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Several studies have shown that 
synthesis of new proteins at the 

synapse is a prerequisite for the storage 
of long-term memories. Relatively little is 
known about the availability of distinct 
mRNA populations for translation 
at specific synapses, the process that 
determines mRNA localization, and 
the temporal designations of localized 
mRNA translation during memory 
storage. Techniques such as synaptosome 
preparation and microdissection of distal 
neuronal processes of cultured neurons 
and dendritic layers in brain slices are 
general approaches used to identify 
localized RNAs. Exploration of the 
association of RNA-binding proteins to 
the axonal transport machinery has led to 
the development of a strategy to identify 
RNAs that are transported from the cell 
body to synapses by molecular motor 
kinesin. In this article, RNA localization 
at the synapse, as well as its mechanisms 
and significance in understanding long-
term memory storage, are discussed.

Groundbreaking observations 
by Steward and Levy on polysome 
localization at the base of dendritic spines 
challenged the view that proteins present 
at the synapse are synthesized in the cell 
body and transported to the synapses.1 
Their observations suggested that mRNAs 
and the machinery for protein translation 
are transported to synapses. Several 
later studies have shown that RNAs are 
localized to distal parts of neurons in both 
vertebrates and invertebrates. Sequencing 
of RNAs prepared from microdissected 
neuronal processes of sensory neurons 
of Aplysia led to the identification of a 
few hundred RNAs that are enriched in 

neuronal processes.2,3 Using a microarray-
based approach, RNAs localized to 
dendrites of hippocampal neurons were 
identified.4 Recently, RNaseq analysis 
identified a few thousand RNAs localized 
to the dendritic layer of the hippocampus.5

What Is the Significance  
of Transcriptome Localized  

to Synapses?

Several studies have shown that 
RNAs localized to synapses are used for 
synthesizing new proteins, which are 
necessary for synaptogenesis and activity-
dependent synaptic remodeling. Local 
protein synthesis has a significant role 
in long-term memory storage (LTM) 
in the marine snail Aplysia,6-10 the fruit 
fly Drosophila,11,12 and in mice.13-16 
Localization of specific mRNAs provides 
an efficient regulatory mechanism for 
restricting gene expression to specific 
subcellular locations in neurons and an 
elegant mechanism for synapse-specific 
plasticity.9,17 It allows individual synapses 
to undergo specific changes such as 
remodeling and growth in response to 
specific stimuli, such as learning. Such 
modifications can occur independently 
of unstimulated synapses in a persistent, 
protein synthesis-dependent manner. In 
a study using bifurcated sensory neurons 
of the marine snail Aplysia, Martin and 
colleagues described the role of mRNA 
translation during synapse-specific long-
term facilitation (LTF).9 Synapse-specific 
translation is also critical for long-term 
potentiation (LTP) in the hippocampus.18 
LTF and LTP are considered the 
cellular analogs of learning and 
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memory storage. These studies utilized 
pharmacological inhibition of translation 
and electrophysiological measurements 
of the consequences of protein synthesis 
inhibition. Recently, synaptic translation 
of specific mRNAs has been visualized 
in the sensory neurons of Aplysia19 and in 
Drosophila20,21 by state-of-the-art imaging 
methodologies.

What Determines Localization 
and Composition of 

Transcriptome at the Synapse?

There are two main factors that 
determine localization of specific 
RNAs and composition of synaptic 

transcriptome: transcriptional activation 
of specific genes in the nucleus, and active 
transport of mRNAs from cell body to 
synapses. Studies that have used models 
such as Aplysia, Drosophila, and mice 
suggest that activation of several genes 
occurs during learning and memory 
processes. In the isolated Aplysia sensory 
to motor neuron cultures and in the intact 
animal, repeated exposure to serotonin 
(5-HT) causes a larger increase in cAMP, 
leading to the activation and translocation 
of PKA and MAP kinase to the nucleus. 
This translocation activates CREB1-
dependent transcription and represses 
CREB2, leading to the induction of several 
immediate early genes.8,22-25 A similar 
sequence of second messenger signaling 
and gene induction was also found to 
have been recruited for long-term memory 
storage in Drosophila and in mice.26-31

Two specific genes of interest that are 
activated in Aplysia sensory neurons in 
response to 5-HT exposure are specific 
isoforms of molecular motor kinesin heavy 
chain (ApKHC1), and kinesin light chain 
(ApKLC2). Kinesin was first identified by 
Brady32 and Vale et al.,33 and is composed 
of two heavy chains (KHC) and two light 
chains (KLC). The super families of kinesin 
proteins (KIFs) are the molecular motors 
that transport cargos along microtubules. 
More than 40 KIFs have been identified 
in mammals.34,35 Kinesins were found 
to mediate the transport of RNAs and 
proteins from cell body to synapses.34 To 
understand the functions of the KIFs, 
several biochemical and genetic attempts 
were made to identify molecules carried 
by KIFs. This has led to the identification 
of several cargo proteins. For example, 
KIF17 binds to mLin-10 to transport the 
NMDA receptor in dendrites.36,37 Using 
the tail region of KIF5 as bait in affinity 
chromatography, Kanai et al. identified 
42 proteins, including several known 
RNA-binding proteins that interact with 
kinesin, as well as few transported mRNAs 
(CAMKII α and Arc).38

Is the Kinesin-Mediated 
Transport of Proteins and RNAs 

Important for LTM?

In response to 5-HT, a modulatory 
transmitter released during behavioral 

sensitization, a specific isoform of 
the kinesin-heavy chain ApKHC1, is 
transcriptionally upregulated in both 
pre- and post-synaptic neurons of the 
Aplysia gill withdrawal reflex. We find 
that ApKHC1 knockdown in either the 
pre- or post-synaptic neurons blocked the 
establishment of LTF. However, it did 
not affect short-term facilitation (STF) or 
persistence of LTF, suggesting that during 
the early phase of memory storage, kinesin 
transports critical molecules that are later 
used for persistence of memory (Fig. 1). 
Indeed, several synaptic proteins required 
for synapse formation (e.g., neurexin, 
neuroligin, piccolo, and bassoon) were 
found in the kinesin complex isolated 
from the CNS, which are required for the 
establishment of LTF.39,40

Next, we searched for RNAs in the 
ApKHC1 complexes isolated from the 
Aplysia CNS. Since kinesin is the major 
motor that mediates the microtubule-
dependent transport of gene products 
from the cell body to distal neuronal 
processes, we assumed that molecular 
characterization of the kinesin complex 
would identify RNAs transported to 
synapses. Furthermore, kinesin has been 
implicated in RNA transport in a variety 
of systems, from oocytes to neurons.43-47 
Kinesin transports CaMKII α, Arc, and 
tau mRNAs in mammalian neurons,38,48,49 
myelin basic protein mRNAs in 
oligodendrocytes,50 and oskar mRNA in 
Drosophila oocytes.51 Previous efforts have 
used cDNA library construction followed 
by Sanger sequencing2,3 and microarray 
studies to identify the composition of 
synaptic transcriptome.4,41,42 However, 
since the Sanger sequencing method is 
limited in the number of acquired reads 
and microarray studies that cannot 
identify new transcripts, a full repertoire 
of RNAs localized at synapses could 
not be characterized. We focused on 
the ApKHC1 transport complexes that 
contain several RNA-binding proteins 
such as staufen, FMRP, and CEPB, and 
NextGen sequencing methodologies 
(RNaseq) was used to identify all of 
the RNAs that are found in ApKHC1 
complex.

The RNaseq characterization of 
ApKHC1 complex isolated from the 
CNS of Aplysia identified a few thousand 

Figure 1. Kinesin-mediated transport of RnAs 
and protein regulate synaptic transcriptome 
and proteome. Molecular motor kinesin 
mediate transport of organelles, proteins and 
RnAs. Biochemical and genomic analysis of 
kinesin complexes from Aplysia has identified 
several proteins and RnAs as cargos trans-
ported to distal neuronal processes. Kinesin 
cargos regulate composition of transcriptome 
and proteome. furthermore, kinesin cargos 
mediate several functions at the synapse such 
as formation of active zones, trans-synaptic 
signaling complexes, cytoskeletal re-arrange-
ments, regulation of local translation, and 
signal transduction. Cartoon represents com-
ponents of the transport machinery. irregular 
shapes and squiggly lines represent protein 
and RnA cargos transported to pre and post-
synaptic compartments.
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mRNAs that were potentially transported 
to synapses.52 This unbiased analysis of 
RNAs in the ApKHC1 complex also 
identified several non-coding RNAs, 
such as antisense RNAs,52 whose specific 
function at the synapse is yet to be 
determined.

Our kinesin-based approach offers 
several advantages when compared with 
micro-dissection of dendritic regions: 
First, it allows the identification of 
RNAs based on their association with 
kinesin motors that transport gene 
products from cell body to synapses; 
second, RNAs associated with transport 
machinery reflects more dynamically 
regulated RNAs; third, RNAs that are 
actively transported in response to specific 
stimuli may be identified; and fourth, this 
methodology can easily be directly applied 
to identify synaptically targeted RNAs in 
regions of the CNS or neuronal cultures.

When and How Are  
the Synaptically Localized  

RNAs Utilized?

Understanding the temporal dynamics 
of translation of synaptic transcriptome 
and the mechanisms of their regulation 
of translation will help to identify specific 
signaling pathways and key mediators of 
synapse-specific memory storage. Based 
on the molecular, pharmacological, and 
electrophysiological data, it is apparent 
that the RNAs localized to synapses will 
be translated at different times during 
LTM storage. However, it is yet to be 
determined which RNAs are translated, as 
well as the determination of the temporal 
regulation of translation of RNAs during 
LTM storage. The newly translated 
proteins might be used to replenish 
proteins that are already present at the 
synapse specifically for the remodeling of 
the synapse and formation of new synapses. 
In order to obtain a comprehensive view 
of this process, the type of proteins and 
RNAs that are present at specific synapses 
and their dynamics during memory 
storage must be identified.

Miniaci et al.10 showed in Aplysia 
sensory-motor neuron synapses that 
inhibition of synaptic protein synthesis 
by local perfusion of emetine, or 
downregulation of ApCPEB (Aplysia 

cytoplasmic polyadenylation element 
binding protein) by local perfusion 
of specific antisense oligonucleotides 
against ApCPEB either at 24 or 48 h 
after 5-HT stimulation blocks LTF. 
These manipulations also cause selective 
retraction of newly formed sensory neuron 
varicosities induced by 5-HT. In contrast, 
the inhibition of local protein synthesis 
72 h after 5-HT exposure has no effect on 
either synaptic growth or LTF. The CPEB 
proteins mediate the polyadenylation 
of RNAs and regulate local translation. 
These experiments demonstrated the 
differential requirement of translation 
during different phases of LTM storage.

Si et al.53,54 suggested that RNAs 
might be stored in the repressed form and 
utilized in response to specific synaptic 
stimulation. Si et al. also showed that 
ApCPEB is required, not for the initiation 
phase of LTF, but for the persistence phase 
of LTF. The LTF phenotype that is similar 
to CEPB knockdown was observed with 
a knockdown of eEF1 α, which is a 
regulator of translation. Injection of 
antisense oligonucleotides or antibodies 
that block the induction and expression 
of Ap-eEF1A did not affect initiation of 
LTF, but blocked its persistence.55 In a later 
study, we demonstrated that knockdown 
of ApKHC1 blocked the initiation of 
LTF; however, once the LTF is initiated, 
knockdown of ApKHC1 does not block 
persistence.40 Knockdown experiments 
of ApMHC, actin-dependent molecular 
motor, and mRNA cargo of ApKHC1, 
also showed similar results on initiation 
and persistence of LTF.52 Together, these 
studies suggest that during persistence of 
memory, synapses become autonomous 
with respect to transport from the cell 
body, and RNAs are stored at the synapses 
for later use.

CPEB is capable of activating these 
dormant mRNAs that contain CPE 
sequences by polyadenylation in response 
to specific stimulation.54,56-60 The P bodies 
are also described as storing dormant 
mRNAs.61,62 Another RNA-binding 
protein that is involved in translational 
regulation is Pumilio.63-67 An important 
aspect of this local mechanism is that 
translational repression can be removed 
at different times to meet the temporal 
requirements of these molecular substrates 

for the remodeling of existing synapses, 
and for the formation of new ones. A 
recent study demonstrated a RNA-based 
translational control of long-term memory 
storage. Rajasethupathy et al.68 showed 
that microRNA mir124 regulates the 
translation of several genes that are critical 
for LTF. More importantly the expression 
levels of mir124 are downregulated during 
LTF.

Is There a Molecular Code  
That Determines Synaptic 

Targeting of RNAs?

An obvious question that emerges from 
the identification of populations of RNAs 
that are localized to synapses is whether 
a molecular code ensures appropriate 
subcellular localization of RNAs. The 
3′ or 5′ UTR sequences of RNAs 
might contain unique sequences that 
determine their subcellular localization. 
The existence of conserved sequence 
codes, which are similar to nuclear or 
mitochondrial or endoplasmic localization 
signals, are not as clear for synaptically 
localized RNAs. It appears that there is a 
distinct nucleotide sequence code specific 
to RNAs that determine its localization. 
A classic example is the “Zipcode” 
sequence present in actin mRNAs that are 
recognized by binding proteins described 
as “zipcode binding proteins” (ZBPs).69 
Localization of β-actin mRNA to the 
leading edge of fibroblasts requires the 
presence of conserved elements in the 
3′ untranslated region of the mRNA, 
including a 54-nucleotide element, termed 
“zipcode.” A protein of 68 kDa was 
identified, which binds to the proximal 
(to the coding region) half of the zipcode 
with high specificity (ZBP-1).70 Recently, 
Sladewski et al.71 showed the increasing 
number of localizing elements (zipcodes) 
on the mRNA-enhanced run length and 
event frequency of myosin V.

Like the binding of ZBP to β-actin 
mRNA, Vera, a homolog of ZBP, 
specifically binds to a repeated sequence 
motif in the Vg1 mRNA localization 
element required for its subcellular 
localization in Xenopus oocytes.72 
Identification of specific short non-
tandem repeat sequences that determine 
Vg1 mRNA localization in Xenopus 
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oocytes leads to the development of a 
computational algorithm, REPFIND, 
which helps identify sequence repeats 
that seemingly determine the localization 
of RNAs in chordates.73,74 This analysis 
identified clusters of short CAC-
containing motifs that determine the 
localization of virtually all mRNAs 
present in the vegetal cortex of Xenopus 
oocytes.74,75

What is the Significance  
of Transporting Several 

Thousand RNAs by Kinesin?

Bioinformatics analysis of RNAs 
transported by kinesin in the Aplysia 
central nervous system (CNS) has 
suggested that these RNAs are involved 
in signaling, translational control, 
cytoskeletal rearrangements, splicing, 
and metabolism. Large-scale analysis of 
transported RNAs provides new insights 
into sub-cellular regulation of signaling. 
For example, an important observation 
from this analysis is that RNAs of several 
neuropeptides are transported to synapses. 
Because neuropeptides need to be post-
translationally processed before their 
release, identification of neuropeptide 
RNAs in the transport complex suggests 
that neuropeptide processing machinery 
must be present in the distal neuronal 
processes. Similarly, identification of 
RNAs involved in splicing machinery and 
rRNAs present at the synapses suggests 
the intriguing possibility that splicing 
and ribosome modification could occur 
in distal neuronal processes. Glanzer et 
al. have shown that splicing occurs in 
dendrites.79

Identifying RNAs that are transported 
and temporal regulation of their transport 
will help determine dynamic changes 
in the composition of the synaptic 
transcriptome. An obvious question that 
emerges from the large-scale analysis 
of RNAs is: “How do we determine 
specific roles of transported RNAs in 
memory storage?” We have begun to 
address this challenge by examining 
whether RNAs transported by kinesin 
are components of known signaling 
networks.80 The logic behind this analysis 
is that if specific RNAs form the nodes of 
signaling networks, such networks could 

be regulated by the availability of these 
RNAs, and by regulating the initiation of 
their translation. Once a specific network 
formed by transported RNAs is identified, 
specific nodes and pathways can be 
determined80 for molecular perturbation 
and functional experiments.

Conclusion

The process of addressing the 
aforementioned questions has begun 
to yield interesting insights into RNA 
localization, translational control, and 
memory storage. However, recent studies 
of RNA localization in mice,5 Aplysia,52 
and proteomics analysis of signaling 
complexes at the synapse,76-78 suggest an 
unprecedented molecular complexity 
of the synapse. Translational control by 
miRNAs at the synapse adds another 
layer to this complexity. A caveat of 
large-scale studies using CNS or regions 
of the brain is that information about 
neuron-specific transport and localization 
is lost in the process. It is important to 
identify neuron-specific and circuit-
specific synaptic transport of RNAs and 
proteins (Fig. 1), and study their temporal 
regulation. What is known so far about 
the dynamics and regulation of signaling 
at the synapse is clearly only the tip of 
the iceberg. Extensive and collaborative 
approaches are necessary so as to obtain 
deeper insight into signaling dynamics at 
synapses during memory storage.
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