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Abstract

Antiplatelet agents, sarpogrelate (SAR), a 5-HT2a receptor antagonist, and cilostazol (CIL), a phosphodiesterase 11l (PDE-III) inhibitor,
are used for the treatment of peripheral vascular disease. We tested whether these agents affect cardiac function and subcellular remod-
elling in congestive heart failure (CHF) induced by myocardial infarction (MI). Three weeks after MI, rats were treated daily with 5 mg/kg
SAR or CIL as well as vehicle for 5 weeks. Sham-operated animals served as controls. At end of the treatment period, haemodynamic
measurements were performed and the left ventricle was processed for the determination of sarcoplasmic reticulum (SR) Ca2+-uptake
and -release activities, and expression of SR Ca2+-pump, phospholamban and ryanodine receptors, as well as myofibrillar ATPase activ-
ities, expression of a- and B-myosin heavy chain (MHC) isoforms, and phosphorylation of phospholamban and cardiac troponin-|
(c Tn-1). Marked haemodynamic changes in the MI-induced CHF were associated with depressions in SR Caz*—uptake and -release activ-
ities as well as in protein content and gene expression for SR proteins. Furthermore, myofibrillar Ca®*-stimulated ATPase activity, as well
as protein content and gene expression for «-MHC were decreased whereas those for 3-MHC were increased in the failing heart. Also,
phosphorylation levels of phospholamban and cTn-I were reduced in failing hearts. The MI-associated changes in cardiac function, SR
and myofibillar activities, as well as SR and myofibrillar protein and gene expression were attenuated by treatment with SAR or CIL. The
results suggest that SAR and CIL improve cardiac function by ameliorating subcellular remodelling in the failing heart and indicate the
potential therapy of CHF with antiplatelet agents.
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Introduction

By virtue of its antiplatelet action, sarpogrelate (SAR), a serotonin
antagonist (5-HT2a receptor antagonist), is indicated for the ther-
apy of peripheral vascular disease [1, 2]. Not only does this agent
inhibit 5-HT induced increase in intracellular Ca%* [Ca%*]i and cell
proliferation in vascular smooth muscle cells [3, 4], it has also
been reported to produce similar effects in the coronary artery
smooth muscle cells [5]. Furthermore, SAR has been shown to
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attenuate arrhythmias and heart dysfunction due to acute myocar-
dial infarction (MI) in rats [6] and improve the recovery of cardiac
performance in ischaemic reperfused hearts by reducing changes
in the high energy phosphate stores and myocardial ultrastructure
[7]. Since prolonged activation of 5-HT2a receptors and associated
signal transduction mechanisms have been observed to produce
cardiac hypertrophy and congestive heart failure (CHF) [8], it is
possible that SAR may exert some beneficial effects in CHF by
attenuating changes in cardiac performance. This study was there-
fore undertaken to determine if the animals with CHF showed
improvement in heart function upon treatment with SAR. In view
of the critical role played by subcellular remodelling in the devel-
opment of CHF [9, 10], alterations in biochemical activities and
molecular composition of sarcoplasmic reticulum (SR) and
myofibrils in the failing heart were examined with or without SAR
treatment. To test if other antiplatelet agents exert beneficial
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effects similar to those for SAR in CHF, cilostazol (CIL), a phos-
phodiesterase-Ill (PDE-III) inhibitor [11], which has similar prop-
erties as SAR in producing antiplatelet effects and vasodilation
[11], was used in this study for the purpose of comparison. It
should be mentioned that both SAR and CIL are novel antiplatelet
agents, which exert vasodilatory effects and are used for the treat-
ment of complications associated with peripheral thromboem-
bolism as well as prevention of coronary restenosis [1, 2, 11-13].

Materials and methods

Experimental model and study design

All experimental protocols were approved by the Animal Care Committee of
the University of Manitoba following guidelines established by the Canadian
Institutes of Health Research. These guidelines conform to the Guide for the
Care and Use of Laboratory Animals published by the US National Institute
of Health (NIH Publication No. 85-23, revised 1996). MI was induced in male
Sprague-Dawley rats (175-200 g) by occlusion of the left coronary artery as
described earlier [14-16]. Briefly, the heart in anaesthetized animals was
exposed and the left coronary artery was ligated at about 2 mm from its ori-
gin at the aorta. Sham-operated rats underwent the same procedure except
coronary ligation. All rats received standard care, kept at 12 hrs day/night
cycle and fed rat chow and water ad /ibitum. Three weeks after the operation,
echocardiographic measurements were performed (SONOS 5500, Agilent
Technologies Inc., Andover, MA, USA) for baseline values [17]. Since
myocardial infarct is fully healed at about 3 weeks after the coronary occlu-
sion, this time-point was chosen for starting drug treatment. Sham-operated
rats (left ventricular (LV) ejection fraction (>80%) were assigned to control,
the surviving coronary-ligated rats with ejection fraction (<50% were ran-
domized to vehicle-treated infarcted (MI), SAR-treated infarcted (MI+SAR)
and ClL-treated infarcted (MI+CIL) groups. Both SAR and CIL were given
daily at a dose of 5 mg/kg for 5 weeks via a gastric tube starting at 3 weeks
after the induction of MI; control animals received vehicle alone. The selected
doses of drugs are considered to be within the safe and effective therapeutic
range [1, 6, 11].

Haemodynamic studies

Haemodynamic measurements were carried out at 8 weeks after surgery as
described previously [14-16]. Briefly, animals were anaesthetized with an
intraperitoneal injection of a mixture of ketamine (90 mg/kg) and xylazine
(10 mg/kg). The right carotid artery was exposed and cannulated with a
microtip pressure transducer (SPR-249, Millar Instruments, Houston, TX,
USA); mean arterial pressure (MAP) was determined and then the catheter
was advanced to the LV cavity. Measurements of LV systolic pressure
(LVSP), LV end-diastolic pressure (LVEDP), heart rate, rate of pressure
development (+dP/dt) and rate of pressure decay (-dP/dt) in addition to
MAP were performed using Acqgknowledge software (3.0.3 MP100, BIOPAC
System Inc., Goleta, CA, USA). After removing the hearts, the ventricles and
scar tissue were separated and weighed. The lungs and the liver were also
weighed for wet and dry weights.
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Determination of myofibrillar Mgz"-ATPase
and Ca’*-stimulated ATPase activities

The myofibrillar fraction was isolated as described earlier [14] and sus-
pended in a final solution containing 100 mM KCI, 20 mM Tris-HCI
(pH 7.0). Mgz"—ATPase activity was measured at 30°C in a medium con-
taining (in mM) 20 imidazole (pH 7.0), 2 MgClz, 2 Na2ATP, 10 NaNs, 1.6
ethylene glycoltetra acetic acid (EGTA) and 50 KCI [14]. Total ATPase activ-
ity was determined in the same medium except that EGTA was replaced by
10 M of free Ca*. Ca®*-stimulated ATPase activity was taken as the dif-
ference between values obtained for total and Mg2*-ATPase activities. All
reactions were terminated at 5 min. by the addition of 12% trichloroacetic
acid. The samples were centrifuged at 1000 g and the phosphate was
determined in the supernatant by colorimetric method.

Analysis of cardiac myosin heavy chain isoforms

Cardiac MHC isoforms were determined under denaturing conditions; both
o-and B-MHCs were separated on a 4% polyacrylamide gel upon loading
4.9 protein/well as described previously [14, 18]. The electrophoresis was
carried out at a constant 220 V for 3.5 hrs with cooling between 9°C and
13°C. The gels were stained with coomassie brilliant blue R250 for 2 hrs
and were destained with acetic acid and methanol. The relative amount of
isoforms was estimated by GS-800 imaging densitometer (Quantity One
4.4.0 Software, Bio-Rad Laboratories, Mississauga, Canada).

Determination of SR Caz"-uptake and -release
activities

SR vesicles were isolated as described previously [15, 19]. For Ca**-
uptake assay [15], the reaction mixture contained (in mM) 50 Tris-maleate
(pH 6.8), 5 NaNs, 5 ATP, 5 MgCl2, 120 KCI, 5 potassium oxalate, 0.1 EGTA,
0.1 *CaCly (20 mCi/l), and 25 wM ruthenium red. The reaction was initi-
ated by adding 20 g of SR vesicles at 37°C and terminated at 1 min. by
filtration. The filters were then washed, dried and counted in a 8 scintilla-
tion counter. The Ca®*-release activity was measured as described previ-
ously [15]. The SR fraction was incubated in a medium containing (in mM)
100 KCI, 5 MgCl2, 5 NaNg, 20 Tris-HCI (pH 6.8) and 5 potassium oxalate,
along with 10 uM 45CaCIz (20 mCi/l) and 5 mM ATP for a period of 45 min.
Ca2*-release was initiated by the addition of 1 mM EGTA and 1 mM Ca®";
the reaction was terminated at 15 sec by Millipore filtration. The filters were
then counted in a B scintillation counter (Beckman Coulter Canada Inc.,
Mississauga, Canada). The Ca’*-induced Ca’*-release was inhibited by
95-100% upon incubating SR vesicles with 20 wM ryanodine.

Western blot analysis

The relative protein content of SR Caz*-cycling proteins, Caz*-pump
ATPase (SERCA2a), Ca®*-release channel or ryanodine receptor (RyR) as
well as phospholamban (PLB) and its phosphorylated form, Ser-16 PLB,
were determined by Western blot analysis as described previously [15,
19]. SR samples (20 pg) were separated by SDS-polyacrylamide gel elec-
trophoresis on a 4-20% gradient gel for RyR, 10% for SERCA2a and 15%
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Table 1 General characteristics of sham, MI, MI+SAR and MI+CIL animals 8 weeks after surgery.

SHAM Mi MI+SAR Mi+CIL
(n=19) (n = 15) (n=18) (n=12)
Body weight (g) 599 = 14 521 =9~ 527 =11~ 523 =10 *
Ventricular weight (g) 1.37 = 0.04 1.58 =0.04 * 1.41 £ 0.04 # 1.43 = 0.04 #
Ventricular weight/Body weight ratio (mg:g) 2.38 = 0.03 2.99 +0.08 * 2.55 + 0.05 # 2.57 = 0.07 #
RV (g) 0.31 = 0.02 0.48 = 0.04 * 0.36 = 0.04 # 0.37 = 0.04 #
Scar weight (g) = 0.16 = 0.01 0.15 = 0.01 016 =0
Lungs wet/dry ratio 453 + 0.06 511 =010~ 495 + 0.08 # 495+ 0.11 #
Liver wet/dry ratio 3.18 £ 0.02 3.31 = 0.06 3.30 = 0.05 3.27 = 0.03

Values are means = SEM. MI, myocardial infarction; SAR, sarpogrelate; CIL, cilostazol; LV, left ventricle; RV, right ventricle. * P<0.05, significantly

different from sham. #P<0.05, significantly different from MI.

for PLB and Ser-16 PLB and transferred to polyvinylidene difluoride mem-
branes. Membranes were probed with a monoclonal anti-RyR antibody
(1:1000) and monoclonal anti-SERCA2a antibody (1:1400) (Affinity
Bioreagents, Golden CO, USA), as well as monoclonal anti-PLB polyclonal
antibody (1:1000) (Upstate Inc., Charlottesville, VA, USA) and polyclonal
anti-Ser-16 PLB antibody (1:500) (Santa Cruz Biotechnology, Santa Cruz,
CA, USA). Following incubation with the appropriate peroxidase labelled
secondary antibodies, Amersham ECL kit (GE Healthcare UK Ltd., Little
Chalfont, Buckinghamshire, UK) was used for detection. Values for
untreated and treated groups were expressed as % of the control group in
each case. For the measurement of cardiac troponin | (cTnl) and phospho-
rylated cTnl, membranes were incubated with monoclonal anti-cTnl
(1:1000; Cell Signaling Technology, Inc.) and anti-phosphorylated cTnl,
specific for the phosphorylated form Ser22/Ser23 (1:1000; Cell Signaling
Technology Inc.) antibodies, respectively (20). These membranes were
then incubated with biotinylated anti-rabbit 1gG (1:3000, Amersham) for 40
min. and finally with streptavidin conjugated horseradish peroxidase
(1:3000, Amersham) for 40 min. The level of phosphorylated cTnl was
expressed as % of total ¢cTnl content. Gels were stained with coomassie
blue after blotting, and blots were stained with Ponceau S solution to
ensure uniform protein loading in all groups. The bands were analysed by
the model GS-800 imaging densitometer (Bio-Rad Laboratories,
Mississauga, Ontario, Canada) with the image analysis software (version
1.0). The values were expressed as a percentage of sham control values.

Northern blot analysis

Total RNA was isolated from the viable LV of sham control and infarcted
rats with or without drug treatment by the acid guanidinium thiocyanate-
phenol-chloroform method [15, 16, 18, 19]. Briefly, frozen samples of
viable LV were homogenized with a Polytron homogenizer (model PT3000)
at 12,000 rpm in the presence of 1.5 ml of TRIzol Reagent (1 ml/100 mg
tissue; (GIBCO-BRL Life Technologies, Grand Island, NY, USA). The mix-
ture was centrifuged at 12,000 g (model J2-HS, Beckman Coulter Canada
Inc., Mississauga, Canada) for 10 min at 4°C. The supernatant was incu-
bated with chloroform (0.3 ml/sample) for 5 min. at room temperature and
then centrifuged at 12,000 g for 15 min. at 4°C. The RNA containing upper
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aqueous phase was kept at -20°C for 4 hrs after addition of 0.75 ml of iso-
propyl alcohol. Upon centrifugation at 17,500 g for 10 min. at 4° C, RNA
pellets were washed two times in 75% ethanol and vacuum dried by speed
vac (model SC110, Savant Instruments, Farmingdale, NY, USA). The final
RNA pellet was re-suspended in diethyl pyrocarbonate (DEPC)-treated
water and stored at —70°C. The RNA concentration was calculated from
the absorbance at 260 and 280 nm with SPECTRAmax PLUS (Molecular
Devices, Sunnyvale, CA, USA). Total RNA (20 wg) was denatured at 65° C
for 10 min and size fractionated on a 1.2% agarose gel containing 1.2 M
formaldehyde. The blotted samples were transferred onto positively
charged nytron nylon membranes (Schleicher & Schuell, Keene, NH, USA),
UV cross-linked, and hybridized to randomly primed cDNA.

Statistical analysis

All values are presented as mean +S.E.M. Statistical differences between
the mean values were evaluated by one-way ANOVA followed by
Duncan’s new multiple test. The differences were considered significant
at a P-value <0.05.

Results

General characteristics and mortality

Out of 117 rats, which underwent the operative procedure, 19 were
sham-operated rats. None of the shams died during the study
period. In the after surgical 3 week period, 35 coronary-ligated rats
died, which corresponds to about 36% mortality. Total of 63 rats
entered the treatment period. During the treatment period, the mor-
tality for Ml rats was 6/21, for MI+SAR rats was 3/21 and for MI+CIL
rats was 9/21. As shown in Table 1, the surviving MI, MI+SAR and
MI+CIL animals showed decreased body weight compared to sham
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Table 2 Haemodynamic parameters of sham, MI, MI+SAR and MI+CIL animals 8 weeks after surgery.

SHAM (n = 19) Ml (n = 15) MI+SAR (n = 18) MI+CIL (n = 12)
HR (beats/min.) 310 = 2.1 365 £ 55~ 348 =32 # 342 = 41 #
MAP (mm Hg) 113 £ 3.2 72+x12* 112 £ 41# 102 = 3.3 #
LVSP (mm Hg) 130 £ 4.6 88 29~ 119 £ 4.4 # 108 = 3.5 #
LVEDP (mm Hg) 8.1 £0.42 19.8 = 0.68 ~ 10.2 = 0.54 # 111 =05 #
+dP/dt (mm Hg/sec) 8186 = 290 3306 = 118 * 6172 = 216 # 6280 =+ 247 #
-dP/dt (mm Hg/sec) 6738 = 561 2740 = 105 ~ 4301 = 220 # 4529 = 295 #

Values are means =S.E.M. MI, myocardial infarction; SAR, sarpogrelate; CIL, cilostazol; HR, heart rate; MAP, mean arterial pressure; LVSP, left ventric-
ular systolic pressure; LVEDP, left ventricular end-diastolic pressure; +dP/dt, peak rate of pressure development; -dP/dt, peak rate of pressure decay.
* P<0.05, significantly different from sham. # P<0.05, significantly different from MI.

controls. Ml rats had clinical signs of CHF such as lung congestion
as reflected by the increased lung wet/dry weight ratio, ventricular
chamber enlargement, right ventricular (RV) hypertrophy and pul-
monary oedema. They also had a scar with well-defined borders.
Treatment with SAR and CIL prevented the increase in ventricular
weight, RV weight, ventricular/body weight ratio and lung wet/dry
weight ratio. However, no changes in scar weight or liver wet/dry
weight ratio were observed among the different treated groups.

Haemodynamic studies

Haemodynamic parameters obtained from different experimental
groups 8 weeks after surgery are shown in Table 2. Infarcted ani-
mals exhibited significantly higher heart rate and developed LV
dysfunction as reflected by decreased LVSP, +dP/dt, -dP/dt and
MAP as well as elevated LVEDP compared with control animals.
Heart rate and LVEDP were reduced, whereas the -dP/dt, (dP/dt,
LVSP and MAP were increased towards sham levels upon treating
MI animals with SAR or CIL (Table 2).

SR Ca2+-uptake and Ca2+-release activities,
protein content and gene expression

Caz+-uptake and -release activities were determined in SR vesicles
obtained from the viable LV tissue of different groups (Fig. 1A and B).
Both SR Ca2+-uptake and -release activities were lower in the MI
group compared with the sham control group, but these were
improved significantly upon SAR or CIL treatment. To study the
effects of SAR and CIL on the expression of SR proteins, isolated
SR samples were assayed by western immunoblotting. As shown
in Figure 2 and Figure 3A, SERCA2a, RyR and PLB protein expres-
sion as well as the phosphorylated level of PLB were reduced by
71%, 62%, 23% and 63% in the failing LV compared to shams,
respectively. SAR and CIL treatment effectively tended to normalize
the MiI-associated decrease in protein content. Northern blot

© 2008 The Authors

analysis revealed that mRNA levels for SERCA2a, RyR and PLB
proteins were decreased in the vehicle-treated infarcted hearts by
60%, 45% and 35% compared to controls, respectively (Fig. 4).
This decrease in LV mRNA levels was largely prevented by treat-
ments with both SAR and CIL.

Myofibrillar ATPase activities and myosin heavy
chain isoforms

The data in Figure 5 show that myofibrils isolated from the viable LV
of MI hearts exhibited a lower Ca®*-stimulated ATPase activity com-
pared with sham-operated rats. Treatment with SAR or CIL normal-
ized the Ca*-stimulated ATPase activity comparable to sham val-
ues. Myofibrillar Mgz*-ATPase activity did not show any significant
difference among various groups. As shown in Figure 6A, viable LV
tissue of MI hearts showed a marked reduction in B-MHC isoform
(from 72.2% to 44.0% of total MHC) and an increase in 3-MHC iso-
form (from 27.84% to 55.98% of total MHC). At the same time, «-
MHC mRNA level was decreased by 70% (Fig. 6B) and that for a-
MHC mRNA was increased by 88% (Fig. 6C) in LV of the infarcted
rats. Therapy with SAR and CIL significantly attenuated the increase
in B-MHC as well as the decrease in a-MHC due to Ml at both pro-
tein and mRNA levels (Fig. 6). In order to show if the phosphoryla-
tion of cTnl is altered in the experimental animals, protein content
for both unphosphorylated and phosphorylated forms of cTnl were
determined. The data in Figure 3B indicate that protein content for
phosphorylated cTnl decreased to 46.8% level in the MI group
whereas SAR and CIL treatments restored these levels to 81.9% and
78.3% when compared with sham controls, respectively.

Discussion

In the present study, we showed for the first time that antiplatelet
agents, SAR and CIL, attenuated remodelling of subcellular
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organelles such as SR and myofibrils as well as improved LV func-
tion in a rat model of CHF secondary to MI. These findings suggest
that antiplatelet agents may occupy a unique niche temporally
located between efforts to reduce platelet deposition and mitigating
cardiac remodelling in CHF.

Antiplatelet agents attenuate structural ventricular
remodelling and improve cardiac function

SAR has been shown to improve cardiac function and LV pres-
sures in ischaemia/reperfusion injury in isolated hearts [17] as
well as in acute Ml in rats [6]. Although no such beneficial effects
of CIL in heart failure have been reported previously, other PDE
inhibitors are known to improve cardiac function and exert car-
dioprotective action in the failing heart [11, 21, 22]. Now, we have
observed that both SAR and CIL attenuated cardiac diastolic and
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systolic dysfunction in CHF due to MI. Such changes were asso-
ciated with reduced alterations in +dP/dt and -dP/dt as well as
attenuation in cardiac hypertrophy and pulmonary congestion in
CHF animals upon treatment with both agents. SAR and CIL treat-
ment also depressed MAP and reduced cardiac preload in the
infarcted animals as illustrated by the reduction of LVEDP. These
haemodynamic observations indicate that both SAR and CIL
improve LV filling, enhance contraction and relaxation, prevent
the deterioration of global LV function as well as limit cardiac
hypertrophy in the failing hearts. Although the effects of SAR and
CIL treatment seem to be comparable in qualitative terms, some
differences in the magnitude of their effects on certain measured
parameters in this study may be due to differences in the mech-
anisms of action of these two agents [2, 11]. In particular, it was
observed that mortality in CIL-treated M| rats was higher and that
in SAR-treated group was lower in comparison to the vehicle-
treated MI animals. This increase in mortality in ClL-treated MI
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Fig. 2 Representative western blots and densitometric analysis of pro-
tein content for sarcoplasmic reticulum SERCA2a (A), RyR (B) and PLB
(C) proteins in sham, vehicle-treated (MI), sarpogrelate-treated
(MI+SAR) and cilostazol-treated (MI+CIL) rats at 8 weeks after surgery.
SERCA2a: sarcoplasmic reticulum Caz*-ATPase; RyR: ryanodine receptor.
Values are means=S.E.M. of 6-9 animals for each group. * P <0.05
versus sham; # P<0.05 versus MI.

rats may be obvious because CIL treatment would increase the
cyclic adenosine monophosphate (CAMP) level in the failing heart
due to its inhibitory effect on PDE and thus, produce toxic effects
on myocardial cells including arrhythmias [23]. In fact, various
PDE inhibitors have been shown to cause arrhythmias and
increase mortality in patients with CHF [23, 24].
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Fig. 3 Representative western blots and densitometric analysis of pro-
tein contents for sarcoplasmic reticulum phosphorylated PLB (A) and
phosphorylated cTnl (B) in sham, vehicle-treated (MI), sarpogrelate-
treated (MI+SAR) and cilostazol-treated (MI+CIL) rats at 8 weeks after
surgery. PLB: phospholamban; cTnl: cardiac troponin I. Values are
means =SEM of 6-9 animals for each group. * P<0.05 versus sham; #
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Modulation of SR remodelling by antiplatelet
agents in CHF

Remodelling of the SR and disturbance in the intracellular Ca’*-
homeostasis have been considered as the main reasons for the
inability of failing heart to generate contractile force [10, 16, 25,
26]. It is pointed out that alterations in Ca*-handling have been
reported to occur in cardiomyocytes from failing hearts due to Ml
[16, 27]. Furthermore, previous studies from our laboratory have
shown depressed SR CaZ*-uptake, SR Ca’*-release as well as SR
protein and gene expression in failing hearts due to MI [15, 19, 28,
29]. Similarly, in this study, CHF was associated with a depression
in SR function as well as a down-re%ulation of SERCA2a, and RyR
proteins which may result in Ca“*-handling abnormalities in
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Fig. 4 Representative northern blots and densitometric quantification of
mRNA abundance for sarcoplasmic reticulum SERCA2 (A), RyR (B) and
PLB (C) in sham, vehicle-treated (M), sarpogrelate-treated (MI+SAR)
and cilostazol-treated (MI+CIL) rats at 8 weeks after surgery. SERCA2a:
sarcoplasmic reticulum Caz*-ATPase; RyR: ryanodine receptor; PLB:
phospholamban. Values are means=S.E.M. of 6-10 animals for each
group. * P<0.05 versus sham; # P<0.05 versus MI.

cardiomyocytes and impaired muscle relaxation and contraction.
Although PLB protein level, which inhibits SERCA2a activity in SR
[30] was reduced in the infarcted hearts, it should be noted that
the decrease in SERCA2a level was more than that in the level of
PLB. Thus, the increase in PLB/SERCA2a protein ratio would
enhance inhibition of SERCA2a by PLB in MI hearts. In this con-
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treated (MI+CIL) rats at 8 weeks after surgery. MI: myocardial infarction;
Values are means+S.E.M. of 6-9 animals for each group.
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text, both SAR and CIL attenuated the depression in SR Ca’*-
uptake, SR protein content and gene expression for SERCA2a and
PLB in addition to improving the PLB/SERCA2a ratio which may
contribute to the improvement of cardiac contraction and relax-
ation in the failing heart. Nonetheless, results reported in this
study regarding the effects of both SAR and CIL on SR function as
well as SR protein and gene expression suggest attenuation of SR
remodelling in the failing hearts by some antiplatelet agents.
Increasing the ca®t -uptake into the SR either through stimula-
tion of the SERCA2a [29] or by increasing the phosphorylation
level of PLB [31] has been proposed as an attractive approach to
improve diastolic and systolic function and thus represent a poten-
tial therapeutic strategy to restore the disturbed intracellular Ca’*-
handling in CHF [32]. SAR and CIL treatment also improved SR
regulation by recovering PLB phosphorylation, which was
decreased in the failing hearts and contributed towards the inhibi-
tion of SERCA2a function. Of the several protein kinases, which
mediate the phosphorylation of PLB, the cAMP-dependent protein
kinase A (PKA) appears to be an important mediator of the
enhanced cardiac contractility [33]. It should also be pointed out
that in agreement with previous studies [34, 35], we found that fail-
ing hearts after MI have lower cTnl phosphorylation levels com-
pared to healthy hearts. This down-regulation of cTnl phosphory-
lation reduces the Ga* affinity of troponin C, decreases Ca**-sen-
sitivity of the contractile machinery and leads to enhanced relax-
ation [36]. Treatment with SAR or CIL restored Mi-induced
decrease in c¢Tnl phosphorylation without affecting total cTnl
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content. Thus, it appears that the beneficial effects of SAR and CIL
on contractile function partly rely on their ability to restore not only
the PLB phosphorylation level but also the ¢Tnl phosphorylation
level in the failing heart.

Modulation of myofibrillar remodelling
by antiplatelet agents in CHF

Consistent with our previous observations [14, 18], we found that
the myofibrils isolated from the failing heart exhibited significantly
depressed Ca®*-stimulated ATPase activity when compared to
sham controls. The decrease in myofibrillar Ca®*-stimulated
ATPase activity was accompanied by decreased expression of «-
MHC isoform and increased expression of 3-MHC isoform at both
protein and mRNA levels, indicating a fetal gene re-expression like

© 2008 The Authors

program and remodelling of myofibrils in the hypertrophic failing
hearts. These alterations in myofibrils have been suggested to
partly explain defects in cardiac contraction and relaxation of the
failing heart due to MI [4, 18]. This point is further substantiated
by our observations that improvement in cardiac function in the
failing heart was associated with attenuation of myofibrillar
remodelling upon treatment of infarcted animals with SAR or CIL.
Interestingly, while a partial restoration of the «-MHC mRNA
resulted in a partial restoration of the «-MHC protein level upon
treating the failing hearts with SAR and CIL, near complete nor-
malization of the 3-MHC mRNA only produced a partial restora-
tion of the B-MHC protein level. This indicates that the g-MHC
expression is under a complex post-transcriptional regulation as
suggested by Haddad et al. [37]. It is pointed out that myofibrillar
ATPase activity is vastly determined by the ratio of the expressed
MHC isoforms; «-MHC has a high ATPase activity and produces
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high cross-bridge force with less economy of energy consumption
[38]. Since treatment with SAR or CIL was found to attenuate the
depression in myofibrillar Ca’*-stimulated ATPase activity by
increasing a-MHC, the improvement in cardiac function in the fail-
ing heart by these agents may be related to their effect on the
cross bridge formation and energy consumption processes. Thus,
in addition to preventing changes in the phosphorylation of cTnl,
both SAR and CIL attenuate myofibrillar remodelling.

SAR and CIL as antiplatelet agents in CHF

Recently Nebigil et al. [8] have reported that the activation of 5HT»
receptors in the heart activates G-protein coupled phospholipase C
(PLC), which initiates a rapid formation of IP3 and diacylglycerol
(DAG), and increases intracellular Ca>*-levels leading to the devel-
opment of intracellular Ca?*-overload and cardiac dysfunction.
Thus, 5HT2a-receptor blockade by SAR may prevent the activation
of the 5HT2a /PLC pathway, inhibit the excess release of Cca?* from
the internal stores and produce beneficial effects in CHF. On the
other hand, CIL would increase the level of cAMP by inhibiting
PDE-IIl within platelets and cardiomyocytes and thus can be seen
to attenuate platelet aggregation [11] and increase cardiac contrac-
tility, respectively. Since the reduced phosphorylation of PLB in the
failing heart would largely depress the Ca2+-dependent activity of
SERCA2a, the increase in cAMP due to inhibition of PDE by CIL
could contribute to an increase in the phosphorylation state of PLB
and the improved intracellular Ca2+-hand|ing. It should be pointed
out that the potency of the PDE-III inhibitors as inotropic agents in
CHF is considered to correlate with their potency to inhibit the SR
membrane-bound PDE-III [39]. In addition, both SAR and CIL
improved the depressed levels of ¢cTnl which will increase the con-
tractile function in the failing heart. Thus, this study has shown that
antiplatelet agents, such as SAR and CIL improve cardiac perform-
ance in post-MI CHF, which beneficial effects are associated with
attenuation of changes in biochemical activities of both SR and
myofibrils as a consequence of their action on gene expression for
subcellular organelle proteins. These results may open an entirely
new perspective in the therapy of CHF involving antiplatelet agents.

Since treatment with both SAR and CIL decreased heart weight
and heart weight/body weight ratio in the infarcted animals, it

References

appears that these agents reduce cardiac hypertrophy due to their
antihypertrophic action in animals with heart failure. Blockade of 5-
HT receptors by various agents including SAR has also been
reported to decrease cardiac hypertrophy in heart failure [40, 41].
Although this is a first study which has shown antihypertrophic
effect of CIL, other PDE-III inhibitors, such as amrinone and milri-
none have been reported to reduce cardiac hypertrophy in the fail-
ing heart [42, 43, 44]. While the exact mechanisms of the antihy-
pertrophic action of both SAR and CIL in the failing heart remain to
be established, afterload reduction as a consequence of decreased
peripheral resistance in heart failure by these agents may play an
important role in this regard. Nonetheless, on the basis of an asso-
ciation of antihypertrophic action of both SAR and CIL with
improved cardiac function of the infarcted animals, it can be argued
that the improvement in cardiac performance by these agents may
be due to a reduction in the extent of cardiac hypertrophy. However,
such a view is in contrast to the general concept that cardiac hyper-
trophy is beneficial in compensating cardiac function due to the
loss of viable myocardium in the infarcted heart [45]. On the other
hand, cardiac hypertrophy over a prolonged period is known to
exert deleterious action on heart function as a consequence of sub-
cellular remodelling under different pathophysiological conditions
[9, 10] and the beneficial effect of SAR and CIL on cardiac function
may be due to attenuation of subcellular remodelling. Accordingly,
the significance of changes in heart weight in terms of cardiac
performance during the development of heart failure as well as due
to the treatment with agents such as SAR and CIL may depend
upon the stage of cardiac hypertrophy. Furthermore, in view of the
results presented in this study, it is proposed that the improvement
of cardiac function by antiplatelet therapy may be related to the
attenuation of subcellular remodelling in the failing heart.
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