex. Hþ extruded by NHE1 causes an extracellular acid-
ification, thereby facilitating the interaction between integrins and collagen and
promotes the activity of matrix metalloproteinases (MMP). Lamellipodia/invado-
podia outgrowth requires local volume increase that is mediated by water uptake
through aquaporins (AQP) and possibly driven by the osmolytes glucose and Naþ

imported by the Naþ, glucose co-transporter 1 (SGLT1). By analogy with podo-
somes, Ca2þ influx through ORAI channels would occur and stimulate both
calpain2 (calp2) to cleave cortactin and calmodulin to activate KCa2.3 channels.
KCa2.3 could fine-tune Naþ entry through the SGLT1 by keeping the membrane
potential stable and controlling the amount of osmolytes entering the invadopo-
dia. ORAI1 contributes to focal adhesion dynamics by co-localizing with PLA2g6.
PLA2g6 supports the phosphorylation of the focal adhesion kinase (FAK) by
activating ORAI1. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130102

4

pH-dependent proteases [28,95,96]. The activity of matrix

metalloproteinase 2 (MMP2) requires the protonation of the

substrate such as fibrinogen [97], and the expression of

MMP9 is upregulated by an acidic extracellular pH [98]. Inva-

sive behaviour of various tumour cells is also triggered by the

expression of voltage-gated Naþ channels (NaV) [99]. They

appear to cooperate with NHE1 during invasion of breast

cancer cells by as yet undefined mechanisms [100] and

increase the activity of cysteine cathepsins [101].

Based on the great similarity between podosomes and

invadopodia, we assume that a similar Ca2þ dependence

will also be found in cancer cells [76]. This view is supported

by the fact that the ability of cancer cells to invade extracellu-

lar matrices could be related to the activity of Ca2þ influx

channels such as TRPM7 or ORAI1 [102–104]. Finally, the

activity of matrix metalloproteinases has also been linked to

Ca2þ signalling [105,106]. The upregulation of MMP9 requir-

ing Ca2þ influx can therefore be inhibited by blocking

voltage-gated Ca2þ channels [107].
(a) Volume dynamics during tumour cell invasion
The ability of tumour cells to locally change their volume and

shape, respectively, also facilitates their movement through

the tortuous interstitium and through the wall of a blood/

lymph vessel (intra-/extravasation). Ion channels and transpor-

ters thereby convey a means to the tumour cells to overcome

mechanical barriers [108] which is particularly relevant when

tumour cells invade the interstitium. Accordingly, migration

of glioblastoma cells on a two-dimensional surface is not

impaired when the Naþ/Kþ/2Cl2 cotransporter is inhibited

while this is the case when they are invading the brain

parenchyma [109]. Possibly, growth and protrusion of invado-

podia are also supported by a mechanism similar to the one

used by the intracellular pathogen Cryptosporidium parvum
that induces SGLT1- and AQP1-driven membrane protrusions

in the host cell [110] (figure 2). Glucose transporters are

widely expressed in many tumour cells to ensure their meta-

bolic supply [111]. Finally, their role in tumour cell invasion

[112] may be due to the fact that the protrusion of lamellipodia

is linked to glycolytic energy production [31]. Preclinical and

clinical observations lend further support to the importance

of cellular volume dynamics during invasion of tumour cells.

Expression of aquaporins is associated with poor prognosis

and metastatic relapse of a number of tumours (e.g. AQP1

overexpression in patients with lung adenocarcinoma; [113]).
4. Outlook and clinical perspectives
Studies from the past approximately 15 years provided proof

of concept that ion channels and transporters are crucial for

the metastatic behaviour of tumour cells. It is becoming

increasingly clear that ion transport proteins do not act in

an isolated manner on their own, but that they act in net-

works of functionally cooperating units [13,63,114,115]. This

is reflected by the concept of the migration-associated trans-

portome that we recently introduced [9]. It implies that ion

transport signalling pathways such as pH, Ca2þ or cell

volume are closely linked to each other. However, neither

the pathophysiological significance of this crosstalk is well

understood, let alone the interaction of ionic with kinase-

based signalling pathways. For instance, it has not yet been

investigated systematically how the altered expression of

pH regulatory transporters in solid tumours affect the func-

tional impact of other members of the migration-associated

transportome and their crosstalk with growth factor signal-

ling. Similarly, it is unknown whether transport proteins

whose upregulation is mediated by hypoxia-induced HIF1a

constitute ‘functional units’ involved in cell migration.

Extravasation of tumour cells in tumour-specific target

organs is another step of the metastatic process for which

the role of ion channels and transporters has not yet been

investigated in detail. This process bears similarities to the

recruitment of leucocytes from the bloodstream. It is supported

by the cooperation of tumour cells with platelets and leucocytes

[116]. Thus, it is reasonable to assume that tumour cells use

similar ionic mechanisms to leucocytes (e.g. neutrophil gra-

nulocytes) in which Ca2þ influx via Orai1 plays an important

role in the initial steps of recruitment [117]. Indeed, functional

coupling between KCa2.3 and ORAI1 channels in lipid rafts

seems to promote bone metastases of breast cancer cells [115].

Along the same lines, one could speculate that the reciprocal

activation of integrins and KV11.1 channels in tumour cells
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contributes to their ability to extravasate, because KV11.1

expression in acute myeloid leukaemia cells correlates with a

higher probability of relapse [118].

Many of the transport proteins (e.g. KV10.1) are not only

involved in controlling cell migration and invasion, but also

in other ‘hallmarks of cancer’ such as proliferation [114,119].

Thus, drugs that target members of the migration-associated

transportome are likely to elicit more responses than just the

inhibition of tumour cell migration and invasion. Combined

effects such as inhibition of migration and proliferation by

blocking KCa3.1 channels may be desirable [120,121], whereas

the combined inhibition of migration and apoptosis by KV1.3

channel blockade would certainly not be advantageous.

Because most tumour patients die of metastases the inhi-

bition of the mechanisms underlying metastasis offers

great therapeutic potential. Targeting tumour cell migration

would therefore be a good choice because it is one of the pre-

requisites for metastasis. Indeed, migration has been targeted

in order to treat chronic inflammatory diseases [122] which is

another pathological condition strongly relying on the ability

of (inflammatory) cells to migrate. Transport proteins that

could qualify as a potential anti-migratory target include

among others NHE1, KCa3.1 channels or NaVs. Migration
and invasion of all tumours cells studied to date relies at

least partially on the activity of one of these proteins [9]. Impor-

tantly, there are also small molecule inhibitors validated in

phase III clinical trials (KCa3.1 blocker senicapoc [123] and

NHE1 blocker cariporide [124]) or that are already widely

used clinically such as amide-linked local anaesthetics that block

NaVs. Presently it is being discussed whether the NaV-

mediated metastatic behaviour of tumour cells can be targeted

by using amide-linked local anaesthetics during cancer surgery

[125]. Similarly, the use of the Kþ sparing diuretic amiloride

which is also an NHE1 blocker, can be envisaged [126].

Thus, there is an increasing number of functionally relevant

ion transport proteins to be targeted. They are easily accessible

because they are membrane proteins and often overexpressed

or activated in cancer. Moreover, they have a long history of

being drug targets in other medical fields such as cardiology,

nephrology or anaesthesia. Alternatively, transport-associated

proteins such as the tumour marker carbonic anhydrase IX

could be targeted by specific antibodies [127].
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Arch. 439, 297 – 303. (doi:10.1007/s004240050943)
90. Happel P, Moller K, Kunz R, Dietzel ID. 2010 A
boundary delimitation algorithm to approximate
cell soma volumes of bipolar cells from
topographical data obtained by scanning probe
microscopy. BMC Bioinform. 11, 323. (doi:10.1186/
1471-2105-11-323)

91. Happel P, Moller K, Schwering NK, Dietzel ID. 2013
Migrating oligodendrocyte progenitor cells swell
prior to soma dislocation. Sci. Rep. 3, 1806.

92. Watkins S, Sontheimer H. 2011 Hydrodynamic
cellular volume changes enable glioma cell
invasion. J. Neurosci. 31, 17 250 – 17 259.

93. Schneider L, Klausen TK, Stock C, Mally S,
Christensen ST, Pedersen SF, Hoffmann EK, Schwab
A. 2008 H-ras transformation sensitizes volume-
activated anion channels and increases migratory
activity of NIH3T3 fibroblasts. Pflügers Arch. 455,
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