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Abstract

Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A,

B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB),

epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in

various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE),

and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more

of these toxins. The role of CPA in intestinal disease of mammals is controversial and poorly

documented, but there is no doubt that this toxin is essential in the production of gas gangrene of

humans and several animal species. CPB produced by C. perfringens types B and C is responsible

for necrotizing enteritis and enterotoxemia mainly in neonatal individuals of several animal

species. ETX produced by C. perfringens type D is responsible for clinical signs and lesions of

enterotoxemia, a predominantly neurological disease of sheep and goats. The role of ITX in

disease of animals is poorly understood, although it is usually assumed that the pathogenesis of

intestinal diseases produced by C. perfringens type E is mediated by this toxin. CPB2, a

necrotizing and lethal toxin that can be produced by all types of C. perfringens, has been blamed

for disease in many animal species, but little information is currently available to sustain or rule

out this claim. CPE is an important virulence factor for C. perfringens type A gastrointestinal

disease in humans and dogs; however, the data implicating CPE in other animal diseases remains

ambiguous. PFO does not seem to play a direct role as the main virulence factor for animal

diseases, but it may have a synergistic role with CPA-mediated gangrene and ETX-mediated

enterotoxemia. The recent improvement of animal models for C. perfringens infection and the use

of toxin gene knock-out mutants have demonstrated the specific pathogenic role of several toxins

of C. perfringens in animal disease. These research tools are helping us to establish the role of
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each C. perfringens toxin in animal disease, to investigate the in vivo mechanism of action of these

toxins, and to develop more effective vaccines against diseases produced by these

microorganisms.
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INTRODUCTION

Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes

(A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta

(CPB), epsilon (ETX) and iota (ITX) (Table 1). However, this microorganism can produce

up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O

(PFO), enterotoxin (CPE), and beta2 toxin (CPB2) [1–4].

C. perfringens causes numerous gastrointestinal infections in most mammalian species

(Table 2). These infections are generically called enterotoxemias because toxins produced in

the intestine may be absorbed into the general circulation. However, while this is true for

many C. perfringens toxins, some toxins produced in the intestine act only locally. This

microorganism can also cause diseases of skin, subcutaneous and muscular tissues (gas

gangrene or malignant edema). Most, if not all diseases produced by C. perfringens are

mediated by one or more of its powerful toxins. We review here the most studied C.

perfringens toxins involved in mammalian veterinary diseases.

ALPHA TOXIN (CPA OR PLC)

Structure and Mechanism of Action

Alpha-toxin (CPA or PLC) is produced by all C. perfringens strains (Table 1), although

toxinotype A strains usually produce higher amounts than the other toxinotypes [5]. The

main properties of this toxin are summarized in Table 3. CPA is a 43 kDa protein comprised

of 370 amino acids. It contains two domains, an alpha-helical N-terminal domain harboring

the phospholipase C active site, and an alpha-sandwich C-terminal domain which is

involved in membrane binding. CPA has more than 50% identity at the amino acid level,

and/or on the basis of antigenic cross-reactivity, to the phospholipases C from Clostridium

bifermentans, Clostridium novyi, Clostridium baratii and Clostridium absonum [3]. CPA is

a classic example of a toxin that modifies cell membranes by enzymatic activity. This toxin

is a zinc-dependent phospholipase C which degrades phosphatidylcholine and

sphingomyelin, both components of the eukaryiotic cell membranes [6], causing damage on

the membrane of erythrocytes and other cells from many animal species. The net result of

this action is cell lysis, by degradation of membrane phospholipids [7]. CPA also activates

several other membrane and internal cell mechanisms that lead to hemolysis [6–8]. In

addition, CPA activates the arachidonic cascade resulting in the formation of thromboxanes,

leukotrienes and prostaglandins, which activate the inflammation cascade and produce

vasoconstriction [6, 9].

Uzal et al. Page 2

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In combination with PFO, CPA allows C. perfringens to escape macrophage phagosomes

and survive in the host tissue [10]. CPA in sublytic amounts impairs the migration of

leukocytes and promotes their aggregation by several different mechanisms including

hyperadhesion with leucostasis at the periphery of lesions [11]. These free intravascular

aggregates are responsible for the blockade of blood flow in small vessels, and subsequently

for the anoxia and necrosis of tissues [12–15] which in turn helps create anaerobic

conditions for the proliferation of C. perfringens.

Genetics of CPA

All C. perfringens strains possess the gene encoding CPA. This gene (cpa) is

chromosomally encoded and located close to the origin of replication, which is one of the

most stable regions within the bacterial chromosome [16]. This chromosomal location of the

cpa gene contrasts with many of the other major toxin genes of C. perfringens, which are

plasmid borne [16–19]. Nucleotide sequencing of the cpa gene from type A strain ACTC

13124, a high CPA producer, revealed a single open reading frame that includes a putative

prokaryotic signal sequence [20]. The cpa genes from other type A and types B-E strains of

C. perfringens have been characterized, showing that they are also located chromosomally

[16].

A two component regulatory system named VirS/VirR positively regulates the in vitro

transcription of cpa via a RNA regulatory molecule called VR-RNA [21–24]. Transcription

of cpa and production of the CPA protein is also regulated by the recently described C.

perfringens Agr quorum sensing system [25, 26]. Whether those systems act in concert to

regulate cpa transcription still needs to be clarified.

Role of CPA in Animal Diseases

Intestinal Infections—The role of CPA in intestinal disease of mammals is controversial

and poorly documented (Table 2). In sheep, C. perfringens type A causes yellow lamb

disease [27], a rare form of acute enterotoxemia in lambs. Information about pathogenesis of

this disease is minimal and often contradictory, but it is generally assumed that most clinical

signs and lesions are due to the effects of CPA [27]. However, no definitive proof of the

action of this toxin in the pathogenesis of yellow lamb disease has been provided. The

disease is characterized clinically by depression, anemia, icterus, and hemoglobinuria.

Necropsy findings include pale and friable liver and spleen and the presence of red urine in

the urinary bladder [27]. Histopathological changes include periacinar necrosis of the liver,

splenic congestion, nephrosis with hemoglobin casts, and pulmonary congestion and edema

[27].

C. perfringens type A has been and is still frequently blamed for enteritis, abomasitis and/or

enterotoxemia in cattle [28–32], horses [33–39], goats [40–43] and pigs [44, 45]. However,

the role of this microorganism in natural diseases of these species remains controversial and

poorly documented [46]. Although it has been suggested that clinical signs and pathological

findings in several of these diseases may be the result of CPA action, no definitive evidence

has become available that proves the role of CPA in the pathogenesis. While large amounts

of CPA are detected in feces of naturally infected cattle [45] (and some of the species
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mentioned above), CPA is also present in the intestinal content of many clinically healthy

animals by which detection of CPA in intestinal content of sick animals does not have

diagnostic relevance for type A disease.

Results of experimental work with C. perfringens type A or purified CPA suggest that this

microorganism, and probably CPA, can produce disease in several mammalian species [30,

31, 43, 47]. However no definitive proof of this causal relationship has been provided and

the role of this microorganism and its major toxin (CPA) in intestinal disease remains

controversial. Intraruminal inoculation of C. perfringens type A into healthy calves induced

anorexia, depression, bloat, diarrhea, and sometimes death [30, 31]. However, enteric

disease could not be reproduced by the inoculation of large amounts of C. perfringens type

A in the small intestine of cattle [46].

Neonatal pigs experimentally inoculated with C. perfringens type A developed enteropathy

and intragastric administration of CPA to piglets caused disease with symptoms similar to

those seen in naturally acquired disease thought to be caused by C. perfringens type A [43].

Ligated ovine ileal and colonic loops incubated with C. perfringens type A CPA retained

more fluid than control loops due to inhibition of water absorption and developed a mild to

moderate multifocal infiltration of neutrophils in the lamina propria and submucosa. These

results suggested that CPA could be responsible for diseases of intestinal origin in sheep

[48].

The intravascular hemolysis and capillary damage, platelet aggregation, hepatic necrosis and

cardiac effects seen in several animal species, with presumptive type A infection, are

consistent with the action of a circulating toxin such as CPA. Studies with toxin gene

mutants have been performed to study the role of CPA in chickens [49]. However, to our

knowledge, very few studies have been performed involving gastrointestinal tract challenge

exposure of mammals with isogenic C. perfringens type A mutants that do or do not produce

CPA. For instance, vegetative cultures of cpe null mutants of type A that still produce CPA,

did not produce damage to the intestinal mucosa in rabbit ileal loops [50]. Cultures of cpb

null mutants of type C isolates still producing CPA, did not produce fluid accumulation in

rabbit ileal loops [51]. Studies with isogenic C. perfringens toxin mutants in large animals

will be necessary to definitely establish the role of CPA in pathogenesis of intestinal disease

in these species.

Gangrene/Malignant Edema—Studies with isogenic mutants strongly suggest that CPA

is the major C. perfringens toxin involved in gas gangrene in humans [52], which is

characterized by extensive local tissue destruction and necrosis progressing to shock and

death [53, 54].

C. perfringens type A is also involved in gas gangrene (malignant edema) of domestic

mammals including sheep, cattle, goats, and horses, acting alone or in combination with

other clostridial species [55]. Although the condition is most frequently described affecting

subcutaneous tissue and muscle, gangrenous mastitis produced by C. perfringens type A has

also been reported in cattle and sheep [56, authors unpublished observation]. Predisposing

Uzal et al. Page 4

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



factors for this disease in animals include trauma associated to injections, shearing,

castration, docking and milking. Although CPA has long been considered the main virulence

factor for malignant edema of animals and vaccines containing alpha toxoid seem to protect

against this disease, no final evidence of the role of CPA in the pathogenesis of malignant

edema has been provided. Also, the fact that most cases of malignant edema in food-

producing animals are associated with a mixed clostridial infection (which may or may not

include C. perfringens type A) suggests that, even if CPA is responsible for some cases of

malignant edema, other clostridial toxins can also produce this disease.

Grossly, malignant edema is characterized by severe subcutaneous and muscular edema,

skeletal muscle necrosis and generalized petechiae on serous membranes, the latter being a

manifestation of terminal disseminated intravascular coagulation due to toxemia.

Histologically, in contrast to other bacterial myonecrosis, C. perfringens gas gangrene and

malignant edema are characterized by a marked absence of inflammatory cells in affected

tissues and the accumulation of leukocytes within vessels at the lesion periphery, most likely

due to the inhibitory effect that CPA has over leukocyte migration.

Experimentally, CPA is lethal for mice, dermonecrotic and hemolytic. When injected

intravenously, CPA suppresses the myocardial contractility and induces hypotension,

bradychardia, shock and multiorgan failure. The myotoxic effects could result from a direct

activity of CPA on muscle cell membrane, from alteration of local blood flow, and/or

inflammatory mediators as a consequence of endothelial cells stimulated by CPA [54]. The

role of CPA in gas gangrene was demonstrated by protection of mice against this disease by

immunization with recombinant CPA, and by reduced virulence of CPA knock-out mutants

of C. perfringens when injected into mice [52].

CLOSTRIDIUM PERFRINGENS BETA TOXIN (CPB)

Structure and Mechanism of Action

The main properties of this toxin are summarized in Table 2. The cpb gene encodes a

prototoxin of 336 amino acids that includes a 27-amino acid signal sequence removed

during secretion, resulting in a mature toxin of ~35 kDa [57, 58]. Purified CPB is

thermolabile, with >90% of its lethal activity being inactivated by incubation for 1 h at 50°C

(or 10 min at 100°C). CPB is also highly sensitive to in vitro trypsin [58, 59] and pepsin [60]

treatment. Low pH does not seem to affect its activity [60].

The deduced CPB amino acid sequence shares similarity with several pore-forming toxins,

including 28% similarity to Staphylococcus aureus alpha-toxin and 22, 28 or 18% similarity

with the A, B, C components of gamma-toxin, respectively [57]. While those toxins cause

hemolysis in erythrocytes from several species [61, 62], CPB is non-hemolytic for rabbit or

sheep erythrocytes [63].

It is interesting that while S. aureus alpha-toxin, and many other pore forming toxins [64],

are cytotoxic for a wide variety of cells [including leukocytes, rabbit kidney cells, smooth

muscle cells and fibroblasts [61], CPB-induced cytotoxicity has thus far only been reported
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for HL-60 cells, HUVEC (human umbilical vein endothelial cell) and intestinal I407 cells

[61,65–68].

Genetics of cpb

CPB is encoded by the cpb gene, which is carried on virulence plasmids [58, 69] of different

molecular size (authors unpublished observations). The cpb gene has been cloned and

sequenced from type B and C isolates, which revealed a very similar ORF of ~1000 bp [57,

70]. A possible Shine-Dalgarno region is located 7 bp upstream of the first ATG start codon.

Despite the proven importance of CPB in type C (and probably type B) disease (see

discussion later), relatively little is known about regulation of the cpb gene in vitro or in

vivo. However, recent studies demonstrated that in the presence of human enterocyte-like

Caco-2 cells, CPB production is rapidly upregulated. The VirS/VirR two component

regulatory system (TCRS) was shown to be involved in modulating this early production of

the CPB protein by upregulating cpb transcription [71].

The VirS/VirR system also controls transcription of other C. perfringens toxins (i.e. pfoA,

plc/cpa, cpb2) by either direct binding of the VirR response regulator to VirR boxes located

upstream of the target gene, or indirectly through RNA regulatory molecules [23, 24, 72–

74]. However, VirR boxes are not detectable within ~800 bp upstream of the cpb gene,

raising the possibility that a regulatory RNA molecule might control cpb transcription via

the VirS/VirR system [74].

Quorum sensing mechanisms provide a molecular signal(s) that activates TCRS [75, 76]. C.

perfringens encodes at least two different quorum sensing systems, i.e. the Lux and the Agr

systems [25, 26, 77]. A type C luxS mutant still normally regulated its cpb transcription and

CPB production, both in vitro and in vivo [26]. Recent studies have found that the C.

perfringens agr locus regulates pfoA and cpa/plc transcription and PFO and CPA/PLC

production, in strain 13 [25, 26]. Additional studies are currently underway to determine the

involvement of this novel system in regulating CPB production.

Role of CPB in Animal Diseases

CPB is responsible for diseases in several animal species (Table 2) and it is produced by

types B and C of C. perfringens. Type B isolates cause an often fatal hemorrhagic dysentery

in sheep, and possibly in other species, while type C isolates cause enteritis necroticans (also

called pigbel) in humans and necrotic enteritis and/or enterotoxemias in almost all livestock

species. Both types B and C animal disease are often accompanied by sudden death or acute

neurological signs [2, 4, 78, 79].

Type B disease is a rare occurrence in farm animals and mostly seen in Middle East

countries and the UK. Clinical disease can be characterized by diarrhea, neurological signs

or both. Post-mortem gross and histopathological findings are similar to those of type C

infections (see below), except for those rare cases of focal symmetrical encephalomalacia,

believed to be due to the effect of ETX [79, 80].
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Clinical signs and histopathologic findings in type C infections are very similar in most

livestock animal species. The course of disease can be peracute, acute, or chronic, with signs

of the acute and peracute condition including intense abdominal pain, depression, and

bloody diarrhea. Chronic disease can occur in older animals of some species (e.g. pigs), and

it is characterized by persistent diarrhea without blood and dehydration [43].

At necropsy, the predominant lesions are most frequently observed in small intestine, but

cecum and spiral colon can sometimes be involved; occasionally, lesions may be confined to

large intestine. Lesions are similar in all segments of intestine, and in acute cases consist of

intestinal and mesenteric hyperemia, diffuse or segmental, extensive fibrinonecrotic

enteritis, with emphysema and bloody gut contents. Mesenteric lymph nodes are red, an

excess of hemorrhagic peritoneal and pleural fluid is found, there may be fibrin strands on

intestinal serosa, and adhesions may develop between intestinal loops.

Histologically, the hallmark of acute disease is hemorrhagic necrosis of the intestinal wall

which starts in the mucosa but usually progresses to affect all layers of the intestine. Lesions

are morphologically similar in all segments of intestine. The luminal surface is covered by a

pseudomembrane composed of degenerated and necrotic desquamated epithelial cells, cell

debris, inflammatory cells, fibrin, and a variable number of large, thick bacilli with square

ends with occasional subterminal spore [81]. The superficial epithelium and layers of lamina

propria are necrotic. Fibrin thrombi occluding superficial arteries and veins of the lamina

propria are characteristic of this condition. Diffuse edema with variable amounts of protein

and inflammatory cell exudate can be seen throughout all intestinal layers, including serosa

[81].

There is currently limited information regarding the pathogenic mechanism of type B-

associated diseases, but some evidence indicates that both CPB and ETX (another potent

toxin produce by type B isolates) may contribute to lethality [82]. The mechanism of

pathogenesis of type C disease is under active investigation. We experimentally

demonstrated that CPB is necessary and sufficient to cause type C pathology in a rabbit ileal

loop model [51]. Type C disease has also been linked to endogenous trypsin deficiency or

the presence, in the intestines, of trypsin inhibitors due to diet. CPB is very trypsin sensitive,

so low trypsin levels or the presence of trypsin inhibitors likely contribute to disease by

favoring CPB persistency in the gastrointestinal tract [2, 51, 83, 84]. Type B and C animal

disease is more frequently seen in neonatal animals than at any other age [4, 5, 79]. This age

predilection is associated to the inhibitory effect that the colostrum has over intestinal

trypsin. This inhibitory effect is an innate mechanism of defense, during the first hours of

life, which protect the immunoglobulins present in the colostrum against protease activity of

trypsin.

C. perfringens types B and C disease begins in the host intestine [2, 4, 79] with absorption

of toxin(s) from the intestines into the circulation that then leads to the death of an infected

animal. Different animal models have been developed to help in understanding the

mechanism of those diseases involving CPB intoxication [51, 83, 85, 86]. Early work

demonstrated that C. perfringens type C could cause a pigbel-like disease in guinea pigs fed

a persistent low protein diet, combined with dietary protease inhibitors [83]. In that study it
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was hypothesized that the low protein diet was a predisposing factor in both humans and

guinea pigs, because of low intestinal protease production in malnourished individuals.

Enteric lesions similar to those observed in human pigbel cases or animals with type C

enteritis were also successfully reproduced by injecting a type C culture, along with a

protease inhibitor, into lambs [84].

The role of CPB in type C-induced intestinal disease has recently been experimentally

demonstrated by inoculating into rabbit ileal loops a series of C. perfringens type C toxin

mutants, along with trypsin inhibitor [51]. Experimental type C pathology induced by wild

type isolate CN3685 was characterized by accumulation of abundant hemorrhagic fluid (Fig.

1), complete loss of absorptive cells along the villi, and coagulation necrosis of the lamina

propria. Confirming the role of CPB, two different cpb mutants were unable to cause fluid

accumulation or intestinal damage, while complementing back CPB expression to the

mutant completely restored virulence (Fig. 1) [51].

For many years, efforts to reproduce intestinal type C disease by injecting purified CPB into

animals had been unsuccessful [4]. However, our recent work reproduced type C pathology

by injecting native CPB, along with trypsin inhibitor, into rabbit intestinal loops [51, 87].

The CPB-induced intestinal lesions, produced in this model, were similar to those described

in type C natural disease [4, 51, 79, 87]. This work was also significant because it

established that purified CPB is a very potent toxin in the rabbit small intestine (i.e. one

microgram was sufficient to cause severe intestinal damage within 1 h) [87].

As mentioned earlier, the lethality of type C infection has long been attributed to absortion

of toxin(s) from the intestine to the circulation. Several studies have proven that purified

CPB is highly lethal for mice [58, 59, 63, 85]. A study by Fisher et al. [85] later

demonstrated, using the mouse intravenous injection lethality model, that CPB is the main

lethal factor present in type C late-log-phase culture supernatants. In the study referred to

[85], type C isolates growing in vitro maximally produced beta toxin during late-log phase.

Lethality induced by type C culture supernatants, or purified CPB, could be blocked by

preincubation with a monoclonal anti-CPB antibody, but not with a monoclonal anti-CPA

antibody (i.e. CPA is also produced by nearly all type C strains) [85].

To study lethality in a more adequate context of infection, we developed two mouse models

for type C infection 60]. In those models, mice were inoculated intragastrically or directly in

the duodenum with type C isolates, type C toxin mutants or purified CPB, along with trypsin

inhibitor. Type C strains or purified CPB reproduced neurological signs and mouse lethality.

Prior to the death of challenged mice, animals experienced sudden spastic muscle

contraction, tetany and opisthonous, supporting that the toxin(s) acts on the autonomic

nervous system. Two different type C null cpb mutants produced no lethality in mice,

clearly indicating that CPB is the main contributor to type C lethality [60].

A mutational analysis study [63] found that the arginine residue at position 212 of CPB is

important for mouse lethality. Tyrosine 191, its counterpart in S. aureus alpha-toxin, a

metabolite that has 28 % homology with CPB, is located in the putative binding domain
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[57]. Whether CPB must bind a specific organ, or cell type, is still unknown. Some evidence

has suggested that CPB may target the nervous system [59, 88, 89].

Another study determined that the CPB cysteine residue (at position 265) is not absolutely

required for lethal activity. However, this work showed that adding functional groups at

cysteine 265 (which induces steric hindrance) or changing residues 266, 268, and 275

caused a complete loss of lethal activity [90]. The authors proposed that the C-terminal

region of CPB is either required for beta toxin binding to receptor, if any, or for formation of

beta toxin oligomers.

The molecular basis of CPB-induced damage during type B or type C disease is under

investigation. Previous reports found that purified CPB forms pores in the membranes of

leukocyte-derived HL-60 cells or human umbilical vein endothelial cells [66, 68]. Studies

with recombinant toxin also demonstrated that CPB forms pores in bilayer lipid membranes.

Those channels induce K+ efflux and Ca2+, Na+ and Cl− influxes, which then produce cell

swelling and lysis. The mutation of arginine 212 in CPB to aspartate, previously shown to

increase the 50% lethal dose of CPB for mice by nearly 13-fold [63], significantly reduced

the ability of CPB to form channels. The size of the CPB pore has been calculated as

approximately 12 Å [59].

Purified CPB produces abundant dermonecrosis, edema and plasma extravasation when

directly injected into the skin of guinea pigs or mice [91, 92]. CPB also provokes the release

of TNF-α and IL-1β, as well as activates tachykinin NK1 receptors by a still unknown

mechanism [86, 91].

Gibert et al. (1997) [65] first reported that CPB induces cell rounding and detachment of

intestinal I407 cells [65]. In vivo, type B and type C isolates produce intestinal lesions

consisting of diffuse or multifocal hemorrhagic and necrotizing enteritis, mainly in the

ileum, with excess of sanguineous serous fluid in the abdominal cavity [79]. Similar

intestinal lesions have been observed after inoculating purified CPB into rabbit intestinal

loops [51, 87].

In recent work, Miclard et al. showed that CPB specifically binds vascular endothelial cells,

during peracute or acute cases of type C-induced disease in piglets or humans. The authors

reported that binding of CPB to those cells produced acute endothelial degeneration and

vascular necrosis [93, 94].

It is evident that CPB plays an important role in C. perfringens type C, and maybe in type B,

disease. Those diseases are often lethal with a fatal outcome within 48 h. The first target of

CPB during type C infection is the host intestine, where the toxin is highly active. This

damage to the intestinal epithelium might allow CPB and other toxins to be translocated into

the circulation to induce its lethal effects.
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EPSILON TOXIN (ETX)

Structure and Mechanism of Action

The main properties of epsilon toxin (ETX) are summarized in Table 3. ETX is an example

of an aerolysin-like, pore-forming toxin. C. perfringens ETX and C. septicum alpha-toxin

are structurally related to aerolysin although ETX shows no significant sequence homology

with aerolysin at the amino acid level. ETX and C. septicum alpha-toxin form heptameric

pores, like aerolysin, and are very potent cytolysins [3].

ETX is considered the major virulence factor of C. perfringens types B and D [19]. This

toxin causes blood pressure elevation, increased contractility of smooth muscle, vascular

permeability increase, as well as brain and lung edema in multiple animal species, while in

goats ETX also causes colitis [79, 95]. ETX is the third most potent clostridial toxin after

botulinum toxin and tetanus toxin, with a mouse lethal dose of 100 ng/kg [3]. ETX is

secreted as a prototoxin (32,981 Da) [96], which is converted into a fully active toxin

(~1000 times more toxic than the prototoxin) when activated by proteases such as trypsin,

chymotrypsin, and a metalloproteinase named lambda toxin that is produced by C.

perfringens [42, 97, 98].

ETX is also active on a few cell lines, including Madin Darby Canine Kidney (MDCK) and

to a lesser extent human leiomyoblastoma (G-402) [99, 100]. This toxin also kills guinea-pig

and rabbit peritoneal macrophages in vitro, but had no demonstrable effect on other cells

from guinea pigs, rabbits, mice, sheep or goats [101, 102]. When ovine, caprine and bovine

aortic endothelial cells were challenged with ETX in vitro, no morphological alterations

were observed in these cells even when large doses of toxin were used for several hours

[102]. In the study referred to [102] it was speculated that the absence of damage to aortic

endothelial cells was due to the need for ETX to act in concert with elements present in the

living animal but not in vitro and/or differences between endothelial cells of the brain and

those in the aorta [102].

In MDCK cells, marked swelling is observed in the first phase of intoxication, followed by

blebbing and membrane disruption [103]. ETX binds to the MDCK cell surface,

preferentially to the apical site, and recognizes a putative specific membrane receptor which

is not present in insensitive cells. Binding of the toxin to its receptor leads to formation of

large membrane complexes (about 155 kDa) which are very stable when the incubation is

performed at 37°C [103]. In contrast, the complexes formed at 4°C are dissociated by SDS

and heating [103]. The cytotoxicity in MDCK cells is associated with pore formation that

causes a rapid loss of intracellular K+, an increase of Cl− and Na+, with an increase of Ca++

occuring later. In polarized MDCK cells, ETX induces a rapid and dramatic increase in

permeability and it is thought that pore formation in the cell membrane is likely responsible

for the permeability change of cell monolayers. Actin cytoskeleton and organization of tight

and adherens junctions are not altered, and the paracellular permeability to macromolecules

is not significantly increased upon ETX treatment [104, 105]. Toxin-dependent cell

signaling leading to cell necrosis is not yet fully understood, but it includes ATP depletion,

AMP-activated protein kinase stimulation, mitochondrial membrane permeabilization, and
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mitochondrial-nuclear translocation of apoptosis-inducing factor, which is a potent caspase-

independent cell death factor [104].

In the brain, microvascular endothelial damage by this toxin appears to be the fundamental

cause of cerebral parenchymal injury and lesions occur in an apparently dose- and time-

dependant manner. Large doses of circulating toxin produce a severe, generalized vasogenic

cerebral edema and an acute or peracute clinical course to death. With lower doses in

partially immune animals, bilaterally symmetrical focal necrosis, occurs in certain

selectively vulnerable brain regions [106]. The precise pathogenesis of the brain damage is

unresolved, but the following sequence of events was proposed by Buxton and Morgan

(1976): ETX reacts with specific receptor sites in the brain endothelium, causing vascular

endothelial cells to degenerate. This alters fluid dynamics, which in turn causes the astrocyte

end-feet to swell and rupture. Serum proteins and eventually red blood cells leak out and the

resultant brain edema and haemorrhage produce parenchymal necrosis, which is responsible

for the clinical nervous signs and the histopathological changes seen during acute

intoxication of sheep and occasionally in goats.

In addition, degenerative and necrotic changes have been described in brain neurons of rats

subacutely intoxicated with ETX even before vascular changes in the brain were evident

[107]. Finnie et al. (1999) [107] suggested that after gaining access to the brain tissue by

producing an increase in vascular permeability, ETX later exerts a direct cytotoxic effect on

neurons. It was demonstrated that ETX passes through the blood-brain barrier and

accumulates specifically in the brain [106, 108–110]. ETX toxin binds with high affinity to

rat brain synaptosomes [111], and limited evidence suggests that the receptor might be a

sialoglycoprotein [109, 111, 112]. The neurological disorders observed in several animal

species seem to result from ETX action on hippocampus, leading to an excessive release of

glutamate [108, 113, 114].

In summary, ETX would act on the brain by affecting vascular permeability but also by

direct action on neurons. The precise target cell in host and mechanism of ETX action on

neuronal cells remain to be elucidated.

Genetics of etx

The ETX gene (etx) is localized on conjugative plasmids [51, 115], with most type B

isolates possessing the same ~65 kb etx plasmid that also carries the gene encoding beta2

toxin [115]. The etx gene in type B, and some type D, isolates is flanked by IS1151 and a

gene related to the transposase (tnpa) gene from Tn3 transposons that lie upstream of etx. A

region with similarity to transposases from S. aureus and Lactococcus is located

downstream from etx [115–117].

Role of ETX in Animal Diseases

ETX-producing C. perfringens type D strains are the most common cause of clostridial

enterotoxemia in sheep and goats (Table 2). Since the gross and histological changes

observed in type D enterotoxemia have been reproduced by intravenous inoculation of ETX
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in sheep and goats [118], there is little doubt that the pathogenesis C. perfringens type D

enterotoxemia is largely mediated by ETX.

C. perfringens type D produces an acute, subacute, or chronic neurological condition in

sheep, characterized by sudden death or neurological and respiratory signs, including

blindness, opisthotonos, convulsions, bleating, frothing from the mouth, and recumbency

with paddling immediately before death. Diarrhea is occasionally observed, although this is

not a common clinical sign in sheep [79, 119].

When present, intestinal gross changes consist of hyperemic small intestine mucosa with

slight to marked red fluid contents. Colitis may occur, but is not a consistent finding in

sheep enterotoxemia. Several gross findings, such as excess pericardial, pleural, and/or

abdominal fluids (with or without fibrin strands), which may clot on exposure to air, serosal

petechiation, and lung edema are frequently seen [79]. Gross changes in sheep are rarely

observed in brain, and consist of herniation of the cerebellar vermis (cerebellar coning) in

acute or subacute cases and focal symmetrical encephalomalcia (FSE), in chronic cases. FSE

is characterized by dark hemorrhagic foci in corpus striatum, thalamus, midbrain, and

cerebellar peduncles and white matter [120–122]. The kidney lesion from which one of the

common names of the disease is derived (pulpy kidney disease) is likely to be a postmortem

change [80, 123].

Microscopic changes in the brain of sheep with type D infection are unique and

pathognomonic, and they are present in approximately 90% of cases [120, 124]. They

consist of perivascular proteinaceous edema (microangiopathy) in the brain [120] (Fig. 2). In

the rarely observed chronic form of the disease, necrosis of white matter, grossly known as

FSE, can be observed [122]. This lesion is usually multifocal and characterized by

degeneration of white matter, hemorrhage, and astrocyte and axonal swelling. Perivascular

edema and degeneration, and necrosis of brain parenchyma, are always bilateral and

symmetrical, and they have been described most frequently in corpus striatum, thalamus,

midbrain, cerebellar peduncles, and cerebellar white matter [120, 121]. These areas are not

exclusively affected, and lesions can sometimes be seen in other parts of brain, such as

cortex and hippocampus [120]. Usually, no significant histological changes are found in the

intestine of sheep dying from enterotoxemia [124, 125]. Histological changes were not

observed in kidneys of experimentally inoculated lambs necropsied immediately after death

[124], supporting suggestions that these lesions are due to postmortem change.

In goats, type D produces acute, subacute, or chronic disease as well. The acute form occurs

more frequently in young, unvaccinated animals and is clinically similar to the acute disease

in sheep [126, 127]. The subacute form is more frequently seen in adult goats [128],

vaccinated or not, and is characterized by hemorrhagic diarrhea, abdominal discomfort,

severe shock, opisthotonos, and convulsions. The disease may result in death 2–4 days after

onset [41, 127], but some animals recover. Adult animals, often vaccinated, can also exhibit

chronic disease [128], which is characterized by profuse, watery diarrhea (often containing

blood and mucus), abdominal discomfort, weakness, anorexia, and agalactia [126]. This

chronic form may last for days or weeks [129].
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Gross changes in acute caprine type D enterotoxemia are similar to those in the ovine

disease. In the chronic form of the disease in goats, fibrinohemorrhagic colitis with

occasional involvement of the distal small intestine seems to be the most consistent lesion

[126]. A combination of the findings in acute and chronic forms of disease are frequently

seen in subacute forms. The so-called pulpy kidney has not been reported in caprine

enterotoxemia, nor has cerebellar herniation or FSE.

In goats, there are few descriptions of histological changes in type D enterotoxemia, and

changes in brain are not considered a consistent feature of caprine enterotoxemia.

Nevertheless, perivascular edema and degeneration of white matter, similar to those

observed in sheep, can be observed in cases of acute and subacute caprine enterotoxemia

[130].

In addition, subacute and chronic type D enterotoxemia in goats are characterized by

fibrinonecrotic (pseudomembranous) colitis with large numbers of intralesional Gram-

positive bacilli [128]. Microscopic lesions in kidney are not characteristic of goat

enterotoxemia.

In cattle there are few reports about natural cases of type D enterotoxemia, and information

about clinical and pathologic findings of the disease in this species is scant and frequently

contradictory [131–133]. A condition called enterotoxemia of cattle, allegedly produced by

C. perfringens type D, is described in textbooks [55,134] but confirmation of the etiology of

this condition remains unestablished. The occurrence of FSE, similar to the lesion observed

in type D enterotoxemia of sheep, has been described by several authors in cattle [134–139]

but to date no causal relationship between these lesions and C. perfringens type D has been

established. Recently, natural type D enterotoxemia was described in two young calves, in

which the disease was confirmed by the presence of perivascular proteinaceous edema in the

brain and detection of ETX in intestinal contents [140]. These seem to be the first confirmed

cases of type D enterotoxemia in cattle.

The effects of intravenous ETX have been studied in sheep [118, 120], goats [118], cattle

[46, 141], mice [85, 142, 143] and rats [107]. The toxin produces increased vascular

permeability in many tissues, the most significant effects of which are acute pulmonary and

cerebral edema with albumin extravasation. This has been demonstrated by

immunohistochemistry, which shows strong perivascular immunoreactivity around blood

vessels showing perivascular edema. Also, in rats given ETX intravenously, widespread

upregulation of aquaporine 4 (a member of the membrane water-channel proteins, which is

important in the regulation of water balance in the brain and facilitates reabsorption of

excess fluid) was observed in astrocytes [144]. These results suggest that aquaporin 4 has a

role in the clearance of edema fluid from brains damaged by ETX. The administration of

formalinized epsilon prototoxin to mice prevented leakage of horse radish peroxidase from

the brain vasculature of mice given ETX via the same route [145, 146]. Based on these

results, it was suggested that ETX exerts its effects through specific receptor sites on the

vascular endothelium and that antigenically similar formalinized epsilon prototoxin blocks

this effect [145].
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In mice given intravenous ETX the granular layer of the cerebellum seems to be the area

most frequently affected and lesions progress from an initial vasogenic edema to malacic

foci with bilateral symmetry, and with a predilection for the white matter [142].

Ultrastructurally the initial findings include swelling of astrocytes, especially their

perivascular extensions and astrocytes in the cerebellum appeared to be particularly sensitive

to ETX. These changes are quickly followed by severe endothelial damage with the

endothelial cytoplasm becoming attenuated, vacuolated and very electron-dense [143].

Studies with immunohistochemistry demonstrated that after ETX administration to rats,

there is rapid opening of the blood-brain barrier to albumin [147]. Renal tubular lesions were

described in mice inoculated experimentally with ETX, but not in ruminants.

Niilo et al. [46] induced disease by intraduodenal inoculation of whole cultures of C.

perfringens type D and dextrin in eight calves. Two of the animals presented acute

neurological signs and severe pulmonary edema, hydrothorax, hydroperitoneum and serosal

hemorrhages, while the other six did not show clinical or pathological changes. However, no

histologic lesions were described in any of the animals [146]. Uzal et al. [141] reported

acute loss of consciousness, hyperaesthesia, intermittent tonic and clonic convulsions,

recumbency and dyspnea in calves inoculated intravenously with C. perfringens type D

ETX. These calves showed severe acute pulmonary edema and varying degrees of

perivascular proteinaceous edema in the internal capsule, thalamus and cerebellum. While

the gross and histologic findings described in the calves inoculated with ETX were very

similar to changes in acute enterotoxemia of sheep, the experimental procedures involved

intravenous injection of ETX and this cannot, therefore, be considered a model of natural

disease. Recently, a disease clinically and pathologically identical to ovine enterotoxemia

was reproduced in cattle by intraduodenal inoculation of whole cultures of C. perfringens

type D [148], which seems to fulfill Koch’s postulates for type D disease in cattle.

IOTA TOXIN

Structure and Mechanism of Action

The main properties of iota toxin (ITX) are summarized in Table 3. C. perfringens ITX is a

clostridial binary toxin. These toxins have a common structure consisting of two

independent protein components that are not covalently linked, one being the binding

component (Ib, 100 kDa), and the other the enzymatic component (Ia, 45 kDa) [149]. Both

components are required for biological activity. The crystal structure of Ia has been solved,

which revealed some resemblance to the ADP-ribosylating B. cereus vegetative insecticidal

protein [150].

The ITX family components are synthesized during exponential growth phase and secreted

by means a signal peptide as inactive proteins. They are proteolytically activated by trypsin

or chymotrypsin, removing a 20 kDa N-terminal peptide from the binding component (80

kDa for the active form) and 9 to 11 N-terminal residues from the enzymatic component

[151]. Ib triggers the internalization of Ia into the cell by receptor-mediated endocytosis

[152, 153]. The mature binding component recognizes a specific cell membrane receptor

[154] and then heptamerizes to form ion permeable channels, allowing the enzymatic

component to escape from endocytic vesicles into the cytosol upon an acidic pulse [65, 133,
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149, 155, 156]. Once activated by trypsin, Ib forms heptamers that insert into the membrane

and form pores permitting the passage of molecules such as ions. Ib remains on the cell

surface up to 3 h and mediates the endocytosis of Ia molecules [157].

The most prominent effects of ITX include depolymerization of actin filaments and increase

of G-actin monomers. This effect results from Ia-mediated ADP-ribosylation of G-actin at

Arg-177 [150]. The intermediate filaments are also disorganized, whereas the microtubules

are not affected. The final result of this is change in morphology (rounding), inhibition of

migration and activation of leucocytes [158], inhibition of smooth muscle contraction,

impairment of endocytosis, exocytosis, and cytokinesis. Depolymerization of the actin

cytoskeleton by ITX induces disorganization of tight and basolateral intercellular junctions

with a subsequent increase in permeability of cultured intestinal cell monolayers [157].

Genetics of itx

The components of ITX are encoded by two genes, iap (~1160 nt) and iab (~2,630 nt).

These genes form an operon that also includes an intermediate region composed of 243 non-

coding nucleotides. Transcription of both ITX genes is driven by a promoter located

upstream of the iap gene [152]. Molecules that regulate the transcription of the ITX genes

have not yet been discovered.

The iap and iab genes have been found on large, potentially conjugative, plasmids of ~97 kb

or ~135 kb. Those plasmids typically carry a silent enterotoxin (cpe) gene, the IS1151

element and a tcp locus (18). Interestingly, a study by Li et al. [18] suggested that a mobile

genetic element, carrying iap and ibp genes, could have inserted onto a tcp-carrying

enterotoxin plasmid in a type A isolate to create a progenitor ITX-plasmid. This plasmid

then may spread via conjugation to other type A isolates, converting them to type E [18].

Role of ITX in Animal Diseases

Toxinotype E enteric infection of domestic animals was first reported in the late 1940s, and

these infections have generally been considered a rare occurrence. As with type A infections

and CPA, infections by C. perfringens type E are usually assumed to be mediated by ITX

(Table 2), although no definitive evidence in this regard has been provided. C. perfringens

type E produces enterotoxemia in rabbits. A very similar disease, thought to be mediated by

a iota-like toxin, is produced in rabbits by Clostridium spiroforme. However, because of

cross reactivity between C. perfringes type E and C. spiroforme toxins with the diagnostic

methods currently available, it is thought that some previously reprted outbreaks of

entropathies associated with C. perfringensmay have been due to C. spiroforme.

Both diseases are clinically characterized by diarrhea and loss of condition and characteristic

necropsy changes include hemorrhages of the cecal serosa and mucosa, sometimes with

involvement of the distal ileum and proximal colon, and the presence of watery mucoid

content in these organs. Histologically, there is an acute necrosis of the superficial

epithelium with relative sparing of the crypt epithelium, and submucosal hemorrhage and

transmural hemorrhage [159].
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Toxinotype E is an occasional cause of hemorrhagic enteritis and sudden death in beef

calves [32, 160]. Type E disease has rarely been described in sheep and goats [43]. The role

of ITX in these infections has not been elucidated.

Clostridium Perfringens Beta 2 Toxin (CPB2)

In recent years, a new C. perfringens toxin known as beta2 toxin (CPB2) has been widely

reported as a potential contributor to C. perfringens related enteric diseases. The cpb2 gene

can be carried by all C. perfringens types [18, 85, 161]

Structure and Mechanism of Action

The main properties of CPB2 are summarized in Table 3. Gibert et al. [65] first cloned the

CPB2 toxin gene (cpb2) from C. perfringens CWC245, which was isolated from a piglet

suffering from necrotizing enterocolitis [65]. The cloned sequence revealed an open reading

frame of 265 amino acids, including a 30 amino acid signal sequence absent from the 28

kDa mature toxin [65, 162]. The novel CPB2 has no significant homology with beta toxin or

other known bacterial toxins [65, 163, 164]. To date very few studies have been conducted

to determine the biological activity of CPB2. An early report suggested that the toxin

behaves similarly to CPB [165] and Gibert et al. (1997) [65] demonstrated the cytotoxic

effects of CPB2 on Chinese hamster ovary and human intestinal embryonic 1407 cedll lines.

This cytopathology included cell rounding, membrane blebbing and detachment from the

culture matrix [65]. The toxin did modify small G proteins such as actin, either by ADP-

ribosylation or by UDP- glucosylation [65]. Other cell lines, such as CaCo2 cells have also

been shown to be sensitive to the cytotoxic effects of CPB2 [161]. The cytopathic effects

demonstrated by Fisher et al. [85] were similar to those described previously and the toxin

induced cell death 50 (TCD50) was 0.3 – 4 μg/ml for the purified native CPB2, and a

recently described variant CPB2 [65]. Based on these studies, it was suggested that CPB2

toxin could act as a potential pore-forming toxin similar to other enterically-active clostridial

toxins. The toxin was shown to be highly susceptible to proteolytic cleavage by trypsin [65].

The minimal lethal dose (LD50) of CPB2 for mice, as described previously [65], was 0.3 μg

by the i.v. injection route. A mouse i.v. injection model demonstrated a weak correlation

between CPB2 levels in late log-phase culture supernatants of C. perfringens type C isolates

and the LD50 [85], suggesting that CPB2 could be a minor contributor to the lethality of C.

perfringens type C isolates. Gibert et al. [65] showed that CPB2 toxin caused intestinal

hemorrhage and necrosis in the guinea pig ligated loop model.

Detailed structure-function studies for CPB2 have not been demonstrated. However, a

recombinant Clostridium perfringens CPB2 derivative has been purified using Glutathione

sepharose affinity chromatography. That toxin was then crystallized using the batch-under-

oil technique. Crystallographic analysis of this CPB2 crystal showed that the triangular

prism shaped crystals measuring 200 microns belonged to primitive rhombohedral space

group R3, diffracting up to 2.9 Å [166].
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Genetics of CPB2

The cpb2 toxin gene is transcribed during vegetative growth, especially during the

exponential phase and regulation by the VirS/VirR two-component regulatory system [73].

The cpb2 gene is present on C. perfringens type D isolates on plasmids 48 kb to 110 kb in

size [19]. In these isolates, the gene is either present on the same plasmid carrying the etx

gene or on a different plasmid. In type E isolates, cpb2 gene is present on plasmids sizes

varying from 70 kb to 90 kb. The gene is always present on different plasmid carrying the

iota toxin gene (itx) [18]. In recent studies (authors’ unpublished observations), the cpb2

gene was found to be present on a 65 kb plasmid that also carries the etx gene, in C.

perfringens type B isolates.

Role of CPB2 in Animal Disease

Over the past decade CPB2 has been associated with enteric diseases in a wide range of

animals (Tables 3 and 4) including swine [65, 162, 167–170], cattle [28, 32, 171–174],

horses [33, 35–39], sheep and goats [175, 176], and wild animals such as deer [177] and

bears [178, 179]. The clinical signs observed in CPB2-mediated enteric diseases range from

pasty to watery diarrhea with blood in feces, abdominal pain, and loss of body condition. It

is hypothesized [165] that CPB2 toxin may act in synergy with other major toxins of C.

perfringens in the production of necrotic and hemorrhagic enteritis. Circumstances

provoking enteric dybiosis, and other predisposing factors, could lead to diseases in these

animals [165].

Based on the reported findings related to the pathology of C. perfringens encoding CPB2-

related enteritis seen in food producing and wild animals [28, 32, 33, 35, 81, 169, 171, 175,

177, 178], the gross pathology is characterized by hemorrhage and necrosis of the small and

large intestines. Other prominent gross pathologic lesions include swollen, hemorrhagic

mesenteric lymph nodes, as well as thickened and congested abomasal walls. The

characteristic histological lesions include degenerated and necrotic desquamated epithelial

cells, cell debris, inflammatory cells, fibrin and variable numbers of bacterial vegetative

cells and spores. The pathologic lesions observed suggest that CPB2 toxin is a primary

enteric toxin affecting the nutrient absorptive capacity of the intestine, thereby debilitating

the affected animal.

Despite several recent publications suggesting that CPB2 might be implicated in intestinal

diseases of several animal species, most of the evidence to support this is based on isolation

of cpb2- positive C. perfringens strains from affected animals. However, because cpb2

positive strains can also be found in the intestine of many normal animals, the significance

of this finding is not clear. A much larger proportion of strains carrying the cpb2 gene was

found in the intestine of pigs with diarrhea than in normal control animals, which strongly

suggests that CPB2 is implicated in pig enteritis. However, the same does not seem to be

true for other animal species and the role of CPB2 in enteric disease of those animals

remains, therefore, undetermined.
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CLOSTRIDIUM PERFRINGENS ENTEROTOXIN (CPE)

Structure and Mechanism of Action

The main properties of CPE are summarized in Table 3. CPE is a 319 amino acid protein

consisting of an N-terminal domain, which is important for pore formation and cytotoxicity,

and a C-terminal domain that mediates receptor binding [180]. Although CPE lacks

sequence homology with other toxins, its C-terminal receptor-binding domain structurally

resembles that of some Bacillus thuringiensis cry toxins [181].

CPE action starts when the toxin binds to claudin receptors (claudins are important

components of the tight junctions made by epithelial and endothelial cells), forming a small

complex [182]. Several small complexes then oligomerize on the membrane surface to form

a prepore named CH-1 [183]; CH-1 minimally contains six copies of CPE, claudin receptor,

and some non-receptor claudins that are likely interacting with the claudin receptors [183].

After its formation, the CH-1 prepore inserts into the membrane bilayer to generate a cation-

selective pore [182]. The resultant calcium influx activates apoptotic and oncotic cell death

pathways that cause morphologic damage to the CPE-treated cells. This morphologic

damage exposes the basolateral surface of the cell, allowing CPE to interact with occludin

and additional claudins to form a second CPE-complex named CH-2 [183]. Formation of

CH-2 triggers internalization of occludin (and probably claudins), which may contribute to

paracellular permeability changes and diarrhea.

All tested mammalian species are sensitive to CPE [184]. This toxin affects all small

intestinal regions but is most active in the ileum [184, 185]. CPE has only weak effects on

the colon of rabbits [184] or human colonic tissue ex vivo [48]. In the ileum, CPE causes

villus shortening and epithelial desquamation [50, 184], and such damage appears necessary

for accumulation of fluids and electrolytes in the lumen [186].

Genetics of cpe

The gene (cpe) encoding CPE can reside on either the chromosome or on plasmids [187,

188]. Most human food-poisoning isolates carry cpe on the chromosome [180], and recent

multi locus sequence typing (MLST) studies suggest these chromosomal cpe isolates are

relatively divergent from other C. perfringens isolates [189]. In contrast, cpe-positive

isolates recovered from diseased animals or humans suffering from nonfoodborne human

gastrointestinal disease typically carry their cpe gene on large plasmids [187, 190].

In type A isolates, there are two major cpe plasmid families [189]: i) a family of ~75 kb

plasmids that also carry the beta2 toxin gene (cpb2); ii) a family of ~70 kb plasmids lacking

the cpb2 gene. These two cpe plasmid families in type A isolates share a conserved 35 kb

region. Some, if not all, cpe plasmids of type A isolates can transfer between C. perfringens

via conjugation [191], probably because they possess the same tcp locus that mediates

transfer of C. perfringens tetracycline resistance plasmid pCW3 [192]. Some type C and D

isolates also carry a plasmid-borne cpe gene [19, 85], although those plasmids do not appear

to be closely related to the cpe plasmids of type A isolates (unpublished). Interestingly, most

type E isolates carry silent cpe sequences on their iota toxin-encoding plasmids, which are

often related to cpe plasmids of type A isolates [18].

Uzal et al. Page 18

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



During human food poisoning, CPE-positive strains are ingested and then sporulate in the

intestines [180, 193]. CPE is expressed during sporulation [180], in a process involving

regulation by the SpoOA master regulator of sporulation [194] and alternative sigma factors

[195]. The toxin then accumulates intracellularly until lysis of the sporangium, releasing

CPE into the intestinal lumen.

The Role of CPE in Animal Diseases

Experiments using isogenic mutants have clearly shown that CPE production is important

for C. perfringens type A food poisoning or nonfoodborne gastrointestinal (GI) disease

isolates to cause diarrheal symptoms in experimental animals [50]. Coupled with extensive

epidemiologic evidence, these findings support CPE as an important virulence factor for C.

perfringens type A food poisoning or CPE-associated nonfoodborne human GI disease

[180].

In contrast to the well-established role of this toxin in human GI disease, the data

implicating CPE in animal disease remains more ambiguous (Table 2). Animals with

diarrhea are rarely tested for the presence of CPE in their feces and diagnostic criteria for

establishing CPE-mediated animals disease are lacking [81]. Nevertheless, there are case

reports [4, 34, 82, 196–200] suggesting CPE may cause GI disease in both domestic animals

(including dogs, pigs, horses, and goats) and possibly wild animals (such as penguins,

leopards and tortoises). For example, a relatively recent study definitively showed the

presence of CPE-positive, type A isolates and CPE in the small intestines of a goat kid

suffering from necrotic enteritis [189]. Additionally, fecal CPE and CPE-positive fecal

isolates have been associated with canine diarrhea [197] and it has been suggested that CPE-

positive strains can cause recurrent diarrhea in dogs [199].

Finally, in horses, fecal CPE was detected in ~20% of adults with diarrhea and ~30% of

foals with diarrhea [201]; thus supporting a role for this fecal toxin contributing to disease in

those animals, while no fecal CPE was detected in healthy adult horses or foals.

PERFRINGOLYSIN O OR THETA TOXIN (PFO)

Structure and Mechanism of Action

The main properties of PFO (also called theta toxin) are summarized in Table 3. PFO is a 54

kDa cytolytic toxin that binds to cholesterol-containing eukaryotic membranes. This toxin

forms a large oligomeric prepore complex on the membrane surface prior to insertion into

the cell membrane [202]. Structurally, PFO is comprised of 4 domains. The C-terminal

domain (domain 4) binds cholesterol and then a conformational change in domain three

exposes a β–hairpin that spontaneously inserts into the lipid bilayer [78, 202].

It has been proposed that the high affinity of PFO for cholesterol concentrates the toxin on

the target membrane, promoting oligomerization and membrane insertion [203]. As

mentioned, the proposed model of PFO pore formation includes the binding of water-soluble

PFO monomers to cholesterol of a lipid bilayer mediated by domain 4. However, domain 4

does not insert deeply into the membrane and is not directly involved in creating the pore.

Instead, PFO monomers bound to cholesterol and orientated perpendicularly to the
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membrane assemble and oligomerize to form a prepore complex [78]. The oligomers consist

of 40 to 50 monomers, forming on the membrane surface large arcs and rings that, after

insertion of their domain three loops, lead to large pores between 300 Å and 450 Å in

diameter [204].

Genetics of PFO

PFO is produced by all C. perfringens strains and the pfoA gene is located on the

chromosomal DNA near the origin of replication [163, 164, 205]. PFO is synthesized with a

27 amino acid signal peptide, and the mature protein consists of 472 amino acids (53 kDa)

[206].

The pfoA gene is directly regulated by the VirS/VirR two-component regulatory system

[22–24]. Once activated by the VirS sensor kinase, the VirR response regulator binds to

specific VirR boxes (VirR box 1 and VirR box 2) located upstream of the pfoA promoter, to

activate its transcription [207].

The signal(s) that activates the VirS/VirR two-component regulatory system is unknown.

The presence of enterocytes rapidly upregulates PFO production and transcription of the

pfoA gene, via the same VirS/VirR two-component regulatory system [26, 71]. More

recently, the C. perfringens Agr quorum sensing system was shown to regulate PFO toxin

levels and transcription of the pfoA gene in vitro [25, 26, 71]. Whether the Agr-secreted

factor activates, in vitro or in the presence of eukaryotic cells, the VirS sensor kinase

remains unknown.

Role of PFO in Animal Diseases

Gangrene—PFO participates with CPA in the production of local lesions of gangrene/

malignant edema in humans and animals [208]. When CPA and PFO knock-out mutants of

C. perfringens type A were used in a mouse model, elimination of both CPA and PFO toxin

genes removed most of the histopathological features typical of clostridial myonecrosis.

These effects were completely restored when the double mutant was complemented with the

alpha-toxin structural gene. However, restoring only PFO activity produced variable results.

Reconstitution of both toxins produced histopathology similar to that observed with the

alpha-reconstituted strain (1). Studies using single PFO knock-out mutants of C. perfringens

have shown that PFO induces tissue destruction and an anti-inflammatory response.

However, the effects were less pronounced than those elicited by CPA and both toxins seem

to have a synergistic action in gangrenous lesions [209].

Since PFO knock-out mutants still cause murine myonecrosis, although less severe than wild

type type A strains, PFO is not considered essential for disease. Instead, PFO has the ability

to affect the host inflammatory response, particularly the PMNL influx into the myonecrotic

lesions. PFO has been implicated in the vascular accumulation of leukocytes within blood

vessels and the extracellular matrix of host tissues [11, 210, 211].

PFO and CPA stimulate leucocyte adherence, probably by increasing vascular leucostasis

and local ischemia. PFO is leukocytotoxic at high doses, and at a sublethal concentration it

significantly stimulates the production of ICAM-1 and adherent glycoprotein CD11b/CD18
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in endothelial cells, which contributes to leukostasis in vessels adjacent to gangrenous

lesions [11, 210]. The toxin effects on endothelial cells participate in disruption of

endothelial integrity resulting in local edema and ultimately in systemic shock and

multiorgan failure. Thus, PFO and CPA exhibit synergistic effects [52, 212].

Intestinal Infections—PFO might also have a synergistic effect with ETX. The effects of

purified CPA and PFO on the lethal activity of purified ETX were studied in a mouse model.

Mice were injected intravenously or intragastrically with CPA or PFO with or without ETX.

Sublethal doses of CPA or PFO did not affect the lethality of ETX when either was injected

together with the latter intravenously [213]. However, sublethal or lethal doses of CPA or

PFO reduced survival times of mice injected simultaneously with ETX versus animals given

ETX alone. When PFO was inoculated intragastrically with ETX, there was a reduction in

survival time. CPA did not alter the survival time when inoculated intragastrically with

ETX. These results suggest that both CPA and PFO have the potential to enhance the ETX

lethal effects during enterotoxemia in natural hosts such as sheep and goats [213].

CONCLUSIONS

For many years it has been thought that most deleterious effects of C. perfringens infections

in animals, and humans, are mediated by one or more of its powerful toxins. Toxins purified

from C. perfringens culture supernatants have greatly improved our understanding of how

these toxins mediate cellular damage. However, the specific role of individual toxins in C.

perfringens-mediated diseases has just recently started to come to light. The recent

improvement of animal models for C. perfringens infection and methods that inactivate

toxin genes (generating toxin knock outs) have now demonstrated the specific pathologic

role of several toxins of C. perfringens in animal and human disease. By observing a

reduced or lack of virulence in knock-out strains and then full virulence with the

complemented strains, the so called molecular Koch postulates have been fulfilled for

several C. perfringens toxins, including CPB, CPA, CPE and others. These now available

research tools are becoming very important in the field and are helping us: (1) to establish

the role of each C. perfringens toxigenic type in animal or human disease; (2) to investigate

the in vivo mechanism of action of their toxins; and (3) to develop more effective vaccines

that will prevent lethal diseases produced by these microorganisms.

Acknowledgments

We thank Ms S. Fitisemanu for her patient typing of multiple versions of this manuscript. This work was
generously supported by grant R01 AI056177-06 from National Institute of Allergy and Infectious Diseases. JEV is
thankful for generous support from the Mexican National Council of Science and Technology (CONACyT).

References

1. Garmory HS, Chanter N, French NP, et al. Occurrence of Clostridium perfringens beta2-toxin
amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol Infect. 2000;
124:61–7. [PubMed: 10722131]

2. McClane, BA.; Uzal, FA.; Fernandez-Miyakawa, M.; Lyerly, D.; Wilkins, TD. The enterotoxigenic
clostridia. In: Dworkin, SFM.; Rosenburg, E.; Schleifer, KF.; Stackebrandt, E., editors. The
Prokaryotes. New York: Springer-Verlag; 2004. p. 698-752.

Uzal et al. Page 21

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Sakurai J. Toxins of Clostridium perfringens. Rev Med Microbiol. 1995; 6:175–85.

4. Songer JG. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev. 1996; 9:216–34.
[PubMed: 8964036]

5. Niilo L. Clostridium perfringens in animal disease: a review of current knowledge. Can Vet J. 1980;
21:141–8. [PubMed: 6253040]

6. Titball RW, Naylor CE, Basak AE. The Clostridium perfringens α-toxin. Anaerobe. 1999; 5:51–64.
[PubMed: 16887662]

7. Sakurai J, Ochi S, Tanaka H. Evidence for coupling of Clostridium perfringens alpha-toxin-induced
hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun. 1993;
61:3711–8. [PubMed: 8395469]

8. Oda M, Matsuno T, Shiihara R, et al. The relationship between the metabolism of sphingomyelin
species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens alpha-toxin. J
Lipid Res. 2008; 49:1039–47. [PubMed: 18263851]

9. Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin: characterization and mode of
action. J Biochem. 2004; 136:569–74. [PubMed: 15632295]

10. O’Brien DK, Melville SB. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin
O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on
persistence of C. perfringens in host tissues. Infect Immun. 2004; 72:5204–15. [PubMed:
15322015]

11. Bryant AE, Stevens DL. Phospholipase C and perfringolysin O from Clostridium perfringens
upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence
molecule 1 expression and induce interleukin-8 synthesis on cultured human umbilical vein
endothelial cells. Infect Immun. 1996; 64:358–62. [PubMed: 8557365]

12. Bryant AE, Chen RY, Nagata Y, et al. Clostridial gas gangrene. II. Phospholipase C-induced
activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium
perfringens gas gangrene. J Infect Dis. 2000a; 182:808–15. [PubMed: 10950775]

13. Bryant AE, Chen RY, Nagata Y, et al. Clostridial gas gangrene. I. Cellular and molecular
mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. J
Infect Dis. 2000b; 182:799–807. [PubMed: 10950774]

14. Bryant AE, Bayer CR, Hayes-Schroer SM, Stevens D. Activation of platelet gpIIIa by
phospholipase C from Clostridium perfringens involves store-operated calcium entry. J Infect Dis.
2003; 187:408–17. [PubMed: 12552424]

15. Hickey MJ, Kwan RY, Awad MM, et al. Molecular and cellular basis of microvascular perfusion
deficits induced by Clostridium perfringens and Clostridium septicum. PLoS Pathog. 2008;
4:e1000045. [PubMed: 18404211]

16. Canard B, Cole S. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc
Natl Acad Sci USA. 1989; 86:6676–80. [PubMed: 2549543]

17. Cole, ST.; Canard, B. Structure, organization and evolution of the genome of Clostridium
perfringens. In: Rood, JI.; McClane, BA.; Songer, JG.; Titball, RW., editors. The Clostridia:
molecular biology and pathogenesis. London: Academic Press; 1997. p. 49-63.

18. Li J, Miyamoto K, McClane BA. Comparison of virulence plasmids among Clostridium
perfringens type E isolates. Infect Immun. 2007; 75:1811–9. [PubMed: 17261608]

19. Sayeed S, Li J, McClane BA. Virulence plasmid diversity in Clostridium perfringens type D
isolates. Infect Immun. 2007; 75:2391–8. [PubMed: 17339362]

20. Titball RW, Hunter SEC, Martin KL, et al. Molecular cloning and nucleotide sequence of the alpha
toxin (phospholipase C) of Clostridium perfringens. Infect Immun. 1989; 57:367–76. [PubMed:
2536355]

21. Banu S, Ohtani K, Yaguchi H, et al. Identification of novel VirR/VirS-regulated genes in
Clostridium perfringens. Mol Microbiol. 2000; 35:854–64. [PubMed: 10692162]

22. Ba-Thein W, Lyristis M, Ohtani K, et al. The virR/virS locus regulates the transcription of genes
encoding extracellular toxin production in Clostridium perfringens. J Bacteriol. 1996; 178:2514–
20. [PubMed: 8626316]

Uzal et al. Page 22

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



23. Lyristis M, Bryant AE, Sloan J, et al. Identification and molecular analysis of a locus that regulates
extracellular toxin production in Clostridium perfringens. Mol Microbiol. 1994; 2:761–77.
[PubMed: 8052128]

24. Shimizu T, Ba-Thein W, Tamaki M, Hayashi H. The virR gene, a member of a class of two-
component response regulators, regulates the production of perfringolysin O, collagenase, and
hemagglutinin in Clostridium perfringens. J Bacteriol. 1994; 176:1616–23. [PubMed: 8132455]

25. Ohtani K, Yuan Y, Hassan S, et al. Virulence gene regulation by the agr system in Clostridium
perfringens. J Bacteriol. 2009; 191:3919–27. [PubMed: 19363118]

26. Vidal JE, Chen J, Li J, McClane BA. Use of an EZ-Tn5-based random mutagenesis system to
identify a novel toxin regulatory Locus in Clostridium perfringens Strain. PLoS ONE. 2009b; 13

27. McGowan G, Moulton JE, Rood SE. Lamb losses associated with Clostridium perfringens type. AJ
Am Vet Med Assoc. 1958; 133:219–21.

28. Manteca C, Daube G, Jauniaux T, et al. A role for the Clostridium perfringens beta2 toxin in
bovine enterotoxaemia? Vet Microbiol. 2002; 86:191–202. [PubMed: 11900954]

29. Manteca G, Daube V, Pirson B, et al. Bacterial intestinal flora associated with enterotoxaemia in
Belgian Blue calves. Vet Microbiol. 2001; 81:21–32. [PubMed: 11356315]

30. Roeder BL, Chengappa MM, Nagataja TG, Avery TB, Kennedy GA. Experimental induction of
abdominal tympany, abomasitis, and abomasal ulceration by intraruminal inoculation of
Clostridium perfringens type A in nenonatal calves. Am J Vet Res. 1988b; 49:201–7. [PubMed:
2894790]

31. Roeder BL, Chengappa MM, Nagataja TG, Avery TB, Kennedy GA. Isolation of Clostridium
perfringens type A from nenonatal calves with ruminal and abomasal tympany, abomasitis, and
abomasal ulceration. JAMA. 1988a; 190:1550–5.

32. Songer JG, Miskimins DW. Clostridial abomasitis in calves: case report and review of the
literature. Anaerobe. 2005; 11:290–4. [PubMed: 16701586]

33. Bacciarini LN, Boerlin P, Straub R, Frey J, Grone A. Immunohistochemical localization of
Clostridium perfringens beta2-toxin in the gastrointestinal tract of horses. Vet Pathol. 2003;
40:376–81. [PubMed: 12824509]

34. Bueschel D, Walker R, Woods L, et al. Enterotoxigenic Clostridium perfringens type A necrotic
enteritis in a foal. J Am Vet Med Assoc. 1998; 213:1305–7. 280. [PubMed: 9810388]

35. Choi YK, Kang MS, Yoo HS, et al. Clostridium perfringens type A myonecrosis in a horse in
Korea. J Vet Med Sci. 2003; 65:1245–7. [PubMed: 14665756]

36. Herholz C, Miserez R, Nicolet J, et al. Prevalence of beta2-toxigenic Clostridium perfringens in
horses with intestinal disorders. J Clin Microbiol. 1999; 37:358–61. [PubMed: 9889218]

37. Timoney JF, Hartmann M, Fallon L, Fallon E, Walker J. Antibody responses of mares to
prepartum vaccination with Clostridium perfringens bacterin and beta2 toxin. Vet Rec. 2005;
157:810–2. [PubMed: 16361475]

38. Vilei EM, Schlatter Y, Perreten V, et al. Antibiotic-induced expression of a cryptic cpb2 gene in
equine beta2-toxigenic Clostridium perfringens. Mol Microbiol. 2005; 57:1570–81. [PubMed:
16135225]

39. Waters M, Raju D, Garmory HS, Popoff MR, Sarker MR. Regulated expression of the beta2-toxin
gene (cpb2) in Clostridium perfringens type a isolates from horses with gastrointestinal diseases. J
Clin Microbiol. 2005; 43:4002–9. [PubMed: 16081942]

40. Barron NS. Enterotoxemia in goats. Vet Rec. 1942; 54:82.

41. Baxendell, SA. Vade Mecum Series for Domestic Animals. Sydney: Australia University of
Sydney Post-Graduate Foundation in Veterinary Science; 1988. The diagnosis of the diseases of
goats. series B

42. Bhown AS, Habeeb AFSA. Structural studies on ε-prototoxin of Clostridium perfringens type D.
Localization of the site of tryptic scission necessary for activation to ε-toxin. Biochem Biophys
Res Commun. 1977; 78:889–96. [PubMed: 199192]

43. Songer JG. Clostridial diseases of small ruminants. Vet Res. 1998; 29:219–32. [PubMed: 9689739]

44. Saenz MG, Venturini L, Assis RA, et al. Fibrinonecrotic enteritis of piglets in a commercial farm:
a postmortem study of the prevalence and the role of lesion associated agents Isospora suis and
Clostridium perfringens. Pesquisa Veterinaria Brasileira. 2007; 27:297–300.

Uzal et al. Page 23

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



45. Timoney, JF.; Gillespie, JH.; Scott, FW. Hagan and Bruner’s microbiology and infectious diseases
of domestic animals. Ithaca: Comstock Publishing Associates; 1988.

46. Niilo L, Moffatt RE, Avery RJ. Bovine enterotoxemia. II. Experimental reproduction of the
disease. Can Vet J. 1963; 4:288–97. [PubMed: 17421646]

47. Fernandez MME, Uzal FA. Morphological and physiological changes induced by Clostridium
perfringens type A α toxin in the intestine of sheep. Am J Vet Res. 2005; 66:251–5. [PubMed:
15757123]

48. Fernandez MME, Pistone CV, Uzal FA, McClane BA, Ibarra C. Clostridium perfringens
enterotoxin damages the human intestine in vitro. Infect Immun. 2005; 73:8407–10. [PubMed:
16299340]

49. Keyburn AL, Sheedy SA, Ford ME, et al. Alpha-toxin of Clostridium perfringens is not an
essential virulence factor in necrotic enteritis in chickens. Infect Immun. 2006; 4:6496–500.
[PubMed: 16923791]

50. Sarker MR, Carman RJ, McClane BA. Inactivation of the gene (cpe) encoding Clostridium
perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human
gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol. 1999; 33:946–58.
[PubMed: 10476029]

51. Sayeed S, Uzal FA, Fisher DJ, et al. Beta toxin is essential for the intestinal virulence of
Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol
Microbiol. 2008; 67:15–30. [PubMed: 18078439]

52. Awad MM, Ellenor DM, Bod RL, Emmins JJ, Rood JI. Synergistic effects of alpha-toxin and
perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect Immun. 2001;
69:7904–10. [PubMed: 11705975]

53. Flores-Diaz M, Alape-Giron A. Role of Clostridium perfringens phospholipase C in the
pathogenesis of gas gangrene. Toxicon. 2003; 42:979–86. [PubMed: 15019495]

54. Stevens DL, Troyer BE, Merrick DT, Mitten JE, Olson RD. Lethal effects and cardiovascular
effects of purified a- and Q-toxins from Clostridium perfringens. J Infect Dis. 1988; 157:272–9.
[PubMed: 2891775]

55. Blood, DC.; Radostits, OM.; Henderson, JA. Veterinary medicine: a textbook of the diseases of
cattle, sheep, goats and horses. 6. London: Bailliere Tindall; 1983.

56. Robinson A, Manser PA. Mastitis in a heifer caused by Clostridium perfringens welchii, type A.
Vet Rec. 1977; 101:37–8. [PubMed: 198940]

57. Hunter SE, Brown JE, Oyston PC, Sakurai J, Titball RW. Molecular genetic analysis of beta-toxin
of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and
leukocidin of Staphylococcus aureus. Infect Immun. 1993; 61:3958–65. [PubMed: 8359918]

58. Sakurai J, Duncan CL. Some properties of beta-toxin produced by Clostridium perfringens type C.
Infect Immun. 1978; 21:678–80. [PubMed: 211090]

59. Shatursky O, Bayles R, Rogers M, et al. Clostridium perfringens beta-toxin forms potential-
dependent, cation-selective channels in lipid bilayers. Infect Immun. 2000; 68:5546–51. [PubMed:
10992452]

60. Uzal FA, Saputo J, Sayeed S, et al. Development and application of new mouse models to study
the pathogenesis of Clostridium perfringens type C enterotoxemias. Infect Immun. 2009; 77(12):
5291–9. [PubMed: 19805537]

61. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991; 55:733–
51. [PubMed: 1779933]

62. Ferreras M, Hoper F, Dalla Serra M, et al. The interaction of Staphylococcus aureus bi-component
gamma-hemolysins and leucocidins with cells and lipid membranes. Biochim Biophys Acta. 1998;
1414:108–26. [PubMed: 9804914]

63. Steinthorsdottir V, Fridriksdottir V, Gunnarsson E, Andresson OS. Site-directed mutagenesis of
Clostridium perfringens beta-toxin: expression of wild-type and mutant toxins in Bacillus subtilis.
FEMS Microbiol Lett. 1998; 58:17–23. [PubMed: 9453152]

64. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B. Bacterial pore-forming
toxins: the (w)hole story? Cell Mol Life Sci. 2008; 65:493–507. [PubMed: 17989920]

Uzal et al. Page 24

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



65. Gibert M, Jolivet-Reynaud C, Popoff MR. Beta2 toxin, a novel toxin produced by Clostridium
perfringens. Gene. 1997; 203:65–73. [PubMed: 9426008]

66. Nagahama M, Hayashi S, Morimitsu S, Sakurai J. Biological activities and pore formation of
Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem. 2003a; 278:36934–41. [PubMed:
12851396]

67. Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of
Clostridium perfringens. Rev Physiol Biochem Pharmacol. 2004; 152:183–204. [PubMed:
15517462]

68. Steinthorsdottir V, Halldorsson H, Andresson OS. Clostridium perfringens beta-toxin forms
multimeric transmembrane pores in human endothelial cells. Microb Pathog. 2000; 28:45–50.
[PubMed: 10623563]

69. Katayama S, Dupuy B, Daube G, China B, Cole ST. Genome mapping of Clostridium perfringens
strains with I-CeuI shows many virulence genes to be plasmid-borne. Mol Gen Genet. 1996;
251:720–6. [PubMed: 8757404]

70. Steinthorsdottir V, Fridriksdottir V, Gunnarsson E, Andresson OS. Expression and purification of
Clostridium perfringens beta-toxin glutathione S-transferase fusion protein. FEMS Microbiol Lett.
1995; 130:273–8. [PubMed: 7649450]

71. Vidal JE, Ohtani K, Shimizu T, McClane BA. (a) Contact with enterocyte-like Caco-2 cells
induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell
Microbiol. 2009; 11(9):1306–28. [PubMed: 19438515]

72. McGowan S, Lucet IS, Cheung JK, et al. The FxRxHrS motif: a conserved region essential for
DNA binding of the VirR response regulator from Clostridium perfringens. J Mol Biol. 2002;
322:997–1011. [PubMed: 12367524]

73. Ohtani K, Kawsar HI, Okumura K, Hayashi H, Shimizu T. The VirR/VirS regulatory cascade
affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain
13. FEMS Microbiol Lett. 2003; 222:137–41. [PubMed: 12757957]

74. Okumura K, Ohtani K, Hayashi H, Shimizu T. Characterization of genes regulated directly by the
VirR/VirS system in Clostridium perfringens. J Bacteriol. 2008; 190:7719–27. [PubMed:
18790863]

75. Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their
hosts. Nat Rev Microbiol. 2008; 6:111–20. [PubMed: 18197168]

76. Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008; 42:541–64.
[PubMed: 18713030]

77. Ohtani K, Hayashi H, Shimizu T. The luxS gene is involved in cell-cell signalling for toxin
production in Clostridium perfringens. Mol Microbiol. 2002; 44:171–9. [PubMed: 11967077]

78. Shepard L, Shatursky O, Johnson A, Tweten R. The mechanism of pore assembly for a cholesterol-
dependent cytolysin: formation of a large prepore complex precedes the insertion of the
transmembrane b-hairpins. Biochemistry. 2000; 39:10284–93. [PubMed: 10956018]

79. Uzal FA. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe.
2004; 10:135–43. [PubMed: 16701510]

80. Uzal FA, Songer JG. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats.
J Vet Diagn Invest. 2008; 20:253–65. [PubMed: 18460610]

81. Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest. 2005; 17:528–36.
[PubMed: 16475510]

82. Fernandez Miyakawa ME, Fisher DJ, Poon R, et al. Both epsilon-toxin and beta-toxin are
important for the lethal properties of Clostridium perfringens type B isolates in the mouse
intravenous injection model. Infect Immun. 2007; 75:1443–52. [PubMed: 17210666]

83. Lawrence G, Cooke R. Experimental pigbel: the production and pathology of necrotizing enteritis
due to Clostridium welchii type C in the guinea-pig. Br J Exp Pathol. 1980; 61:261–71. [PubMed:
6252934]

84. Niilo L. Experimental production of hemorrhagic enterotoxemia by Clostridium perfringens type C
in maturing lambs. Can J Vet Res. 1986; 50:32–5. [PubMed: 2874878]

Uzal et al. Page 25

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



85. Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, et al. Dissecting the contributions of Clostridium
perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun.
2006; 74:5200–10. [PubMed: 16926413]

86. Nagahama M, Kihara A, Kintoh H, Oda M, Sakurai J. Involvement of tumour necrosis factor-alpha
in Clostridium perfringens beta-toxin-induced plasma extravasation in mice. Br J Pharmacol.
2008; 153:1296–302. [PubMed: 18264118]

87. Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA. Effects of Clostridium perfringens beta-toxin
on the rabbit small intestine and colon. Infect Immun. 2008; 76:4396–404. [PubMed: 18625730]

88. Sakurai J, Fujii Y, Dezaki K, Endo K. Effect of Clostridium perfringens beta toxin on blood
pressure of rats. Microbiol Immunol. 1984; 28:23–31. [PubMed: 6145086]

89. Sakurai J, Fujii Y, Matsuura M, Endo K. Pharmacological effect of beta toxin of Clostridium
perfringens type C on rats. Microbiol Immunol. 1981; 25:423–32. [PubMed: 6168890]

90. Nagahama M, Kihara A, Miyawaki T, et al. Clostridium perfringens beta-toxin is sensitive to thiol-
group modification but does not require a thiol group for lethal activity. Biochim Biophys Acta.
1999; 1454:97–105. [PubMed: 10354519]

91. Nagahama M, Morimitsu S, Kihara A, et al. Involvement of tachykinin receptors in Clostridium
perfringens beta-toxin-induced plasma extravasation. Br J Pharmacol. 2003; 138:23–30. [PubMed:
12522069]

92. Sakurai J, Duncan CL. Purification of beta-toxin from Clostridium perfringens type C. Infect
Immun. 1977; 18:741–5. [PubMed: 201565]

93. Miclard J, Jaggi M, Sutter E, et al. Clostridium perfringens beta-toxin targets endothelial cells in
necrotizing enteritis in piglets. Vet Microbiol. 2009; 137:320–5. [PubMed: 19216036]

94. Miclard J, van Baarlen J, Wyder M, Grabscheid B, Posthaus H. Clostridium perfringens beta-toxin
binding to vascular endothelial cells in a human case of enteritis necroticans. J Med Microbiol.
2009; 58:826–8. [PubMed: 19429761]

95. Tamai E, Ishida T, Miyata S, et al. Accumulation of Clostridium perfringens epsilon-toxin in the
mouse kidney and its possible biological significance. Infect Immun. 2003; 71:5371–5. [PubMed:
12933886]

96. Hunter SE, Clarke IN, Kelly DC, Titball RW. Cloning and nucleotide sequencing of the
Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun.
1992; 60:102–10. [PubMed: 1729175]

97. Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. Lambda-toxin of Clostridium
perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides.
Microbiol Immunol. 1997; 41:527–35. [PubMed: 9272698]

98. Worthington RW, Mulders MS. Physical changes in the epsilon prototoxin molecule of
Clostridium perfringens during enzymatic activation. Infect Immun. 1977; 18:549–51. [PubMed:
200566]

99. Beal DR, Titball RW, Lindsay CD. The development of tolerance to Clostridium perfringens type
D epsilon-toxin in MDCK and G-402 cells. Hum Exp Toxicol. 2003; 22:593–605. [PubMed:
14686482]

100. Lindsay CD. Assessment of aspects of the toxicity of Clostridium perfringens epsilon toxin using
the MDCK cell line. Hum Exp Toxicol. 1996; 15:904–8. [PubMed: 8938486]

101. Buxton D. The use of an imunoperoxidase technique to investigate by light and electron
microscopy the sites of binding of Clostridium welchii type D e-toxin in mice. J Med Microbiol.
1978; 11:289–92. [PubMed: 210278]

102. Uzal FA, Rolfe BE, Smith NJ, Thoma AC, Kelly WR. Resistance of ovine, caprine and bovine
endothelial cells to Clostridium perfringens type D epsilon toxin in vitro. Vet Res Comm. 1999;
23:275–84.

103. Petit L, Gibert M, Gillet D, et al. Clostridium perfringens epsilon-toxin acts on MDCK cells by
forming a large membrane complex. J Bacteriol. 1997; 179:6480–7. [PubMed: 9335299]

104. Chassin C, Bens M, de Barry J, et al. Pore-forming epsilon toxin causes membrane
permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells. Am J
Physiol Renal Physiol. 2007; 293:F927–37. [PubMed: 17567938]

Uzal et al. Page 26

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



105. Petit L, Gibert M, Gourch A, et al. Clostridium perfringens Epsilon Toxin rapidly decreases
membrane barrier permeability of polarized MDCK Cells. Cell Microbiol. 2003; 5:155–64.
[PubMed: 12614459]

106. Finnie JW. Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D
epsilon toxin: a review. Aust Vet J. 2003; 81:219–21. [PubMed: 15080445]

107. Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium
perfringens type D epsilon-toxin. J Comp Pathol. 1999; 120:415–20. [PubMed: 10208737]

108. Dorca-Arevalo J, Soler-Jover A, Gibert M, et al. Binding of epsilon-toxin from Clostridium
perfringens in the nervous system. Vet Microbiol. 2008; 131:14–25. [PubMed: 18406080]

109. Nagahama M, Sakurai J. Distribution of labeled Clostridium perfringens epsilon toxin in mice.
Toxicon. 1991; 29:211–7. [PubMed: 2048139]

110. Soler-Jover A, Dorca J, Popoff MR, et al. Distribution of Clostridium perfringens epsilon toxin in
the brains of acutely intoxicated mice and its effect upon glial cells. Toxicon. 2007; 50:530–40.
[PubMed: 17572464]

111. Nagahama M, Sakurai J. High-affinity binding of Clostridium perfringens epsilon-toxin to rat
brain. Infect Immun. 1992; 60:1237–40. [PubMed: 1541539]

112. Nagahama M, Kobayashi K, Ochi S, Sakurai J. Enzyme-linked immunosorbent assay for rapid
detection of toxins from Clostridium perfringens. FEMS Microbiol Lett. 1991; 68:41–4.
[PubMed: 1769554]

113. Miyamoto O, Minami J, Toyoshima T, et al. Neurotoxicity of Clostridium perfringens epsilon-
toxin for the rat hipocampus via glutamanergic system. Infect Immun. 1998; 66:2501–8.
[PubMed: 9596708]

114. Miyamoto O, Sumitani K, Nakamura T, et al. Clostridium perfringens epsilon toxin causes
excessive release of glutamate in the mouse hippocampus. FEMS Microbiol Lett. 2000; 189:109–
13. [PubMed: 10913875]

115. Miyamoto K, Li J, Sayeed S, Akimoto S, McClane BA. Sequencing and diversity analyses reveal
extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603
Clostridium perfringens enterotoxin plasmid. J Bacteriol. 2008; 190:7178–88. [PubMed:
18776010]

116. Hughes ML, Poon R, Adams V, et al. Epsilon-toxin plasmids of Clostridium perfringens type D
are conjugative. J Bacteriol. 2007; 189:7531–8. [PubMed: 17720791]

117. Rood JI. Virulence genes of Clostridium perfringens. Annu Rev Microbiol. 1998; 52:333–60.
[PubMed: 9891801]

118. Uzal FA, Kelly WR. The effects of intravenous administration of Clostridium perfringens type D
epsilon toxin on young goats and lambs. J Comp Pathol. 1997; 116:63–71. [PubMed: 9076601]

119. Lewis, CJ. Diseases of sheep. Martin, WB.; Aitken, ID., editors. Oxford: Blackwell Science;
2000. p. 131-42.

120. Buxton D, Morgan KT. Studies of the lesions produced in the brain of colostrum deprived lambs
by Clostridium welchii (Clostridium perfringens) type D toxin. J Comp Pathol. 1976; 86:435–47.
[PubMed: 181408]

121. Buxton D, Linklater KA, Dyson DA. Pulpy kidney disease and its diagnosis by histological
examination. Vet Rec. 1978; 102:241. [PubMed: 644815]

122. Hartley WJ. A focal symmetrical encephalomalacia of lambs. N Z Vet J. 1956; 4:129–35.

123. Barker, IK.; Van Dreumel, AA.; Palmer, N. Pathology of domestic animals. 4. Jubb, KF.;
Kennedy, PC.; Palmer, N., editors. Vol. 2. San Diego: Academic Press; 1993. p. 237-45.

124. Uzal FA, Kelly WR, Morris WE, Bermudez J, Baisón M. The pathology of experimental
Clostridium perfringens type D enterotoxemia in sheep. J Vet Diagn Invest. 2004; 16:403–11.
[PubMed: 15460322]

125. Bullen JJ, Batty II. Enterotoxemia of sheep. Vet Rec. 1957; 69:1268–76.

126. Blackwell TE, Butler DG, Bell JA. Enterotoxemia in the goat: the humoral response and local
tissue reaction following vaccination with two different bacterin-toxoids. Can J Comp Pathol.
1992; 47:127–32.

Uzal et al. Page 27

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



127. Blackwell TE, Butler DG, Prescott JF, Wilcock BP. Differences in signs and lesions in sheep and
goats with enterotoxemia induced by intraduodenal infusion of Clostridium perfringens type D.
Am J Vet Res. 1991; 52:1147–152. [PubMed: 1892271]

128. Smith, MC.; Sherman, DM. Goat medicine. Philadelphia: Lea and Febiger; 1994.

129. Shanks PL. Enterotoxemia in goats. Vet Rec. 1949; 61:262–4.

130. Uzal FA, Glastonbury JR, Kelly WR, Thomas R. Caprine enterotoxemia associated with cerebral
microangiopathy. Vet Rec. 1997; 141:224–6. [PubMed: 9301010]

131. Griesemer RA, Krill WR. Enterotoxemia in beef calves-30 years observation. J Am Vet Med
Assoc. 1962; 140:154–8. [PubMed: 13901808]

132. Griner LA, Aichelman WW, Brown GD. Clostridium perfringens type D (ETX) enterotoxemia in
brown swiss dairy calves. J Am Vet Med Assoc. 1956; 129:375–6. [PubMed: 13366839]

133. Keast JC, McBarron EJ. A case of bovine enterotoxemia. Aust Vet J. 1954; 56:305–6.

134. Brown, CC.; Baker, DC.; Barker, IK. Jubb, Kennedy and Palmer’s Pathology of domestic
animals. 5. Maxie, MG., editor. Vol. 2. Philadelphia: Elsevier; 2007. p. 1-296.

135. Barber DML. Focal symmetrical encephalomalacia in young cattle. Vet Rec. 1981; 109:87–8.
[PubMed: 7292940]

136. Buxton D. Focal encephalomalacia in young cattle. Vet Rec. 1981; 108:459. [PubMed: 7292918]

137. Fairley RA. Lesions in the brains of three cattle resembling the lesions of enterotoxemia in lambs.
NZ Vet J. 2005; 53:356–8.

138. Munday BL, Mason RW, Cumming R. Observations of diseases of the central system of cattle in
Tasmania. Aust Vet J. 1973; 49:451–5. [PubMed: 4774385]

139. Munday BL, Mason RW, Hartley WJ. Encephalopathies in cattle in Tasmania. Aust Vet J. 1976;
52:93–6.

140. Watson PJ, Scholes SF. Clostridium perfringens type D epsilon intoxication in one-day-old
calves. Vet Rec. 2009; 164:816–8. [PubMed: 19561353]

141. Uzal FA, Kelly WR, Morris WE, Assis RA. Effects of intravenous injection of Clostridium
perfringens type D epsilon toxin in calves. J Comp Pathol. 2002; 126:71–5. [PubMed: 11814324]

142. Finnie JW. Histopathological changes in the brain of mice given Clostridium perfringens type D
epsilon toxin. J Comp Pathol. 1984a; 94:363–70. [PubMed: 6088597]

143. Finnie JW. Ultrastructural changes in the brain of mice given Clostridium perfringens type D
epsilon toxin. J Comp Pathol. 1984b; 94:445–52. [PubMed: 6088599]

144. Finnie JW, Manavis J, Blumbergs PC. Aquaporin-4 in acute cerebral edema produced by
Clostridium perfringens type D epsilon toxin. Vet Pathol. 2008; 45:307–9. [PubMed: 18487486]

145. Buxton D. In vitro effects of Clostridium welchii type-D epsilon toxin on guinea pig, mouse,
rabbit and sheep cells. J Med Microbiol. 1978; 11:299–302. [PubMed: 210279]

146. Buxton D. Use of horseradish peroxidase to study the antagonism of Clostridium welchii (Cl.
perfringens) type D epsilon toxin in mice by the formalinized epsilon prototoxin. J Comp Pathol.
1976; 86:67–72. [PubMed: 176185]

147. Zhu C, Ghabriel MN, Blumbergs PC, et al. Clostridium perfringens prototoxin-induced alteration
of endothelial barrier antigen (EBA) immunoreactivity at the blood brain barrier (BBB). Exp
Neurol. 2001; 169:72–82. [PubMed: 11312560]

148. Facury Filho EJ, Carvalho AU, Assis RA, et al. Clinicopathological features of experimental
Clostridium perfringens type D enterotoxemia in cattle. Vet Pathol. 2009 Epub ahead of print.

149. Barth H, Blöcker D, Behlke J, et al. Cellular uptake of Clostridium botulinum C2 toxin requires
oligomerization and acidification. J Biol Chem. 2000; 275:18704–11. [PubMed: 10749859]

150. Tsuge H, Nagahama M, Oda M, et al. Structural basis of actin recognition and arginine ADP-
ribosylation by Clostridium perfringens iota-toxin. Proc Natl Acad Sci USA. 2008; 105:7399–
404. [PubMed: 18490658]

151. Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. Clostridium perfringens iota-toxin requires
activation of both binding and enzymatic components for cytopathic activity. Infect Immun.
2000; 68:3848–53. [PubMed: 10858193]

152. Perelle S, Gibert M, Boquet P, Popoff MR. Characterization of Clostridium perfringens iota toxin
genes and expression in Escherichia coli. Infect Immun. 1993; 61:5147–56. [PubMed: 8225592]

Uzal et al. Page 28

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



153. Simpson LL, Stiles BG, Zepeda HH, Wilkins TD. Molecular basis for the pathological actions of
Clostridium perfringens iota toxin. Infect Immun. 1987; 55:118–22. [PubMed: 2878881]

154. Stiles B, Hale ML, Marvaud JC, Popoff MR. Clostridium perfringens iota toxin: binding studies
and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immune.
2000; 68:3475–84.

155. Bachmeyer C, Benz R, Barth H, et al. Interaction of Clostridium botulinum C2 toxin with lipid
lilayer membranes and Vero cells: inhabitation of channel function in chloroquine and related
compounds in vitro and toxin action in vivo. FASEB J. 2001; 15:1658–60. [PubMed: 11427518]

156. Schmid A, Benz R, Just I, Aktories K. Interaction of Clostridium botulinum C2 toxin with lipid
bilayer membranes. J Biol Chem. 1994; 269:16706–11. [PubMed: 7515883]

157. Richard JF, Mainguy G, Gibert M, et al. Transcytosis of iota toxin across polarized CaCo-2 cell
monolayers. Mol Microbiol. 2002; 43:907–17. [PubMed: 11929541]

158. Verschueren H, van der Taelen I, Dewit J, et al. Effects of Clostridium botulinum C2 toxin and
cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma
cell line. Eur J Cell Biol. 1995; 66:335–41. [PubMed: 7656900]

159. Percy, DH.; Barthold, SW. Pathology of laboratory rodents and rabbits. Victoria, Australia:
Blackwell Publishing; 2007.

160. Hart B, Hopper PT. Enterotoxemia of calves due to Clostridium welchii type E. Aust Vet J. 1967;
43:360–3. [PubMed: 6069458]

161. Fisher DJ, Miyamoto K, Harrison B, et al. Association of beta2 toxin production with Clostridium
perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene.
Mol Microbiol. 2005; 56:747–62. [PubMed: 15819629]

162. Bueschel DM, Jost BH, Billington SJ, Trinh HT, Songer JG. Prevalence of cpb2, encoding beta2
toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet
Microbiol. 2003; 94:121–9. [PubMed: 12781480]

163. Shimizu T, Ohtani K, Hirakawa H, et al. Complete genome sequence of Clostridium perfringens,
an anaerobic flesh-eater. Proc Natl Acad Sci. 2002b; 99:996–1001. [PubMed: 11792842]

164. Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H. Clostridial VirR/VirS regulon involves a
regulatory RNA molecule for expression of toxins. Mol Microbiol. 2002a; 43:257–65. [PubMed:
11849553]

165. Schotte U, Truyen U, Neubauer H. Significance of beta 2-toxigenic Clostridium perfringens
infections in animals and their predisposing factors--a review. J Vet Med B Infect Dis Vet Public
Health. 2004; 51:423–6. [PubMed: 15606864]

166. Gurjar AA, Yennawar NH, Yennawar HP, et al. Expression, crystallization and preliminary X-ray
diffraction studies of recombinant Clostridium perfringens beta 2-toxin. Acta Crystallogr Sect F
Struct Biol Cryst Commun. 2007; 63:484–7.

167. Hendriksen SW, van Leengoed LA, Roest HI, van Nes A. Neonatal diarrhoea in pigs: alpha- and
beta2-toxin produced by Clostridium perfringens. Tijdschr Diergeneeskd. 2006; 131:910–3.
[PubMed: 17278609]

168. Jost BH, Billington SJ, Trinh HT, Bueschel DM, Songer JG. Atypical cpb2 genes, encoding
beta2-toxin in Clostridium perfringens isolates of nonporcine origin. Infect Immun. 2005;
73:652–6. [PubMed: 15618211]

169. Klaasen HL, Molkenboer MJ, Bakker J, et al. Detection of the beta2 toxin gene of Clostridium
perfringens in diarrhoeic piglets in The Netherlands and Switzerland. FEMS Immunol Med
Microbiol. 1999; 24:325–32. [PubMed: 10397318]

170. Waters M, Savoie A, Garmory HS, et al. Genotyping and phenotyping of beta2-toxigenic
Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin
Microbiol. 2003; 41:3584–91. [PubMed: 12904359]

171. Ceci L, Paradies P, Sasanelli M, et al. Haemorrhagic bowel syndrome in dairy cattle: possible role
of Clostridium perfringens type A in the disease complex. J Vet Med A Physiol Pathol Clin Med.
2006; 53:518–23. [PubMed: 17105573]

172. Dennison AC, Van Metre DC, Morley PS, et al. Comparison of the odds of isolation, genotypes,
and in vivo production of major toxins by Clostridium perfringens obtained from the

Uzal et al. Page 29

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



gastrointestinal tract of dairy cows with hemorrhagic bowel syndrome or left-displaced
abomasum. J Am Vet Med Assoc. 2005; 227:132–8. [PubMed: 16013549]

173. Ferrarezi MC, Cardoso TC, Dutra IS. Genotyping of Clostridium perfringens isolated from calves
with neonatal diarrhea. Anaerobe. 2008; 4:328–31. [PubMed: 19114113]

174. Lebrun M, Filee P, Mousset B, et al. The expression of Clostridium perfringens consensus beta2
toxin is associated with bovine enterotoxaemia syndrome. Vet Microbiol. 2007; 120:151–7.
[PubMed: 17126502]

175. Dray T. Clostridium perfringens type A and beta2 toxin associated with enterotoxemia in a 5-
week-old goat. Can Vet J. 2004; 45:251–3. [PubMed: 15072200]

176. Uzal FA, Fisher DJ, Saputo J, et al. Ulcerative enterocolitis in two goats associated with
enterotoxin- and beta2 toxin-positive Clostridium perfringens type D. J Vet Diagn Invest. 2008;
20:668–72. [PubMed: 18776108]

177. Embury-Hyatt CK, Wobeser G, Simko E, Woodbury MR. Investigation of a syndrome of sudden
death, splenomegaly, and small intestinal hemorrhage in farmed deer. Can Vet J. 2005; 46:702–8.
[PubMed: 16187713]

178. Greco G, Madio A, Martella V, et al. Enterotoxemia associated with beta2 toxin-producing
Clostridium perfringens type A in two Asiatic black bears (Selenarctos thibetanus). J Vet Diagn
Invest. 2005; 17:186–9. [PubMed: 15825503]

179. Jores J, Derocher AE, Staubach C, Aschfalk A. Occurrence and prevalence of Clostridium
perfringens in polar bears from Svalbard, Norway. J Wild Dis. 2008; 44:155–8.

180. McClane, BA.; Lyerly, DL.; Wilkins, TD. Enterotoxic clostridia: Clostridium perfringens type A
and Clostridium difficile. In: Fischetti, RPNVA.; Feretti, JJ.; Portnoy, DA.; Rood, JI., editors.
Gram positive pathogens. Washington DC: ASM Press; 2006. p. 703-14.

181. Van Itallie CM, Betts L, Smedley JG 3rd, McClane BA, Anderson JM. Structure of the claudin-
binding domain of Clostridium perfringens enterotoxin. J Biol Chem. 2008; 283:268–74.
[PubMed: 17977833]

182. Sayeed, S.; Robertson, SL.; Caserta, JA.; McClane, BA. Improved understanding of the action
and genetics of Clostridium perfringens enterotoxin suggests potential application for cancer
therapy and drug delivery. In: Bruggemann, H.; Gottschalk, G., editors. Clostridia: Molecular
Biology in the post-genomic era. Norfolk: Caister academic press; 2009. p. 29-46.

183. Robertson SL, Smedley JG, Singh U, et al. Compositional and stoichiometric analysis of
Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast
transfectants. Cell Microbiol. 2007; 9:2734–55. [PubMed: 17587331]

184. McDonel JL. The molecular mode of action of Clostridium perfringens enterotoxin. Am J Clin
Nutr. 1979; 32:210–8. [PubMed: 216260]

185. McDonel JL, Duncan CL. Regional localization of activity of Clostridium perfringens type A
enterotoxin in the rabbit ileum, jejunum, and duodenum. J Infect Dis. 1977; 136:661–6.
[PubMed: 199674]

186. Smedley JG 3rd, Saputo J, Parker JC, et al. Noncytotoxic Clostridium perfringens enterotoxin
(CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-
induced cytotoxicity and enterotoxicity. Infect Immun. 2008; 76:3793–800. [PubMed: 18505809]

187. Collie RE, McClane BA. Evidence that the enterotoxin gene can be episomal in Clostridium
perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin
Microbiol. 1998; 36:30–6. [PubMed: 9431915]

188. Cornillot E, Saint-Joanis B, Daube G, et al. The enterotoxin gene (cpe) of Clostridium perfringens
can be chromosomal or plasmid-borne. Mol Microbiol. 1995; 15:639–47. [PubMed: 7783636]

189. Deguchi A, Miyamoto K, Kuwahara T, et al. Genetic characterization of type A enterotoxigenic
Clostridium perfringens strains. PLoS One. 2009; 4:e5598. [PubMed: 19479065]

190. Sparks SG, Carman RJ, Sarker MR, McClane BA. Genotyping of enterotoxigenic Clostridium
perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in
North America. J Clin Microbiol. 2001; 39:883–8. [PubMed: 11230399]

191. Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI. Enterotoxin plasmid from
Clostridium perfringens is conjugative. Infect Immun. 2001; 69:3483–7. [PubMed: 11292780]

Uzal et al. Page 30

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



192. Bannam TL, Teng WL, Bulach D, Lyras D, Rood JI. Functional identification of conjugation and
replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J
Bacteriol. 2006; 188:4942–51. [PubMed: 16788202]

193. Johnson, S.; Gerding, DN. The clostridia, molecular biology and pathogenesis. Rood, JI.;
McClane, BA.; Songer, JG.; Titball, RW., editors. London: Academic Press; 1997. p. 117-40.

194. Huang IH, Waters M, Grau RR, Sarker MR. Disruption of the gene (spo0A) encoding sporulation
transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic
Clostridium perfringens type A. FEMS Microbiol Lett. 2004; 233:233. [PubMed: 15063491]

195. Harry KH, Zhou R, Kroos L, Melville SB. Sporulation and enterotoxin (CPE) synthesis are
controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J
Bacteriol. 2009; 191:2728–42. [PubMed: 19201796]

196. Greenwood AG. Identification of Clostridium perfringens enterotoxin in penguins. Vet Rec.
2000; 146:172. [PubMed: 10706316]

197. Marks SL, Kather EJ, Kass PH, Melli AC. Genotypic and phenotypic characterization of
Clostridium perfringens and Clostridium difficile in diarrheic and healthy dogs. J Vet Intern Med.
2002; 16:533–40. [PubMed: 12322702]

198. Neiffer DL. Clostridium perfringens enterotoxicosis in two Amur leopards (Panthera pardus
orientalis). J Zoo Wild Med. 2001; 32:134–5.

199. Weese JS, Greenwood SJ, Staempfli HR. Recurrent diarrhea associated with enterotoxigenic
Clostridium perfringens in 2 dogs. Can Vet J. 2001; 42:292–4. [PubMed: 11326633]

200. Weese JS, Staempfli HR. Diarrhea associated with enterotoxigenic Clostridium perfringens in a
red-footed tortoise (Geochelone carbonaria). J Zoo Wild Med. 2000; 31:265–6.

201. Weese JS, Staempfli HR, Prescott JF. A prospective study of the roles of clostridium difficile and
enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet J. 2001b; 33:403–9.
[PubMed: 11469775]

202. Shepard LA, Heuck AP, Hamman BD, et al. Identification of a membrane-spanning domain of
the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical
to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry. 1998; 37:14563–
74. [PubMed: 9772185]

203. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW. Structure of a cholesterol-binding
thiol-activated cytolysin and a model of its membrane form. Cell. 1997; 89:685–92. [PubMed:
9182756]

204. Dang TX, Hotze EM, Rouiller I, Tweten RK, Wilson-Kubalek EM. Prepore to pore transition of a
cholesterol-dependent cytolysin visualized by electron microscopy. J Struct Biol. 2005; 150:100–
8. [PubMed: 15797734]

205. Katayama S, Dupuy B, Cole ST. Rapid expansion of the physical and genetic map of the
chromosome of Clostridium perfringens CPN50. J Bacteriol. 1995; 177:5680–5. [PubMed:
7559358]

206. Tweten RK. Nucleotide sequence of the gene for perfringolysin O (theta toxin) from Clostridium
perfringens: significant homology with the genes for streptolysin and pneumolysin. Infect
Immun. 1988; 56:3235–40. [PubMed: 2903128]

207. Cheung JK, Dupuy B, Deveson DS, Rood JI. The spatial organization of the VirR boxes is critical
for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens.
J Bacteriol. 2004; 186:3321–30. [PubMed: 15150217]

208. Kennedy CL, Smith DJ, Lyras D, Chakravorty A, Rood JI. Programmed cellular necrosis
mediated by the pore-forming alpha-toxin from Clostridium septicum. PLoS Pathog. 2009;
5:e1000516. [PubMed: 19609357]

209. Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE. Clostridial gas gangrene: evidence that
a and t toxin differentially modulate the immune response and induce acute tissue necrosis. J
Infect Dis. 1997; 176:189–95. [PubMed: 9207366]

210. Bryant AE, Bergstrom R, Zimmerman GA, et al. Clostridium perfringens invasiveness is
enhanced by effects of theta toxin upon PMNL structure and function: The roles of
leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol Med
Microbiol. 1993; 7:321–6. [PubMed: 7907907]

Uzal et al. Page 31

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



211. Ellemor D, Baird R, Awad M, Boyd R, Emmins J. Use of genetically manipulated strains of
Clostridium perfringens reveals that both alpha toxin and tetha toxin are required for vascular
leukostasis to occur in experimental gas gangrene. Infect Immun. 1999; 67:4902–7. [PubMed:
10456947]

212. Stevens DL, Bryant AE. The role of Clostridial toxins in the pathogenesis of gas gangrene. Clin
Infect Dis. 2002; 35:S93–S100. [PubMed: 12173116]

213. Fernandez-Miyakawa ME, Jost BH, Billington SJ, Uzal FA. Lethal effects of Clostridium
perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model.
Vet Microbiol. 2008; 127:379–85. [PubMed: 17997054]

Uzal et al. Page 32

Open Toxinology J. Author manuscript; available in PMC 2014 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
CPB-mediated gross pathology and histological damage of rabbit ileal intestinal loops.

Rabbit ligated intestinal loops were inoculated with a type C CN3685 isolate (WT), isogenic

single toxin mutants, purified CPB or medium (unioculated TGY medium) and then

incubated for 6 h. A) Gross pathology. Loops inoculated with the WT, ΔpfoA, Δcpa, or

purified CPB are severely hemorrhagic and distended with fluid. No significant gross

abnormalities are observed in the loops inoculated with two different Δcpb mutants or sterile

TGY medium. B) Histology. Control loops inoculated with sterile TGY, and loops

inoculated with the Δcpb mutant showed normal intestinal villi with a well-preserved

epithelium and lamina propria. Loops inoculated with wild type CN3685 (WT) or the

complemented Δcpb/cpb showed histological damage consisting of necrosis and loss of

epithelium, necrosis of lamina propria, blunting of the villi, hemorrhage of the mucosa and

diffuse neutrophilic infiltration of mucosa and sub mucosa (Reproduced from Sayeed et al.

2008, with permission from Wiley Blackwell publisher).
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Fig. 2.
A) Proteinaceous perivascular edema in the brain of a lamb with type D enterotoxemia. The

edema of the brain in this disease is mediated by the action of ETX. HE, 250x. (Reproduced

from Uzal F.A., Ortega Porcel J. and Corpa Arenas J.M., 2008. Enterotoxemia ovina y

caprina. Cuadernos de Campo, Merial Ed., Barcelona, Spain). B) Brain from a normal lamb

is shown for comparison. HE, 250x.
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Table 4

Epidemiological Studies Linking CPB2 and Diseases in Different Animals

Toxinotype Species Disease Reference

A Swine Necrotic enteritis Gibert et al. (1997)

A Swine Diarrhea Klaasen et al. (1999)

A Swine Diarrhea, gastroenteritis Waters et al. (2003)

A Swine Diarrhea Bueschel et al. (2003)

A Swine Enteritis Jost et al. (2005)

A Swine Enteritis Jost et al. (2006)

A Swine Neonatal diarrhea Hendriksen et al. (2006)

A Bovine Enterotoxaemia Manteca et al. (2002)

A Bovine Hemorrhagic bowel syndrome Dennison et al. (2005)

A Bovine Enterotoxaemia Lebrun et al. (2006)

A Bovine Hemorrhagic bowel syndrome Ceci et al. (2006)

A Bovine Hemorrhagic enteritis Songer & Miskimins (2005)

A, E Bovine Neonatal diarrhea Ferrarezi et al. (2008)

A Equine Fatal and Non fatal Typhlocolitis Herholz et al. (1999)

A Equine Typhlocolitis Bacciarini et al. (2003)

A Equine Type A myonecrosis Choi et al. (2003)

A Equine Gastrointestinal diseases Waters et al. (2005)

A Equine Typhlocolitis Vilei et al. (2005)

A Equine Enterocolitis Timoney et al. (2005)

A Caprine Enterotoxaemia Dray et al. (2004)

D Caprine Enterotoxaemia Uzal et al. (2008)

A Cervidae Clostridial enterotoxaemia Embury-Hyatt et al. (2005)

? Ursidae Necrotic and Hemorrhagic enteritis Greco et al. (2005)

A Ursidae Normal flora Jores et al. (2008)
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