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Summary
Over the past few decades, one of the most salient lifestyle changes for us has been the use
of computers. For many of us, manual interaction with a computer occupies a large portion
of our working time. Through neural plasticity, this extensive movement training should
change our representation of movements [e.g., 1, 2, 3], just like search engines affect
memory [4]. However, how computer use affects motor learning is largely understudied.
Additionally, as virtually all participants in studies of perception and actions are computer
users, a legitimate question is whether insights from these studies bear the signature of
computer-use experience. We compared non-computer users with age- and education-
matched computer-users in standard motor learning experiments. We found people learned
equally fast but non-computer users generalize significantly less across space, a difference
negated by two weeks of intensive computer training. Our findings suggest that computer-
use experience shaped our basic sensorimotor behaviors, and this influence should be
considered whenever computer-users are recruited as study participants.

Results and Discussion
The average computer user produces 7,400 mouse clicks per week [5]. Computer use often
involves globally linear transformations between the body movement and its screen
representation, e.g., the mapping from hand movement to mouse cursor position. Hence,
with long-term interaction with mice, computer users probably develop an expectation that
visuomotor transformation between hand movement and its screen representation should
remain consistent across work space. Hence, in line with recent findings that prior
experience affects motor control [6-9] and motor generalization in particular [10, 11], our
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working hypothesis is that people without computer experience will generalize more locally
in visuomotor learning and this difference should be negated with computer-use training.

To assess how such movement behaviors are affected by computer use, we recruited 18
Chinese migrant workers, 9 of them were regular computer users (control group, age
41.9±8.9 years) and 9 of them had never used a computer before (non-computer user group,
age 38.2±10.1 years). We also assembled a control group made up of 9 college students
(student group, age 21.9±2.4 years). All these naïve subjects were tested with a standard
visuomotor gain adaptation experiment [12, 13] where subjects learned to move a cursor
while their hand was hidden from view (Fig 1A). The gain between the hand displacement
and the cursor displacement was modified in the training direction (Fig 1B). Subjects
adapted to this visuomotor gain change and were subsequently tested in other directions to
assess their directional generalization.

So how does computer use affect movement behavior? It affected neither the speed of
learning (F(8,18) = .91, p = .53, one-way ANOVA) nor the degree of learning (F(8,18) = .
77, p = .64; Fig. 2A). However, the computer users, compared to the non-computer user
group, generalize much more into other directions (interaction effect F(8, 96) = 6.9, p < .
0001; main effect on groups F(2, 24) = 12.5, p < .0001, 2-way ANOVA; Fig 2B).
Interestingly, non-computer users still have a broad generalization as their generalization is
significantly larger than zero even at the largest angular separation of 180° (30.0±6.9%; p < .
001, one-sample t test). There is no difference between the computer group and the student
group, suggesting that subjects of different ages behave similarly as long as they are
computer users.

To establish the causal relationship, we recruited another group of 10 non-computer users
and examined their generalization before and after intensive computer-use training. We
realized that our movement interaction with computer is mostly via a computer mouse; this
interaction involves a mapping between a movement space and a visual space, rather similar
to experimental setting in our and others' studies. We thus chose to give subjects intensive
training on using computer mouse. Before training, their generalization was again quite
narrow and their generalization was not significant from that of the non-computer user group
in Experiment 1 (Figure 3A; two-way mixed-design ANOVA, main effect on groups F(1,17)
= .24, p = .63 and interaction effect F(4,68) = .25, p = .92). In the following 2 weeks,
participants were instructed to play computer games (e.g., Pong) that require intensive
mouse use, 2 hours each day. We also tested their mouse-use ability by asking them to track
a moving cursor with mouse cursor (Figure 3B inset). This tracking task was performed
before and after training on each day. The overall tracking error was reduced over days
(Figure 3B). More importantly, participants exhibited significantly larger generalization
when they were tested again after 14-day training (Figure 3A). Two-way repeated-measures
ANOVA revealed significant main effect on timing (before vs after training, F(1,9) = 13.08,
p < .01) and significant interaction effect (F(4,36) = 9.48, p < .0001). The generalization was
significantly higher at all but the 0 angular separations (p < .01 or p < .005 for simple main
effect tests). Two weeks of computer training converted the generalization patterns into
those of computer users.

In sum, computer use leaves learning speed unaffected but leads to enhanced generalization
into untrained directions. A possible reason for this change is that the gain mapping between
mouse movements and cursor movements is uniform across different directions. Thus, long-
term exposure to this sensorimotor mapping leads to our prior expectation of consistent
transformation between manual actions and screen representations across directions. This
prior expectation, in turn, leads to broad generalization in similar task settings. We postulate
that this enhanced generalization is specific for visuomotor learning since computer use
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extensively involves visuomotor transformation. Furthermore, it has been shown that altered
motor generalization in some neuropathological population is also task-specific [14].

It is interesting to note that normal participants (a.k.a, computer users) have a much broader
generalization for visuomotor gain learning as compared to visuomotor rotation learning,
another type of visumotor transformation [e.g., 15]. Can computer use explain this
discrepancy? Our data shows that non-computer users exhibit broader generalization in gain
learning than computer users in rotation learning, i.e., their gain generalization is significant
even at 180 angles where rotation generalization is supposed to be absent. This suggests that
computer use alone cannot explain the discrepancy between these two types of motor
generalization. This behavioral distinction is consistent to the neurophysiological findings
that separate neural substrates supports these two types of visuomotor learning [16].

Similar to existing studies on visuomotor generalization [3, 12, 17-22], we have analyzed
the generalization of rather artificial movements on a plane. It is well possible that computer
use is more important for such artificial movements than it would be for natural movements.
However, our study informs the interpretation of the work that has been done so far. Future
work can reveal how important naturalness is for the effects of generalization [10] and the
importance of computer use in such a context.

The way subjects learn and generalize is often viewed as a reflection of the fundamental
neural representation of movement [23-29]. Particularly, people usually reported limited
generalization in various motor learning tasks [3, 17-19, 21, 30-32] and these patterns have
been quantified to probe neural representations of movement learning [e.g., 3, 11, 17-19, 20,
26, 30-35] Hence, our finding suggests that computer use, through neural plasticity, changes
movement representations. Our results also suggest that in typical movement experiments, at
least those involving visuomotor perturbations, computer use affects the results. It is thus
important to be cautious in generalizing behavioral findings on computer users to the overall
population, just as psychologists recently acknowledged that data from selected Western
subjects is not broadly representative across populations [36]. Computer use not only
changes our lifestyle, it appears to also fundamentally affect the neural representation of our
movements.

Experimental Procedures
All subjects were naïve to our research purpose and they provided written consent before
experiments. All procedures were approved by the institutional review board of Peking
University. Experiment 1 was a cross-sectional experiment with a non-computer user group
(8 females and 1 male; age: 38.2±10.1; education: 4.9±2.1 years), an age- and education-
matched control group (8 females and 1 male, age: 41.9±8.9; education: 6.6±2.5) and a
student group (7 females and 2 males; age: 21.9±2.4; education: 15.3±1.9). Experiment 2
was a longitudinal experiment where 10 non-computer users were recruited (10 females; age
38.7±7.9 years; education: 7.9±3.1). Their motor generalization were accessed before and
after a 14-day computer training. All subjects were screened for their computer use
experience. Non-computer users were determined by one-on-one interview and they were
required to use a computer mouse to open a file folder placed on the desktop of a Windows
PC. They usually had trouble maneuvering the mouse to move the cursor, a hallmark of no
experience of interacting with computers. All experiment sessions were schedule during the
day. For quantifying generalization, subjects sat behind a desk and moved their right,
dominant hand on the desktop. Their vision of the hand was blocked by a mirror placed
horizontally at chest level. The movement of the index finger tip was measured at a
frequency of 200Hz (Codamotion, Charnwood Dynamics). Visual feedback was projected
on a vertically-placed back-projection screen about 100cm in front of the subject. On the
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screen, eight visual targets were arranged on an 80-mm-radius circle and separated 45° apart
(Fig 1A). At the beginning of each trial, subjects rested their index finger on a 4-mm thin,
smooth plastic disc glued on the desktop. This disc facilitated subjects returning to the center
of the target circle without visual guidance. Once the finger was still for 100ms, one of the
targets was highlighted to signal subjects to move their hand from the center to the target. A
cursor, representing the finger position, was only visible within 1-cm around the circle
center. On selected trials (see below), the cursor would re-appear when the reach stopped
and this terminal feedback indicated the distance travelled by the finger/cursor. A beep,
played at the trial end, signaled the subject to bring the finger back to the starting position
for the next trial.

The assessment of generalization was conducted with 4 phases of trials (Fig 1B). In the
familiarization phase, subjects moved to each target 6 times in a random sequence with
terminal feedback. In the baseline phase, trials were organized in 50 blocks of 9 trials: every
target was shown once with the exception of the training target (the upper-left target) which
was shown twice. The terminal feedback was presented only for the reaches to the training
target. For both familiarization and baseline phases, the gain between the hand movement
and the cursor movement was 1, i.e., the terminal feedback was veridical. In the training
phase, subjects reached to the training target with terminal feedback for 30 consecutive
trials. Importantly the gain was modified from 1 to 0.6, creating a visuomotor perturbation.
With this perturbation, subjects only needed to move 48 mm to reach the target. The last
generalization phase was identical to the baseline phase except that the gain was kept at 0.6.
As subjects never received visual feedback for reaches to targets other than the training
target, we could assess their transfer of learning from the training direction to other
directions. The amount of generalization is quantified as

where Dgeneralization and Dbaseline are average movement distances in the generalization
phase and in the baseline phase, respectively. This generalization percentage was calculated
for each direction separately and expressed as a function of angular separation from the
training direction (Fig 2B). Subjects exhibited typical exponential learning during the
training phase (Fig 2A). We fitted the learning data with an exponential function

, where τ denotes the learning rate and b denotes the achieved learning level.
When fitting parameters for each subject, the initial value of b was set at the learning
achieved at the end of the training session (average error of the last 3 training trials). a was
not a free parameter but the actual learning achieved during training; it was calculated for
each participant as the average error before training (average of the last 3 baseline trials)
minus the average error after training (average of the last 3 training trials).

The computer training in Experiment 2 involved subjects playing simple flash-based
computer games that require frequent and precise mouse cursor movements, 2 hours each
day for 14 consecutive days. Subjects were allowed to switch between 8 types of games and
to take a break at their convenience. To quantify their improvement in using computer
mouse, on each training day subjects also performed a modified pursuit rotor task, which
required them to use mouse cursor to track a moving target on the computer monitor. The
movement of the target followed a predefined trajectory whose horizontal position was a
sine function (0.3Hz; 261 pixel in amplitude) and vertical position a sum of three sine
functions (0.3, 0.6 and 0.9Hz; 150 pixel in amplitude). On the screen this tracking target
spanned 522 and 750 pixels horizontally and vertically, respectively. Importantly, it moved
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with unpredictable and varying speeds (mean ± SD: 545±293 pixel/s) and thus discouraged
subjects to improve the performance by simply remembering the trajectory. This task was
organized as 20-s trials, 5 trials before and after the training on each day. The average,
absolute distance between the target and the mouse cursor was computed as tracking error.
The training was conducted in a lab setting under supervision of the experimenters.

For Experiment 1, between-group comparisons of generalization was performed with a two-
way mixed-design ANOVA (3 groups × 5 angular separations). Comparisons of learning
rate and learning extent were performed with one-way ANOVA. For Experiment 2, within-
group comparisons between before- and after-training generalization was performed with a
similar but repeated-measures ANOVA (2 timing × 5 angular separations). Across-
experiments comparisons between two non-computer user groups were conducted via a two-
way mixed-design ANOVA (2 groups × 5 angular separations). For both experiments,
comparisons of generalizations between groups (Experiment 1) and between times (pre- and
post-training) at specific angular separations were performed by using simple main effects
with Bonferroni correction. Data entering two-way ANOVA tests were checked for
normality. The significance level was set at α = .05.
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Highlights

• We compared motor generalization for computer and non-computer users.

• Non-computer users showed narrower generalization but with normal learning
speed.

• The narrower generalization was broadened by two-week computer training.

• Computer use fundamentally affects the neural representation of our
movements.
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Figure 1.
Experimental setup and data from a typical subject. A) Illustration of experimental setup and
movement targets arranged on the screen. With perturbed visuomotor gain, the terminal
feedback is shown 1/0.6 further from the actual reach endpoint, i.e., people only need to
move the unseen hand 48 mm to reach 80-mm targets. This terminal feedback is only shown
for the training direction. Thus subjects only learned this sensorimotor gain in one direction
and were then asked to generalize to other directions. B). Movement distance of all the
reaches to the training target from a typical subject. The gain is 1 during the familiarization
and the baseline phases and is 0.6 during the training (with feedback) and the generalization
phase (without feedback). The distances of reaches to other targets (not shown) reflect how
subjects generalize.
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Figure 2.
Same learning speeds but different generalization. A). Average learning data during the
training phase. The error bars denote SEMs across subjects. Solid lines are fitted exponential
learning curves. B). The generalization as a function of difference in direction is assessed.
The difference between computer-user groups and non-computer user group was significant
at distant angles (p < .005, marked as *, p <.001, marked as **, simple main effect with
Bonferroni correction).
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Figure 3.
Two weeks of computer use produces broad generalization curves. A) The generalization as
a function of difference in direction before and after computer-use training. The difference
induced by computer-use training was significant at distant angles (p < .01, marked as *, p
< .005, marked as **, simple main effect). B). The mouse tracking error was reduced over
14 training days. The upper end of each vertical line denotes the error before training on
each day and the lower end the error after the training. The width of grey horizontal lines
denotes inter-subject variance (SEM). The trajectory of the moving target (black) and the
mouse cursor trajectory of an exemplary trial (green) were shown in the inset.
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