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Abstract
Lyophilization can induce aggregation in therapeutic proteins, but the relative importance of
protein structure, formulation and processing conditions are poorly understood. To evaluate the
contribution of protein structure to lyophilization-induced aggregation, fifteen proteins were co-
lyophilized with each of five excipients. Extent of aggregation following lyophilization, measured
using size-exclusion chromatography, was correlated with computational and biophysical protein
structural descriptors via multiple linear regression. Descriptor selection was performed using
exhaustive search and forward selection. The results demonstrate that, for a given excipient, extent
of aggregation is highly correlated by eight to twelve structural descriptors. Leave-one-out cross
validation showed that the correlations were able to successfully predict the aggregation for a
protein “left out” of the data set. Selected descriptors varied with excipient, indicating both protein
structure and excipient type contribute to lyophilization-induced aggregation. The results show
some descriptors used to predict protein aggregation in solution are useful in predicting
lyophilized protein aggregation.
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1. Introduction
Aggregates are formed during the manufacture and storage of protein drugs, and are
associated with an increased risk of immunogenicity and therapeutic failure in patients
(Rosenberg, 2006). Understanding the structural properties of proteins that lead to
aggregation is critical to the design of safe and effective protein drug products, and an
ability to predict aggregation propensity (i.e., the likelihood and extent to which a protein
will aggregate) with reasonable accuracy would accelerate development. Several approaches
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have been developed to estimate aggregation propensity for a given protein, which can
classified into two main methods: heuristic-based methods and simulation-based methods.

Heuristic-based approaches attempt to use prior history on aggregation or causes of
aggregation in proteins to develop predictors for aggregation propensity. The aim of a
heuristic-based approach is to relate protein properties to experimental data on protein
aggregation, with the end result being a predictive model or algorithm that returns
aggregation propensity given a measure of protein structure. Several algorithms have been
developed to predict protein aggregation in solution as a function of structural parameters.
For example, AGGRESCAN utilizes the intrinsic aggregation propensity of amino acids
obtained from an experimental aggregation database of mutated β-amyloid peptides
(Conchillo-Sole et al., 2007). PASTA predicts the likelihood of amino acid sequences being
involved in intermolecular β-sheet formation, based on minimization of β-pairing energies
(Trovato, Seno, & Tosatto, 2007). Zyggregator uses factors such as protein hydrophobicity,
electrostatic interactions and alternating stretches of polar and non-polar residues to predict
aggregation propensity (Tartaglia & Vendruscolo, 2008). For all of these methods, protein
primary structure (amino acid sequence) is used to return one or more scoring parameters
which are indicative of the propensity of a protein to aggregate. For instance, AGGRESCAN
returns the number of aggregation prone regions, or “hot spots” in a protein. The number of
hot spots is then used to qualitatively indicate the likelihood of protein aggregation
occurring, with a larger number of hot spots corresponding to a higher likelihood. Therefore,
a hallmark of current methods is qualitative results in the form of aggregation predictors that
must be interpreted.

Simulation-based methods use any of the many available molecular simulation software
packages or newly developed tools to investigate interactions between protein molecules or
dynamics within a single protein molecule. The aim of simulation-based methods is to
determine if aggregation is likely to happen based on the energetics of protein–protein
interactions (Ma & Nussinov, 2006). Alternatively, simulation-based methods can
investigate the dynamics of a single protein molecule to determine if the properties of the
protein could become amenable to aggregation (Irbäck & Mohanty, 2006). For example, the
spatial aggregation propensity (SAP) algorithm uses molecular simulations to determine the
average exposed hydrophobic surface area for a given protein, with larger exposed
hydrophobic surface areas representing increased aggregation propensity (Chennamsetty,
Voynov, Kayser, Helk, & Trout, 2009). In general, simulations are more computationally
expensive than use of a model or algorithm to predict aggregation propensity. Simulations
are usually required for every system of interest. Simulation-based methods necessitate
three-dimensional structure of a protein for determination of aggregation propensity and thus
require more structural information than the heuristic-based methods described previously.
Simulation-based approaches offer advantages over current heuristic-based approaches due
to the ability for qualitative assessments (e.g., free energy calculations of protein-protein
interactions) and inclusion of formulation conditions via explicit solvent and solute
modeling. Recently, hybrid approaches have been developed to combine simulation results
with heuristic model-based predictions. The Developability Index has been constructed for
monoclonal antibodies utilizing net charge and spatial aggregation propensity (SAP) (Lauer
et al., 2012). Additionally, the osmotic second virial coefficient (B22) has also been used to
predict protein self-association in aggregation (Chi, Krishnan, Randolph, & Carpenter, 2003;
Printz, Kalonia, & Friess, 2012), though it is based on experimental measurement and not on
a priori descriptors of protein structure.

The described approaches to predicting aggregation all assume a solution environment.
Approximately 40% of current protein drug products are marketed as solids, many as
lyophilized powders for reconstitution. In addition, protein drugs that have been expressed

Roughton et al. Page 2

Comput Chem Eng. Author manuscript; available in PMC 2014 November 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and purified are often stored in lyophilized form prior to final formulation and packaging.
Whether aggregation predictors developed for solutions can be applied effectively to
lyophilized solids is unknown. Lyophilization involves freezing a protein solution followed
by removal of ice by sublimation. The process subjects the protein to stresses such as
denaturation at the ice surface, pH shifts and freeze concentration (Anchordoquy &
Carpenter, 1996; Bhatnagar, Bogner, & Pikal, 2007; Chang, Kendrick, & Carpenter, 1996b).
Removal of water and loss of hydrogen bonds during the drying stage can produce intra- and
intermolecular interactions that differ from those in solution (Chang, Beauvais, Dong, &
Carpenter, 1996a; Prestrelski, Pikal, & Arakawa, 1995). Lyophilized proteins are
reconstituted prior to administration or formulation, and may or may not regain their original
conformation and activity upon rehydration. Since this array of stresses and environments
differs considerably from aqueous solution, it is reasonable to question whether properties
that predispose proteins to aggregate in solution are also important in lyophilized solids.

Current heuristic-based aggregation prediction models are computationally efficient and
easy to use, with the main drawback being a disconnect between the calculated propensity
score and experimental aggregation measurement. Additionally, the effects of the
formulation are not incorporated in aggregation propensity calculation and the suitability for
use with lyophilized proteins is not established. The proposed work proposes three
objectives for the improvement of model-based prediction of aggregation propensity: (1)
build predictive quantitative models by correlating different aggregation predictors with
experimental measures of aggregation, as opposed to a vague or qualitative aggregation
propensity score. (2) Determine the suitability of aggregation predictors derived from
solution conditions for predicting protein aggregation in lyophilized solids. (3) Investigate
the effects of formulation on the aggregation predictors selected in a predictive model.

2. Materials and methods
2.1. Overview

In the studies reported here, four formulations of fifteen different proteins were prepared,
subjected to lyophilization, then reconstituted and assayed for aggregate content. Various
multiple linear regression analyses were then performed to test the hypothesis that the
experimental aggregate content in lyophilized proteins is correlated with descriptors of
protein structure, and that these descriptors can be used to predict aggregation propensity of
lyophilized proteins. Fig. 1 provides an overview of the experimental procedure and
subsequent model development stage. Percent monomer remaining after lyophilization was
used as the experimental quantitative measure of aggregation propensity, with values less
than 100% indicating loss of monomeric protein due to aggregation. Descriptors obtained
from computational predictions were limited to approaches based solely on primary
sequence (AGGRESCAN and PASTA). Both a forward selection method and an exhaustive
search method were used to identify and select descriptors that strongly correlated with
experimental data. Descriptor selection was performed to identify structural properties of
proteins that were good predictors of aggregation propensity in lyophilized systems, similar
to other data-mining approaches used to pinpoint useful descriptors (Zhang & Huan, 2010).
The analysis demonstrates that, for a given formulation condition, the extent of aggregation
as measured by percent monomer remaining shows strong correlation and good prediction
power when eight to twelve structural descriptors are selected. Leave-one-out cross-
validation (LOOCV) shows that the correlations generally are able to successfully predict
the aggregation for a protein “left out” of the data set, using regression for the remaining
fourteen. Overall, the proposed correlations are able to predict protein aggregation after
lyophilization for a variety of proteins on a formulation-by-formulation basis, showing that
some heuristic-based descriptors developed for use with proteins in solution have
applications for proteins in a lyophilized state.
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2.2. Materials
Fifteen commercially available proteins were selected to represent a wide range of possible
molecular weights and structural properties (see Table 1). All proteins were purchased from
Sigma–Aldrich (St. Louis, MO) except for trypsin inhibitor (Worthington Biochemical
Corporation, Lakewood, NJ). Proteases were avoided in the study as they are subject to
autocatalytic degradation.

Sucrose, glycine, urea and guanidine hydrochloride (Gdn HCl) were used as excipients (i.e.,
additives) to develop four different formulations for lyophilization. All excipients and buffer
materials (monobasic and dibasic potassium hydrogen phosphate) were obtained from
Sigma–Aldrich. Proteins were dialyzed prior to formulation to remove unknown excipients
that may have been added by the manufacturer, as described below. All other chemicals and
reagents were used as received.

2.3. Preparation of solutions containing protein and excipient
Lyophilized samples were prepared from solutions containing a protein and one of several
excipients. To prepare the protein solutions, each protein was dissolved in potassium
phosphate buffer (20 mM, pH 7.4) to give a stock solution with 2.0 mg/mL protein. The
solutions were dialyzed using Biotech Cellulose Ester dialysis tubing (MWCO 8000–10,000
Da, Spectrum Laboratories, Rancho Dominguez, CA) against phosphate buffer (20 mM, pH
7.4) at 4 °C for 24 h with two changes of dialysis buffer. After dialysis, the solutions were
filtered through a 0.2 μm syringe filter (Gelman Nylon Acrodisc 13, Sigma–Aldrich) and
stored at 4 °C for use within 24 h.

Excipient solutions were prepared by dissolving the excipient in phosphate buffer. This
solution was then filtered using a 0.2 μm syringe filter and stored at 4 °C. Sucrose (2.0 mg/
mL), glycine (2.0 mg/mL), urea (2.0 M) and Gdn HCl (2.0 M) solutions were prepared
accordingly.

2.4. Lyophilization
Five lyophilized formulations were prepared for each protein (Table 1) to generate 75
different types of lyophilized samples (15 unlyophilized samples + 75 lyophilized samples =
90 total samples). Prior to lyophilization, the protein stock solutions were mixed with
excipient or potassium phosphate buffer (20 mM, pH 7.4) solutions in lyophilization vials to
give a final protein concentration of 1.0 mg/mL, with each lyophilization vial containing 400
μL of the formulation. The protein: excipient ratio was 1:1 by weight for sucrose and
glycine, while the final concentration of urea and Gdn HCl was 1.0 M. The formulations
were lyophilized in quadruplicate using a VirTis adVantage Plus freeze dryer (SP Industries,
Inc., Gardiner, NY). The same conservative lyophilization cycle was used for all sample
types. Shelves were first pre-cooled to −2 °C (15 min), followed by sample freezing at −40
°C (50 min) and drying under vacuum (70 mTorr) at −35 °C for 10 h, −20 °C for 8 h, −5 °C
for 6 h, with continued drying (100 mTorr) at 10 °C for 6 h, 25 °C for 6 h and 4 °C for 0.5 h
(Sophocleous et al., 2012). No attempt was made to optimize the cycle for the individual
combinations of protein and excipient (e.g., using Tg′). To produce a non-lyophilized control
solution, the remaining protein stock solution was diluted 1:1 with potassium phosphate
buffer to give a final protein concentration of 1.0 mg/mL.

The lyophilized powders were reconstituted in 400 μL DDW and allowed to dissolve at
room temperature. The solutions were then transferred to 1.5 mL Eppendorf tubes and spun
at 12,000 rpm for 10 min, and any visible pellet or particles were noted. An adequate
volume of the supernatant was removed for analysis using high performance size exclusion
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chromatography (HP-SEC). Next, most of the supernatant was removed and any pellet re-
suspended in potassium phosphate buffer for analysis using SDS-PAGE.

2.5. High performance size exclusion chromatography
The non-lyophilized control solutions and the supernatant from the lyophilized, reconstituted
samples were analyzed using HP-SEC. Analysis was performed on an Agilent LC system
(1200 Series, Agilent Technologies, Santa Clara, CA) with a TSKgel G3000SWxI column
(Tosoh Bioscience LLC, King of Prussia, PA). The mobile phase was 50 mM potassium
phosphate buffer, pH 7.0 containing 200 mM NaCl. A flow rate of 0.8–1.0 mL/min was
used and UV signals were collected at 215 nm and at 280 nm. The peak area was calculated
for each protein from the chromatogram. The areas were correlated to % monomeric protein
content, normalizing against the areas of the corresponding non-lyophilized control solutions
which were assumed to contain 100% monomer.

2.6. SDS-PAGE
The supernatant (and re-suspended pellet, when produced) from lyophilized and non-
lyophilized solutions were analyzed for the presence of large aggregates using SDS-PAGE.
Protein samples were mixed with non-reducing or reducing (containing β-mercaptoethanol
as a reducing agent) loading buffer, stained with bromophenol blue, vortexed and heated at
95 °C for 5 min. The samples were cooled and then loaded onto 10% or 12%
polyacrylamide gels. Low molecular weight markers (GE Healthcare, Waukesha, WI) were
used as a reference ladder. SDS-PAGE analysis was performed on a Mini-PROTEAN Tetra
cell electrophoresis instrument attached to a PowerPac Basic power supply (Bio-Rad
Laboratories, Hercules, CA) using 10% gels for all proteins except α-amylase, BSA,
ovalbumin and catalase. These proteins were analyzed on 12% gels and referenced against
broad range molecular weight markers (Bio-Rad Laboratories), owing to their larger
molecular weight. Gels were stained with Coomassie Brilliant Blue R-250 staining solution
for 30–60 min on a rocking platform (VWR International, Radnor, PA), followed by
destaining for approximately 2 days.

2.7. UV–visible spectroscopy
UV–visible spectra were obtained for all protein samples, lyophilized as well as non-
lyophilized, using an Agilent 8453 UV–vis spectrophotometer. 400 μL of protein solution
was added to a very low volume cuvette and spectra were collected in the wavelength range
200–600 nm with an integration time of 10 s and an interval of 1 nm. The aggregation index
(A.I.) was used as a measure of aggregates in solution, since increased absorbance at 350 nm
has been associated with presence of larger particles. A.I. was calculated using optical
densities at 280 nm and 350 nm according to the method described by Katayama et al.
(2005) as follows:

2.8. Protein descriptors
Linear regressions were developed to relate percent monomeric protein recovered after
lyophilization and reconstitution, as measured by HP-SEC, to protein structural descriptors.
Three sets of descriptors were used in the correlations: (i) physical descriptors based on
structure and reported melting temperatures (Tm), (ii) AGGRESCAN descriptors and (iii)
PASTA descriptors (Table 1 and S1). Both AGGRESCAN and PASTA use protein primary
structure to predict aggregation propensity, particularly the potential of forming β-amyloid
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structures. AGGRESCAN descriptors were obtained using the AGGRESCAN online server
(Conchillo-Sole et al., 2007). AGGRESCAN predicts an aggregation profile and locates
regions of the protein above a threshold value, defined as hot spots (Conchillo-Sole et al.,
2007). PASTA generates pairings between residues of varying length that have the lowest
predicted energies for self-interaction and generates an aggregation profile with peaks
representing regions of high aggregation propensity (Trovato et al., 2007). The
AGGRESCAN and PASTA descriptors used for correlations are defined in Table S1.
Correlations were generated using all descriptor sets at once on a per formulation basis.

2.9. Descriptor selection
Two methods were used to select optimum descriptor sets for the correlations: exhaustive
search and forward selection. In exhaustive search, for a defined model size (i.e., number of
descriptors), all descriptors were evaluated and the descriptors that minimized the Akaike
Information Criterion (AIC) score were chosen. The AIC score is equal to the error of the fit
plus a penalty for the number of descriptors used (Wasserman, 2004). As descriptors are
added, the error of the fit decreases but the penalty is increased. As the model size was
increased, the optimal set of descriptors was selected de novo, and descriptors were not
guaranteed to be retained as model size was increased. Exhaustive search was performed
using the LEAPS package (Lumley, 2013) in the statistical software R (Dalgaard, 2008).
The final correlation was selected as the model size that returned the minimal AIC score as
compared to all other model sizes. LEAPS uses Mallow’s Cp score in exhaustive search,
which yields the same results as use of AIC for linear correlations (Wasserman, 2004).

In the forward selection method, once a descriptor is selected it is retained as model size
increases, and each additional descriptor is added only if it reduces the AIC score. If the AIC
score cannot be reduced by adding another descriptor, the selection process ends and the
resulting correlation becomes final. In the forward selection method, it is possible that no
descriptors will be selected; this occurs if no single descriptor is strongly correlated to the
data. Forward selection was performed using the DAAG package in R (Dalgaard, 2008;
Maindonald & Braun, 2010).

2.10. Evaluation of predictive power
Once a final correlation was selected by either forward search or exhaustive search, LOOCV
was performed to evaluate the predictive power of the correlation. Prediction errors can
become large if the dataset is overfit by using too many descriptors. In LOOCV, one data
point (i.e., one protein) was removed and a correlation generated using the same descriptors
selected for the final correlation. The new correlation was then used to predict the extent of
aggregation for the protein that was left out. The LOOCV procedure was repeated for every
protein, resulting in 15 total predictions. LOOCV is used in the validation of quantitative
structure–activity relationships (QSARs) and quantitative structure-property relationships
(QSPRs) (Bolboaca & Jäntschi, 2008; Wu et al., 2010), and has been used in pharmaceutical
applications. LOOCV was performed using the DAAG package in R (Dalgaard, 2008;
Maindonald & Braun, 2010). The error between the predicted values and actual values was
represented as the prediction sum of the squares (PRESS) (Quan, 1988):

where n is the number of observations, Yi is the observed value for observation i, and Ŷ〈i〉 is
the predicted value for observation i when the observation is left-out. The PRESS value was
used to calculate a Q2 value, which is indicative of the predictive power of the equation. The
value for Q2 is less than or equal to the value of R2, with better predictive power being
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provided the closer Q2 is to R2 (Quan, 1988). In general, R2 – Q2 < 0.3 indicates that the
model is not overfit and does not contain outliers (Bolboacă & Jäntschi, 2008). Previous
QSARs and QSPRs have used Q2 to evaluate predictive power (Eslick et al., 2009). Q2 is
related to the PRESS value:

where Ȳi is the average value for all observations.

3. Results
3.1. Experimental measures of protein aggregation

For the fifteen proteins and five lyophilized formulations studied here, aggregation varied
with protein, with formulation and with the analytical method used to assess aggregation
(Table S2). The proteins can be grouped according to aggregation tendency. Five proteins
(lysozyme, ovalbumin, cytochrome C, α-amylase, BSA) showed high aggregation tendency
across the formulation types as indicated by low (<80%) recovery of monomeric protein by
HP-SEC, high aggregation index (>100) and/or the presence of high molecular weight bands
on SDS-PAGE. Six proteins (RNAse A, α-chymotrypsinogen, ConA, α-lactoglobulin, SOD,
trypsin inhibitor) showed low aggregation tendency using these metrics, while the remaining
four proteins (myoglobin, DNAse I, catalase, β-lactoglobulin) showed intermediate
aggregation tendency. Greater than 100% recovery of monomeric protein by HP-SEC was
observed for some samples and could reflect incomplete separation of aggregate from
monomeric protein or protein unfolding. While the assignment of proteins to these groups is
somewhat arbitrary, it is clear that the proteins selected show a range of aggregation
propensities on lyophilization. The data set is therefore suitable for assessing the effects of
protein structure on lyophilization-induced aggregation within the parameter space defined
by their structural descriptors. Note that, since the largest protein in the data set (BSA, 66
kD) is considerably smaller than monoclonal antibodies, these and other large proteins are
not expected to be well-described by the correlations developed here.

With regard to formulation, those containing buffer, sucrose or glycine all produced
aggregates following lyophilization for some of the proteins studied (Table S2). Compared
to these excipients, urea formulations produced a greater extent of aggregation for a greater
number of proteins, as expected for this denaturant (Table S2). Formulations containing Gdn
HCl showed no retention of monomeric protein by HP-SEC for 11 of the 15 proteins, and
pellets and/or high molecular weight bands on SDS-PAGE for 8 of 15. Because the observed
extent of aggregation was very high and relatively insensitive to protein structure in Gdn
HCl formulations, this formulation was omitted in developing correlations. The correlations
thus were developed using the four remaining excipients (i.e., buffer, sucrose, glycine or
urea).

Of the three methods used to assess aggregation (SDS-PAGE, AI, HP-SEC), only AI and
HP-SEC were used quantitatively; therefore, only results from these two methods can be
used to develop quantitative correlations with protein structural descriptors. AI values were
not considered quantitatively reliable. For example, some formulations for proteins such as
concanavalin A, cytochrome-c, β-lactoglobulin and trypsin inhibitor showed large AI values
but had large errors. In other cases, proteins with low AI values showed loss of monomeric
protein by HP-SEC and formation of a pellet on SDS-PAGE (e.g., catalase in urea, Table
S2). This may be due to the formation of insoluble precipitates that settle out of solution and
are not detected on UV. Furthermore, RNase, lysozyme α-chymotrypsinogen and many
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other proteins did not show significant differences in AI values across formulations. As a
result, correlations were developed based on the % retention of monomer as measured by
HP-SEC and AI values were not used further.

3.2. Development of correlations
Two methods were used to develop correlations relating protein descriptors to percent
monomer retained following lyophilization: exhaustive search and forward selection. For
both methods, the descriptor set used to generate correlations for each formulation was
comprised of physical descriptors, AGGRESCAN descriptors and PASTA descriptors. The
following subsections detail and compare the results for each method.

3.2.1. Exhaustive search method—The exhaustive search method was performed
using all available descriptors for each formulation. Good fits, as determined by minimum
AIC scores, were obtained with model sizes between eight and twelve descriptors (Table 2).
The descriptors selected for each formulation are listed in Table 2, together with statistical
measures of goodness-of-fit (R2) and predictive power (Q2 and R2 – Q2).

In general, the descriptors selected differed from formulation to formulation. Across all
formulations, each descriptor type was selected with similar frequencies: physical
descriptors were selected 16 times, AGGRESCAN descriptors were selected 12 times and
PASTA descriptors were selected 11 times. No single descriptor was selected for all
formulations. The most commonly selected descriptors were % β-sheet, Tm, Eavg, and Peaks,
which were all selected for three of the four formulations. At least one descriptor of each
type was selected for each formulation.

The correlations for all four formulations had small (R2 – Q2) values and R2 values close to
1, indicating that they provide a reasonable tool for predicting the percent retained
monomeric protein after lyophilization within each formulation type. The correlation for the
buffer formulation had the best fit and best predictive power, having the highest R2 and Q2

values and the lowest (R2 – Q2) values. The correlation for the glycine formulation provided
the poorest fit and lowest Q2 value, and also provided the poorest predictive power as
indicated by the largest (R2 – Q2) value. A summary of the regression for the four
formulations, together with values of the regression coefficients, is presented in Table 3.

3.2.2. Forward selection method—Forward selection was also used to build
correlations using all available descriptors. Due to the nature of the selection method, the
final correlations differ in the number of descriptors selected (Table 4). Physical descriptors
were selected most frequently with this method, accounting for 9 out of the 11 descriptors
selected (Table 4). Only physical descriptors were selected for urea and sucrose
formulations and four out of the five descriptors selected for the buffer formulation were
physical descriptors. The most commonly selected descriptor was pI, which was selected
first for the buffer and sucrose formulations and second for the urea formulation. The early
selection of pI indicates that this descriptor provides a superior fit to the experimental data
for the buffer and sucrose formulations and a very good fit for the urea formulation when
compared to the other descriptors.

With forward selection, all of the (R2 – Q2) values were large and no correlation provided a
good fit to the data, as indicated by the low R2 values. The correlation for the buffer
formulation had the highest number of descriptors and yielded the highest R2 value.
However, the predictive power of the correlation was unsatisfactory and provided the largest
(R2 – Q2) value among the four formulations. The sucrose formulation provided a slightly
higher R2 value than the urea formulation, despite using one less descriptor. The correlation
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for the sucrose formulation had the lowest (R2 – Q2) value among the correlations generated
by forward selection.

3.2.3. Comparison of methods—Models generated by exhaustive search were superior
to those generated by forward selection, having better fits and greater predictive power as
indicated by the higher R2, higher Q2 and lower (R2 – Q2) values (Tables 2 and 4). Forward
selection is less computationally expensive when compared to exhaustive search. For
development with models that involve large sets of possible descriptors, use of exhaustive
search may be infeasible due to computation requirements. However, the time needed for
descriptor selection was comparable for both methods using the descriptor set in this model.
Additionally, the results indicate that use of a forward search is insufficient in developing a
predictive model with sufficient accuracy. As a result, the forward selection method was not
pursued and models generated by exhaustive search are emphasized in the results and
discussion below.

3.3. Predictive power of correlations
Within a formulation, correlations showed good fits (R2 > 0.98) and satisfactory predictive
power (R2 – Q2 < 0.2) using the exhaustive search method (Table 2). Parity plots comparing
the predicted percentage of monomeric protein to the experimental value are shown in Fig.
2. Good agreement between predicted and actual values is observed for all four
formulations, with the greatest deviation observed for the glycine formulation (Fig. 2). The
data for the urea formulation is spread fairly evenly and validation resulted in a high Q2

value. For the other formulations, one protein had a substantially lower observed and
predicted percent monomer values than the other proteins. However, this outlying
observation resulted in lower Q2 values only for the glycine formulations (Fig. 2), as high
prediction error was found for the outlier when the point was left out during cross-
validation. High Q2 values were obtained for both the buffer and sucrose formulations,
despite the outlier. The results suggest that the descriptors selected for the buffer and sucrose
formulation are able to account for the structural differences in the outlying protein
sufficiently, yielding a low prediction error when the protein was left-out during cross-
validation.

3.4. Performance of individual descriptor sets
The models presented in Tables 2–4 were generated by pooling all of the available
descriptors from three descriptor sets: (i) physical descriptors, (ii) AGGRESCAN
descriptors, (iii) PASTA descriptors. Correlations were also developed for each individual
descriptor set in isolation, using the exhaustive search method (data not shown). At small
model sizes, physical descriptors provided the best fit for the buffer, urea and sucrose
formulations. The glycine formulation showed similar fits for model sizes of one descriptor,
regardless of the descriptor set used. At larger model sizes, no single descriptor set could
provide a fit comparable to that given by pooling all available descriptors.

Overall, physical descriptors performed better across all model sizes than the other
individual descriptor sets. Thus, while reasonable fits could be obtained using only one
descriptor set in isolation (R2 ≈ 0.7–0.8; data not shown), pooling the descriptors provided
better fits (R2 ≥ 0.98; Table 2).

3.5. Protein descriptor covariance
The descriptors used in developing the correlations were taken from several different
sources without regard to possible covariance, either within a given descriptor set or among
the pooled descriptors. Analysis of covariance was performed to determine which
descriptors were correlated strongly with one another. Moderate to high covariance (≥|0.7|)
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was observed for some descriptor pairs taken from different descriptor sets, as expected
(Table S3). Within a given descriptor set, AGGRESCAN descriptors showed moderate to
high covariance (≥|0.7|), as did PASTA descriptors. Some pairs of physical descriptors also
showed high covariance (e.g., % α-helix vs % &beta;-sheet). For any given correlation
developed through multiple linear regression (Tables 2 and 4), few or no descriptors were
selected that show moderate to high covariance (≥|0.7|).

4. Discussion
The results presented here demonstrate that, for a given type of formulation, the extent of
protein aggregation on lyophilization is strongly correlated with both physical and heuristic-
based computational descriptors of protein structure. The best correlations (Tables 2 and 3)
were achieved using an exhaustive search method and descriptors pooled from the
AGGRESCAN and PASTA algorithms along with selected physical descriptors (Table 1
and S1). LOOCV demonstrated that the resulting correlations were able to provide good
predictions of aggregation propensity. The results suggest that protein structure determines
aggregation propensity during lyophilization and can be used for prediction purposes when
the formulation components are held constant.

Independently, each of the heuristic-based algorithms provided considerably poorer
correlations with lower predictive power than those built from pooled set of descriptors. The
descriptors from both the AGGRESCAN and PASTA sets showed high covariance (see
Table S3). As a result, the amount of structural information captured by either method is
limited despite the large number of descriptors obtained from both methods. The addition of
physical descriptors in the pooled set allows more structural features of the protein to be
represented and thus provides better fits.

Descriptors selected varied between formulations and no single protein descriptor could
account for the extent of aggregation across all formulations. This indicates that, for
lyophilized formulations, the excipient and its interactions with the protein are important
contributors to aggregation. The heuristic-based algorithms used here do not explicitly
include excipient or medium effects. However, the heuristic-based algorithms were
developed using data from proteins in solution. As both AGGRESCAN and PASTA
descriptors were frequently selected, the algorithms are shown to be useful in prediction of
aggregation under lyophilized conditions.

The most commonly selected descriptors provide insight into the factors contributing to
lyophilization-induced aggregation. In the eight correlations presented in Tables 2 and 4, pI,
% β-sheet, and Tm were selected five times and were the most commonly selected
descriptors. All three have been implicated in aggregation induced by colloidal interactions
or protein unfolding. The PASTA descriptors Peaks and Eavg were selected for three of the
four correlations generated by exhaustive search (Table 2). Interestingly, the percent
monomer increased with increasing Peaks values for the buffer and sucrose formulations.
While the reason for this is not clear, it may reflect a decrease in the size of each aggregation
prone region as the number of regions increases. The PASTA descriptor Eavg describes the
average interaction energies between residue pairings for a given protein, with lower
energies indicating stronger interactions. As the average energies across all pairings for a
protein (Eavg) were more highly selected than the pairing resulting in the minimum energy
(Emin), the presence of several moderately aggregation-prone regions may increase the
propensity toward aggregation more than the presence of one highly aggregation-prone
region. Also, the two descriptors showed a high covariance (0.99), which may explain why
only one was selected. The descriptors # of free SH and # S–S combined to be selected in
four of the eight correlations. The frequent selection of thiol/disulfide related descriptors is
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not surprising, since free thiol groups are reactive and can lead to the formation of disulfide-
linked covalent aggregates. SDS-PAGE results confirmed that reducible aggregates were
observed for proteins containing four or more free thiol groups (Table S2).

Examination of the descriptors that were not selected is also instructive. Apolar surface area
(apolar) and fractional apolar surface area (fapolar) were not highly selected. The lack of
selection of apolar suggests that aggregation during lyophilization is not strongly correlated
to total apolar surface area. Furthermore, larger percentages of apolar surface area do not
appear to affect aggregation as fapolar was not chosen for any of the correlations.

The correlations developed here can be used as formulation design tools, albeit with limited
scope. For example, the correlation for the buffer formulation could be used to assess
whether a new protein is likely to be destabilized during aggregation in the absence of
excipients, and the correlations for the glycine and sucrose formulations could be used to
select the better of these two excipients. The predictive ability of the correlations is expected
to be greatest for proteins whose properties fall within the structural space defined by the 15
proteins studied here. Perhaps more importantly, the correlations are limited in that the
effects of excipients on aggregation are not included quantitatively, since the number of
excipients tested was small. Previous studies by the authors have related protein aggregation
on lyophilization to molecular descriptors of structure for carbohydrate excipients
(Roughton, Topp, & Camarda, 2012). Broader correlations that address both protein
structure and excipient effects would be more useful in formulation design, and could direct
the development of new excipients that better prevent aggregation for a given protein.

5. Conclusions
Within a given type of formulation, the percent monomer remaining following
lyophilization is highly correlated to descriptors of protein structure pooled from the
AGGRESCAN and PASTA algorithms along with a limited list of physical descriptors. In
general, no one descriptor proved useful for all correlations; rather the work has established
that the descriptor classes investigated (AGGRESCAN, PASTA and physical descriptors)
are all useful for correlation of aggregation propensity to protein structure. The correlations
developed are able to predict an experimental measure of aggregation (%Monomer from
HP-SEC), offering an easily understandable result for identifying the aggregation propensity
of a given protein. Prediction accuracy for a protein “left out” of the data set is reasonable,
suggesting the models can be used as a predictive tool. The correlations show that
descriptors obtained from solution-based heuristic methods can be used to quantitatively
predict aggregation of proteins in the lyophilized state. The descriptors that best correlate
with percent monomer vary from formulation to formulation, indicating that model-based
approaches should account for formulation to allow for wider applicability. With key protein
descriptors identified here, the development of correlations incorporating both protein and
excipient properties is warranted and will be the direction of future work. Such correlations
would provide a framework for rational formulation design as a function of both protein and
excipient.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.compchemeng.2013.07.008.

Roughton et al. Page 14

Comput Chem Eng. Author manuscript; available in PMC 2014 November 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://dx.doi.org/10.1016/j.compchemeng.2013.07.008
http://dx.doi.org/10.1016/j.compchemeng.2013.07.008


Fig. 1.
Overview of experimental procedure and model development. Experimental results were
taken in triplicate.

Roughton et al. Page 15

Comput Chem Eng. Author manuscript; available in PMC 2014 November 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Parity plots of experimental percent monomeric protein values (%Monomer) from HP-SEC
versus predicted percent monomeric protein values from developed correlations for (A)
urea, (B) buffer (potassium phosphate 20 mM, pH 7.4), (C) sucrose, and (D) glycine
formulations.
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Table 3

Correlation results for all four formulations. Descriptors were selected via exhaustive search with AIC
evaluation.

Formulation Descriptor Coefficient value Standard error (p-valuea)

Bufferb (Intercept) −0.25 0.48(0.65)

% α-Helix −0.37 0.01***

% β-Sheet −0.17 0.01**

MW −0.53 0.01***

# S–S −0.88 0.02***

# Free SH −13.68 0.11***

Tm −0.50 0.01***

a3vSA 155.36 2.70***

THSA −0.07 0.03(0.13)

Emin −16.25 0.30***

Eavg 3.27 0.31**

(E/L)min −53.63 0.34***

Peaks 11.23 0.05***

Urea (Intercept) 164.10 13.07***

Apolar 4.66E – 03 1.57E – 04***

pI −7.16 0.80***

# S–S 5.85 0.38***

Tm −2.17 0.09***

TA −0.32 0.08*

Na4vSS 5.13 0.47***

Eavg 12.53 1.64**

Lavg 6.37 0.59***

(E/L)min −338.10 17.14***

(E/L)avg 260.90 20.63***

Sucrose (Intercept) 159.17 2.77***

% β-Sheet 0.69 0.03***

MW −2.84 0.08***

pI −0.84 0.25*

Tm 0.62 0.03***

a3vSA 686.56 17.31***

NnHS −19.03 0.49***

THSA 1.69 0.09***

TA −2.44 0.06***
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Formulation Descriptor Coefficient value Standard error (p-valuea)

Peaks 3.89 0.20***

Glycine (Intercept) 387.91 19.91***

% α-Helix −0.65 0.11***

% β-Sheet −0.53 0.17*

NnHS −23.98 1.88***

AATr −2326.82 162.79***

THSAr 2247.68 155.16***

Na4vSS 3.04 0.31***

AvgE 13.64 1.33***

Peaks −3.73 0.60***

a
Significance codes for the p-values are:

***
for <0.001,

**
for <0.01,

*
for <0.05.

b
Buffer used in the formulation was potassium phosphate buffer (20 mM, pH 7.4).
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