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Introduction

Adenoviruses are important human and animal pathogens.
They are also promising vectors for human or veterinary clin-
ical science applications and biotechnology. They can be
grown to high titers, can be genetically manipulated to ac-
cept large pieces of foreign DNA, and infect many different
cell types and tissues with high efficiency [1]. However, ade-
novirus infection and particularly the entry stages elicit a
strong innate immune response, which affects the course of
adenoviral disease in patients, and also the therapeutic effi-
ciency of recombinant vectors [2, 3]. Understanding how
these innate responses are generated is of key importance for
the treatment of adenovirus disease and vector applications.
Here we discuss the mechanisms that elicit innate responses
during adenovirus entry into immune and non-immune cells.

Taxonomy and structure
of human adenoviruses

Adenoviruses are non-enveloped, middle-sized viruses with
an icosahedral symmetry containing a linear, double-
stranded DNA genome [1, 4–6]. They belong to the genus
of Mastadenovirus and are subdivided to seven Ad species
(A–G). Currently, there are 68 sequenced HAdVs (see
http://www.vmri.hu/~harrach/ADENOSEQ.HTM). All of
these viruses are closely related, but may differ in their tro-
pism, as some lead to infections of the respiratory tract
while others infect eye, kidney, liver, or the gastrointesti-
nal tract [7]. How the different tropisms precisely relate to
the viral genetics is incompletely known [8].

Human illnesses
associated with adenoviral
infections

In individuals with functional immune system adenovirus
infections can be asymptomatic, but often cause organ-re-
stricted illnesses such as upper and lower respiratory tract
infections (pharyngitis, bronchitis or pneumonia, species
C, B and E), epidemic and follicular conjunctivitis (species
D and B), and gastroenteritis (species A, E and F) [9]. The
caused disease can be severe and even fatal (especially in
infants) but most often self limiting with viral persistence
and shedding [9].

In immuno-compromised patients such as bone marrow
or solid organ transplant recipients or people suffering from
AIDS, adenoviruses often cause systemic diseases with
high mortality affecting various organs such as liver, heart,
or brain [10].

Adenoviral vectors
for the treatment and prevention
of diseases

Adenoviruses are promising agents for viral gene therapy
vectors because they can grow to high titres, infect various
cell types, and can be easily manipulated to express rela-
tively large genes [1, 9]. Potential applications include the
delivery of curative genes (cystic fibrosis, cardiovascular
and hepatic diseases), oncolytic viruses, and vaccine appli-
cations (recombinant subunit vaccines or virus-like parti-
cles) [11–13].
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Importance of Ad-induced adaptive
and innate responses in viral disease
and vector applications

Adenoviruses, similar to other intracellular pathogens elicit
an effective humoral and cellular immune response (neu-
tralizing anti-viral capsid antibodies and the induction of
CD8+ T cells) that prevents generalized disease and re-in-
fection with the same Ad serotype [9]. Notably however,
due to common exposure, most adult individuals already
exhibit specific antibodies and cytotoxic T cells to preva-
lently used vectors of Ad species C. This prevents efficient
organ targeting by such vectors and comprises major ob-
stacles in systemic Ad gene therapy [14, 15].

In natural adenovirus infections, the elicited innate re-
sponses such as complement activation, phagocytosis and
the induction of proinflammatory cytokines and interfer-
ons (IFNs) are beneficial in most cases as they result in
the rapid inactivation of adenoviruses and adenovirus-pro-
ducing cells and also help to build a proper antiviral-ac-
quired immune response [9]. However, overproduction of
certain proinflammatory mediators such as TNF, IL-6 and
IL-8 can be harmful. In infections of lower respiratory
tract such a mediator “storm” elicits symptoms analogous
to septic shock caused by Gram-negative bacteria [2].

Ad vector-induced innate reactions can also be bene-
ficial or harmful depending on the special type of the-
rapeutic application. Using oncolytic vectors and recombi-
nant vaccines innate responses elicited by the vector itself
may be helpful to eliminate targeted tumour cells or drive
an accelerated immune response to antigens of interest [16].

Nevertheless, overwhelming innate responses to the Ad
vectors are harmful and constitute a major limitation in sys-
temic gene therapy applications aiming to achieve pro-
longed gene expression as they lead to the destruction of
the vector-transduced cells [17]. Moreover, depending on
the amounts of applied vector, the induced innate reactions
may even lead to life-threatening side effects [18]. There-
fore, understanding and proper modification of Ad-induced
innate responses is of primary interest for both adenoviral
disease treatment and recombinant vector applications.

Ad infectious entry pathways
in different cell types

Ad entry, the earliest step in the viral replication cycle
seems to be predominantly responsible for the virus-in-
duced innate responses [19]. As innate virus sensing and
signalling can be initiated at various steps of this process,
it is of crucial importance to understand the mechanisms
of the initial events of virus–cell interaction during Ad in-
fection.

Entry in non-immune cells

Adenovirus entry is relatively well characterized in non-im-
mune cells (Fig. 1). HAdVs attach to high affinity recep-
tors, such as Coxsackie Adenovirus Receptor (CAR, spe-
cies A, C–F) [20], CD46 (species B2), or to low affinity high
avidity receptors, such as desmoglein 2 and CD46 (species
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Fig. 1. Ad entry into non-immune cells, HAdVs attached to CAR and to integrins promotes endocytosis. CAR receptors and alpha
v integrin coreceptors trigger the initial uncoating, leading to exposure of protein VI that facilitates endosomal penetration.
Ad receptor-mediated endocytosis also involves clathrin, dynamin, Eps15, Rab5 GTPase subfamily proteins, and actin dynamics
by Rho GTPases. Ad particles that escaped are then transported by the dynein motor on microtubules to the nuclear pore complex,
where viral DNA is injected in and transcription begins



B1) [21–25], or very low affinity sialic acid residues [26,
27]. Additionally, association of the blood coagulation fac-
tor X with blood-delivered HAdVs mediates effective virus
uptake into hepatocytes of the liver in mice [28]. The bind-
ing of species C and species B HAdV to integrins promotes
endocytosis and signalling, which can result in macropino-
cytic stimulation, and enhances infection [29–33].

The entry mechanisms of the species C HAdV
(HAdV-C) is in part known at the mechanistic level. For
example, the movement of CAR receptors by acto-
myosin-mediated drifting motions and the stationary con-
finement of the alpha v integrin coreceptors trigger the
initial uncoating steps for the incoming HAdV-C2 or C5
at the cell surface, the loss of the fibre proteins from the
capsid [34–36]. This then leads to the exposure of the
membrane lytic protein VI from the capsid interior, and
thereby prepares the partly uncoated virus for membrane
penetration [36–39]. HAdV-C2/5 are taken up by recep-
tor-mediated endocytosis, and this involves clathrin, dy-
namin and the EGF receptor substrate Eps15, proteins
from the Rab5 GTPase subfamily, and also actin dynam-
ics indicated by the involvement of various Rho GTPases
[34, 40–46].

Soon after endocytosis, the virus penetrates from an en-
dosome to the cytosol [45, 47, 48]. Although the penetration
mechanism is sensitive to lysosomotropic agents, such as
ammonium chloride [34], it is independent of the protein
ATPase inhibitor bafilomycin A1 [43, 49], and independent
of microtubules [50] and the 19 °C block of early endoso-
mal trafficking [43, 51]. This implies that virus penetration
does not require late endosomes or lysosomes, in agree-
ment with the observation that the membrane lytic activity
of the viral protein VI is pH-independent [37]. Virus parti-
cles, which escaped from the endosome, are then trans-
ported by the dynein motor on microtubules to the nucleus,
and they lead to infection [50, 52–55]. This is enhanced by
the dynactin complex [50, 53, 56].

How the virus gets from the microtubules to the nuclear
pore complex is still not completely understood, although
this step is inhibited when nuclear export is blocked [57–
59]. When the virus arrives near the nuclear envelope it
docks the nuclear pore complex protein Nup214 [60]. The
capsid is disassembled by the action of a kinesin motor pro-
tein, conventional kinesin-1, which binds in its inactive
form to the virus particle [61]. The kinesin motor gets ac-
tivated by a dual cue, the binding to the nuclear pore com-
plex protein Nup358 and microtubules [62]. Microtubules
also bind to the distal part of Nup358 [63], and hence pro-
vide a track for the displacement of the viral capsid frag-
ments from the nuclear envelope to the periphery [61]. Sur-
prisingly, this also leads to the disruption of the nuclear
pore complex and thereby enhances the permeability of the
nuclear pore. The enhanced permeability of the nuclear
pore together with nuclear import factors importin beta, im-
portin 7 and transportin, which bind to the viral DNA and
associated proteins, then enhance import of the viral DNA
genome into the nucleus [60, 64–66].

Ad entry in immune cells

Studies with various Ad vectors have shown that these
viruses infect and activate mononuclear phagocytes very
efficiently in vivo in a way that does not require the known
high affinity virus-binding receptors (CAR, CD46 and
HSPG) [19]. As these cells possess strong phagocytic ac-
tivity, Ad entry into them is generally believed to be medi-
ated by phagocytosis. Indeed, macrophage receptors, such
as Fc receptor and DC-Sign have been shown to facilitate
cellular binding requiring anti Ad antibodies and lactofer-
rin, respectively [67–69]. If modified by an Fc fusion pro-
tein, they can directly attach to the high affinity FcR CD64
[70]. In immature myeloid dendritic cells, adenoviruses es-
cape from the phagolysosome and this requires the virion
protease similarly to what was found in non-immune cells
[71]; however, much less is known about additional steps of
Ad entry into mononuclear phagocytes compared to other
non-immune cells. Ads can also infect plasmacytoid den-
dritic cells (pDCs) that are non-phagocytic using CD46 as
a receptor [72], but again, further details of Ad entry into
these cells are not characterized.

Ad entry-induced cellular signalling
and innate responses in non-immune cells

In non-immune cells signalling events activated by Ad entry
are relatively well studied. High affinity receptors (e.g.
CAR), necessary for cell surface binding of Ads, may ini-
tiate cellular signalling events, even in the absence of virus
[73, 74]. Binding of RGD motifs of the Ad virion compo-
nent penton base to cellular integrins triggers the activation
of several important signalling molecules such as phos-
phatidyl-inositol 3-OH kinase (PI3K) and the Rho family of
small GTPases and these events enhance virus internaliza-
tion [8, 75]. Viruse uptake or endosomal escape of species
C Ads has been shown to be associated with protein kinase
C activity [35], and the p38 and ERK mitogen-activated
protein kinases (MAPK) facilitate Ad movement along the
microtubule network [76, 77]. The activation by the ERK
and p38 MAPKs and nuclear factor kappa B (NF-κB) has
also been shown upon species C Ad infection in renal ep-
ithelial cells [19]. Activation of these MAPKs and NFκB
was responsible for the induction of chemokines such as
IP-10 and IL-8 [78], which has also been observed in res-
piratory epithelial cells infected with species B Ads [79].

Ad entry-induced innate responses
in immune cells

Although non-immune cells may contribute to certain Ad
innate reactions, the majority of these responses stem from
cells of the innate immune system such as various mac-
rophage and dendritic cell populations. In the following sec-
tions, we discuss the major determinants of these responses.

Adenovirus-induced innate responses
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Ad entry-elicited soluble mediators

In vivo studies with rodent and primate animal systems
and in human clinical trials revealed the induction of a
plethora of mostly pro-inflammatory mediators. These in-
clude pro-inflammatory cytokines (IL-6, TNF, IL-12,
IL-1α and β), chemokines (IL-8, MIP-2, IP-10, RANTES,
MIP-1α, MIP-1β and MCP-1), platelet-activating factor
(PAF), and type-I interferons (IFN-αβ) [19, 71, 80–83].
Interestingly, certain Ad-induced mediators may in turn
lead to the production of others, as it was shown recently
that the production of Ad-induced chemokines depended
on virus-induced IL-1 [84], and also that IFN-αβ sig-
nalling positively regulates the production of type I IFNs,
IL-6 and IL-12 [71, 80].

Cellular sources of Ad-induced mediators

Ad entry-induced inflammatory mediators are predomi-
nantly produced by different kinds of mononuclear phago-
cytes [80]; however, epithelial cells and organ parenchy-
mal cells also contribute to the production of chemokines
[19]. Various Ad species have different organ tropism [85],
and data available in this respect refer mostly to species C
Ads. With these viruses, liver and spleen are the main tar-
geted organs [85]. TNF has been shown to be produced
by the liver resident macrophages, Kupffer cells [81],
while the induction of chemokines, IL-1 and IL-6, has
been demonstrated both in liver and spleen [71, 84, 86].
In the later organ, Ads induce the production of IL-1α and
β in marginal zone and metallophilic macrophages [84].
Ads induce the production of IFN-αβ in various mono-
nuclear phagocytes such as bone marrow-derived mac-

rophages and dendritic cells or primary Kupffer cells [71,
80, 83] and in pDCs [71, 72, 80] in vitro. However, dur-
ing systemic Ad infection, the vast majority of type I IFNs
is made in spleen, predominantly in myeloid dendritic
cells [71]. Interestingly, only a small part of IFN-αβ is
made by pDCs [71] which are the main type I IFN pro-
ducer cells in the course of infection with most other
viruses [87].

Ad-induced LPS hypersensitivity

Importantly, experiments in mice revealed that infection with
Ads modulates innate immune responses to other microbial
agents. The best studied example is the induction of hyper-
sensitivity to bacterial endotoxin (LPS) [88]. Other viruses
such as Lymphocytic Choriomeningitis Virus (LCMV) have
also been shown to induce LPS hypersensitivity. In these
cases, early production of IFN-αβ 2–3 days after infection
mediates a relatively weak (2–4-fold) hypersensitivity (or
even downregulation of TNF production ) [92], while later
(after 7 days) IFN- production mediates a strong hypersen-
sitivity to LPS, characterized by the overproduction of TNF
[89–93]. In contrast, Ad-induced early-type I IFN produc-
tion mediates a very strong LPS hypersensitivity charac-
terized by the dramatic overproduction of TNF (50–
100-fold) and IL-6 (5–10-fold) [88]. Furthermore, there is
a strong overproduction of nitric oxide (NO), mostly in
spleen [88]. Interestingly, LPS injection of uninfected con-
trol animals elicits NO production mainly in liver. Ad-in-
duced LPS hypersensitivity also results in enhanced,
TNF-mediated lethality and thus represents an important
mechanism of pathologies in mixed infections caused by
both viruses and bacteria [71, 88] (Fig. 2).
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Fig. 2. Adenovirus-induced LPS hypersensitivity is mediated by type I interferons. Human species B adenovirus injected into B6
mice intraperitoneally induces the production of IFN-αβ. Sixteen hours after virus infection, LPS challenge elicits strong
overproduction in wild-type and IFN-γ-deficient mice but not in IRF7-deficient mice incapable of IFN-αβ production or in animals
deficient in IFN-αβ receptor



Enhancement of Ad-induced
monocyte-derived innate mediators on the infectious
entry into non-immune cells

In confluent polarized epithelial cells, the high affinity
species C receptor CAR and the integrin coreceptors are
localized to the basolateral surface and tight intercellular
junctions. They are inaccessible to incoming virus parti-
cles from the airway lumen on the apical side of the ep-
ithelium [94, 95]. This arrangement constitutes a “natural
resistance” to viruses using these receptors, for example,
coxsackie virus B3 [96]. A recent study showed that if
monocytes are also present in the epithelium, they can take
up virus particles without getting infected themselves, but
they respond to the viruses by releasing cytokines, such as
CXCL8 [97]. CXCL8 release then leads to the redistribu-
tion of CAR and alpha v beta 3 (but not beta 5) integrin to
the apical surface, and allows the viruses in the apical air-
way lumen to directly infect the epithelial cells from the
apical side (Fig. 3). Since macrophages can be pre-acti-
vated by bacterial infection, a bacterial and viral coinfec-
tion can potentially contribute to worsening the outcome of
disease in mixed infections.

Molecular mechanisms mediating
the Ad triggered innate responses

Several receptors and signalling pathways have been shown
to play important roles in the Ad-induced innate responses.
However, not much attention was paid to possible differ-
ences in causative viral ligands, receptors involved, sig-
nalling and responses in different Ad-sensitive cell types.
Actually, the inducing adenoviral ligand(s) and cellular re-
ceptors are largely unknown and multiple mechanisms
seem to be involved. In the following, we discuss our cur-
rent knowledge of the innate molecular sensing of Ads.

Binding to Ad surface receptors

Since cellular integrins elicit well-characterized downstream
signalling events (e.g. PI3K activation) which can lead to
NF-κB and MAPK activation, these receptors were thought
to be involved in the induction of pro-inflammatory media-
tors for a long time. Indeed, RGD deleting Ads not capable
of binding to cellular integrins elicit weaker responses [98].
However, since integrin mediated signalling events are also

Adenovirus-induced innate responses
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Fig. 3. Ad-induced enhancement of monocyte-derived innate mediators on the infectious entry into epithelial cells. CAR and the
integrin coreceptors are localized to the basolateral surface and tight intercellular junctions in confluent polarized epithelial cells,
preventing species C Ad entry. Ad-infected monocytes produce IL-8 that induces redistribution of CAR and alpha v beta 3 integrin to
the apical surface and allows virus infection from the apical airway lumen



required for virus internalization many of these effects can
reflect delayed activation of other sensors at later stages of
Ad entry [8]. Nevertheless, at least in Ad infected spleen
marginal zone macrophages integrin mediated signalling by
itself is sufficient to elicit the production of IL-1α and β be-
cause Ad2 ts1, a mutant endocytosed normally but incapable
of escaping from the endosome [43, 46, 99] induces IL-1
production requiring Ad RGD motifs and cellular integrins
but not Toll-like receptors (TLRs) [84].

Ad-induced TLR activation

Cell surface TLRs 2 and 4 and endosomal TLR7, 8 and 9)
are implicated in the innate sensing of different types of
viruses [87, 100]. Also, in the case of Ads, TLRs have been
shown to be involved in innate sensing. In pDCs, TLR9
plays a crucial role in Ad-induced type I IFN production
[71, 72, 80]. Furthermore, TLR2, 4 and 9 were reported to
play a role in the elicitation of IL-12, MCP-1 and RANTES
responses in mononuclear phagocytes in Ad-infected mice
or in vitro [86, 101]. However, the induction of IL-1, type
I IFNs was predominantly independent of TLRs [71, 84].

Signalling and cytokine responses requiring
Ad endosomal escape

IL-1β induction. Cell surface-initiated integrin signalling
was shown to contribute to IL-1 production [84], but the
same study has also shown that Ads capable of endosomal
escape induce much more IL-1 than the escape-deficient
ts1 mutant [84]. Two other studies also emphasized the cru-
cial role of endosomal Ad escape in the induction of IL-1β.
Muruve et al. demonstrated that cytosolic sensing of Ad
DNA is capable of activating the inflammasomes in a man-
ner requiring NALP3 and ASC and thus promoting IL-1β
secretion [102]. As an alternative mechanism, the release
of cathepsin B from phagolysosomes during Ad escape and

the consequential activation of caspase-1 and the NLRP3
inflammasome has also been suggested for the production
of this cytokine [103].

IFN-αβ induction. The Ad entry-mediated production
of type I IFNs has been recognized only recently. The im-
portance of IFN-αβ production was indicated by clinical
trials with oncolytic Ads, where a better prognosis was as-
sociated with situations in which recombinant Ad vectors
induced robust IFN-αβ responses [104]. While pDCs can
recognize Ad DNA via TLR9 in vitro [71, 72, 80], in vivo
studies in Ad-infected mice have shown that the majority of
IFN-αβ is produced in myeloid DCs (Fig. 4) in a TLR-in-
dependent manner [71]. So far reported, cytosolic induc-
tion of IFN-αβ by bacterial and viral DNA strictly requires
IRF3 but not the activation of MAP kinases [105, 106]. In
contrast, Ad-induced type I IFN production strictly requires
endosomal escape-mediated IRF7 (but not necessarily
IRF3), JNK MAP kinase and TBK1 activation. But the cy-
tosolic DNA sensor DAI, the RNA helicases RIG-I/MDA-5
[71, 107] are not required for IFN-αβ induction and aden-
oviral gene expression inhibits their production [71]. There-
fore, Ad-induced type I IFN production appear to represent
a novel, distinct viral induction pathway, besides the previ-
ously described ones mediated by TLRs, RIG-I/MDA5 and
free cytosolic DNA recognition (Fig. 5).

Concluding remarks and further questions

The adenovirus entry-elicited innate responses represent a
very complex example of virus-induced immune reactions.
Although many individual aspects of the mechanisms in-
volved are known, our understanding is still rather incom-
plete. We need more information about the key viral and host
elements involved such as the main cellular sensors of Ads
and the inducing cognate viral ligands. By studying these
questions, further experiments will probably increase our
understanding not only on adenovirus-generated responses,
but also on general aspects of host-pathogen relationship.
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Fig. 4. Splenic myeloid dendritic cells are the major cellular sources of type-I interferons in response to Ad infection in vivo.
IFN-αβ is produced in the spleen of Ad-infected mice. Detection of IFN-αβ in FACS-sorted splenocytes reveals weak induction
in pDCs, strong production in myeloid DCs and the absence of IFN-αβ synthesis in all other spleen cell populations
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