Research Article

Microstructure and Nonohmic Properties of SnO₂-Ta₂O₅-ZnO **System Doped with ZrO₂**

Xiuli Fu,1 Feng Jiang,² Ruichao Gao,1,2 and Zhijian Peng2

¹ School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China ² School of Engineering and Technology, China University of Geosciences, Beijing 100083, China

Correspondence should be addressed to Xiuli Fu; xiulifu@bupt.edu.cn and Zhijian Peng; pengzhijian@cugb.edu.cn

Received 7 August 2013; Accepted 26 November 2013; Published 20 January 2014

Academic Editors: M. J. Hua, R. Parra, and K. Prabhakaran

Copyright © 2014 Xiuli Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The microstructure and nonohmic properties of SnO_2 -Ta₂O₅-ZnO varistor system doped with different amounts of ZrO₂ (0– 2.0 mol%) were investigated. The proposed samples were sintered at 1400[∘] C for 2 h with conventional ceramic processing method. By X-ray diffraction, SnO₂ cassiterite phase was found in all the samples, and no extra phases were identified in the detection limit. The doping of $ZrO₂$ would degrade the densification of the varistor ceramics but inhibit the growth of SnO₂ grains. In the designed range, varistors with 1.0 mol% $\rm ZrO_2$ presented the maximum nonlinear exponent of 15.9 and lowest leakage current of 110 μ A/cm², but the varistor voltage increased monotonously with the doping amount of $ZrO₂$.

1. Introduction

SnO₂ varistors are semiconducting ceramic devices, which possess nonlinear voltage-current characteristics due to their grain boundary effects formed commonly by sintering $SnO₂$ powder with minor additives (impurity). Due to their excellent energy handling capabilities, they can be applied extensively to protect electronic circuits, various semiconductor devices, and electric power systems from dangerous abnormal transient overload [\[1](#page-3-0), [2](#page-3-1)].

The first impurity-doped $SnO₂$ varistor was reported by Glot and Zlobin [\[3\]](#page-3-2), and Pianaro et al. also made great contributions to the knowledge of varistor behavior of impuritydoped $SnO₂$ ceramics [\[4](#page-3-3)]. Through a series of studies on $SnO₂$ -based varistors for decades, it is well known that an excellent $SnO₂$ varistor system consists of three kinds of dopants: resistance reducers (varistor forming oxide, VFO), densifiers, and modifiers, respectively [\[5\]](#page-3-4). To date, the commonly applied VFOs are Nb^{5+} [\[6](#page-3-5)[–8\]](#page-3-6) or Ta⁵⁺ [\[9](#page-3-7)[–11](#page-3-8)], which possesses high chemical valence and is soluble in SnO₂ grains to decrease the grain resistivity; the densifier is insoluble ion of low chemical valence that will segregate at $SnO₂$ grain boundary regions to promote the densification by producing oxygen vacancies, for example, Co^{2+} [\[4](#page-3-3), [6](#page-3-5), [7](#page-3-9), [9,](#page-3-7) [11\]](#page-3-8), Mn^{2+}

[\[12](#page-3-10), [13\]](#page-3-11), and Zn^{2+} [\[8,](#page-3-6) [14](#page-3-12)], and the modifiers can effectively improve the electrical properties of the varistors, such as Cr^{3+} , $Fe³⁺$, Cu²⁺, and rare earth elements [\[6](#page-3-5)[–9](#page-3-7), [15,](#page-3-13) [16\]](#page-3-14).

Moreover, during modern ceramics processing, high energy attrition milling and $ZrO₂$ grinding media were often applied. As a result, Zr^{4+} contamination in ceramic samples is a common phenomenon. However, up to now, no literature about the role of Zr^{4+} ion (ZrO_2) in SnO₂-based varistors has been reported.

Recently, we optimized a $SnO₂-Ta₂O₅-ZnO$ varistor system, which presents varistors of good nonlinear properties but very low varistor voltage [\[17](#page-3-15)]. Based on it, in the present study, $SnO₂-Ta₂O₅-ZnO-based varistor system was doped$ with $ZrO₂$ (0–2.0 mol%), and the effect of $ZrO₂$ doping on the microstructure and nonohmic properties of $SnO₂-Ta₂O₅$ based varistors was investigated. To our surprise, varistors with fully dense structure and high breakdown voltage could be obtained.

2. Experimental Procedure

2.1. Sample Preparation. The samples were prepared using a conventional ceramic processing method with a nominal composition of (99.45-x) mol% $SnO₂ + 0.05$ mol% $Ta₂O₅ +$ 0.5 mol% ZnO + x mol% ZrO₂ ($x = 0$, 0.25, 0.5, 1.0, 2.0). All the oxides were raw powders of analytical grade. At beginning, the raw powders were mixed in deionized water and ball-milled in polyethylene bottle for 24 h with 0.5 wt% of PVA as binder and highly wear-resistant $ZrO₂$ balls as grinding media. Subsequently, the obtained slurries were dried at 110[∘] C in an open oven. After drying, the powder chunks were crushed into fine powders, sieved, and pressed into pellets of 6 mm in diameter and 1.5 mm in thickness under a pressure of 40 MPa. Then, the pressed pellets were sintered at 1400[∘] C for 2 h in a Muffle oven by heating at a rate of 300[∘] C/h and cooling naturally. To measure the electrical properties, silver electrodes were prepared on both surfaces of the sintered disks by heat treatment at 500[∘] C for half an hour.

2.2. Materials Characterization. The density of the samples was measured by Archimedes method according to international standard (ISO18754). Their crystalline phases were identified by X-ray diffractometer (XRD, D/ max2550HB+/PC, Cu K α , and $\lambda = 1.5418 \text{ Å}$ through a continuous scan mode with speed of 8[∘] /min. The microstructure was examined on the fresh fracture surfaces of the samples via a scanning electron microscope (SEM, Tescan XM5136). And the average size of $SnO₂$ grains in the samples was determined using linear intercept method from the SEM images.

A high-voltage source measurement unit (Model: CJ1001) was used to record the characteristics of the applied electrical field versus current density $(E-J)$ of the samples. The varistor voltage (V_B) was determined at 1 mA/cm² and the leakage current (I_L) was the current density at 0.75 V_R . Then, the nonlinear coefficient (α) was obtained by the following equation:

$$
\alpha = \frac{\log (J_2 / J_1)}{\log (E_2 / E_1)} = \frac{1}{\log (E_2 / E_1)},
$$
(1)

where E_1 and E_2 are the electric fields corresponding to J_1 = 1 mA/cm² and $J_2 = 10$ mA/cm², respectively.

3. Results and Discussion

3.1. Composition and Microstructure. [Figure 1](#page-2-0) illustrates the XRD patterns of the as-prepared $SnO₂-Ta₂O₅-ZnO-based$ varistor ceramics doped with different amounts of $ZrO₂$. All the sharp diffraction peaks were assigned, corresponding to the (110), (101), (200), (111), (211), (220), (002), (310), (112), (301), (202), and (321) reflections of $SnO₂$ cassiterite phase (JCPDS card no. 77-0451). No extra phases were identified, possibly because the doping levels of the additives were too low to be detected in XRD limits. And, because of the same ionic valence and almost no radius difference between Sn^{4+} (0.071 nm) and Zr^{4+} (0.072 nm) ions, the doped ZrO_2 is fully soluble in $SnO₂$ lattice, which can be seen from almost the same positions of XRD diffraction peaks of the prepared samples as shown in [Figure 1\(b\)](#page-2-1) in a close view to the patterns in 2θ from 50 to 55°. As for the splitting of the XRD peaks in

the figure, it might be due to the peak doublet of K-alpha 1 and K-alpha 2.

SEM images of the as-prepared $SnO₂-Ta₂O₅-ZnO$ based varistor ceramics also confirmed the solubility of $ZrO₂$ into $SnO₂$ lattice (please see [Figure 2\)](#page-2-2). The images reveal that, although doped with different amounts of $ZrO₂$, the typical microstructure of the samples almost has no change: almost fully dense structure of $SnO₂$ grains without any obvious second phases. The detailed microstructural parameters are also summarized in [Table 1.](#page-2-3) With increasing doping amount of $ZrO₂$, the density of samples decreases in a very narrow range from 6.93 to 6.80 $g/cm³$ partly because the density of ZrO_2 (5.89 g/cm³) is lower than that of the matrix SnO_2 (6.95 g/cm^3) , but the relative density of the samples also decreases although also in a very narrow range from 99.8% to 98.2%, which indicates a decreased sample densification and could be attributed to the lower diffusion ability of solid $ZrO₂$ particles in SnO₂ matrix at the designed sintering temperature because the melting point of $ZrO₂$ (2680°C) is much higher than that of $SnO₂$ (1630°C). Moreover, from these SEM images, it can be clearly seen that, with increasing $ZrO₂$ contents in the ceramics, the average size of $SnO₂$ grains decreases, which might be owing to the inhibited transportation of $SnO₂$ during sintering by the doped $ZrO₂$ with lower diffusion ability.

3.2. Electrical Properties. The E-J characteristics of the asprepared $SnO₂-Ta₂O₅-ZnO-based ceramic varistors doped$ with different contents of $\rm ZrO_2$ are illustrated in [Figure 3,](#page-3-16) and their corresponding detailed electrical parameters calculated from the E -*J* curves are listed in [Table 1.](#page-2-3)

The results indicate that, with increasing doping content of $ZrO₂$ up to 1.0 mol%, the nonlinear coefficient of the samples increased up to 15.9, possibly owing to the increased carrier concentration in the varistors, decreased electrical resistivity of $SnO₂$ grains and thus enhanced barrier height by doping, and higher number of voltage barriers due to the decrease in grain size, but it would drop down with more ZrO₂ doped, due to the corresponding less dense sample structure, degraded effective grain boundary, destroyed depletion layer structure, and thus decreased barrier height. The leakage current of the samples presented an opposite trend to that of nonlinear coefficient with $ZrO₂$ doping, and the varistors with $1 \text{ mol} \%$ ZrO₂ presented the lowest leakage current, 110 μ A/cm², which is completely consistent with classic theory on their relationship [\[18\]](#page-4-0). Thus, it can be concluded that the optimum doping amount of $ZrO₂$ in the proposed $SnO₂-Ta₂O₅-ZnO-based ceramic varistor system$ was 1 mol%. The varistor voltage of the samples increased monotonously with the doping amount of ZrO_2 , which could be mainly attributed to the decreased $SnO₂$ grain size, thus increasing the number of grain boundary in unit thickness after doping.

4. Conclusions

 $SnO₂-Ta₂O₅$ -ZnO varistors doped with different amounts of ZrO₂ (0-2.0 mol%) were prepared by sintering at 1400°C

FIGURE 1: XRD patterns of the as-prepared SnO_2 -Ta₂O₅-ZnO-based varistor ceramics doped with different amounts of ZrO₂: (a) five of the samples and (b) magnified view in 2θ region of $50-55^\circ$.

(d) (e)

FIGURE 2: Typical SEM images on fracture surfaces of the as-prepared $SnO₂-Ta₂O₅-ZnO-based$ varistor ceramics doped with different amounts of ZrO_2 : (a) undoped, (b) 0.25, (c) 0.5, (d) 1.0, and (e) 2.0 mol%.

TABLE 1: Basic physical parameters of SnO_2 -Ta₂O₅-ZnO varistor ceramics doped with different contents of ZrO₂.

Doping amount of ZrO_2 (mol)	Apparent density (g/cm^3)	Relative density (%)	SnO , grain size (μm)	α	V_R (V/mm)	I_L (μ A/cm ²)
$\overline{0}$	6.93	99.8	7.87	4.6	81	660
0.25	6.89	99.2	6.67	6.0	103	560
0.5	6.88	99.1	5.45	8.2	250	220
1.0	6.84	98.6	4.55	15.9	500	110
2.0	6.80	98.2	3.03	11.6	720	170

FIGURE 3: E-J characteristic curves on a log scale at room temperature of the as-prepared $SnO₂-Ta₂O₅-ZnO$ -based varistors doped with different contents of ZrO₂.

for 2 h with conventional ceramic processing method. The doping of $ZrO₂$ would degrade the densification of the varistor ceramics, but inhibit the growth of $SnO₂$ grains. In the designed range, varistors with 1.0 mol % $ZrO₂$ presented the maximum nonlinear exponent of 15.9 and lowest leakage current of $110 \mu A/cm^2$; but the varistor voltage increased monotonously with the doping amount of $ZrO₂$.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors would like to thank the financial support for this work from the National Natural Science Foundation of China (grant nos. 61274015, 11274052 and 51172030), and the Transfer and Industrialization Project of Sci-Tech Achievement (Cooperation Project between University and Factory) from Beijing Municipal Commission of Education.

References

- [1] P. R. Bueno, J. A. Varela, and E. Longo, "SnO₂, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature," *Journal of the European Ceramic Society*, vol. 28, no. 3, pp. 505–529, 2008.
- [2] D. R. Leite, M. Cilense, M. O. Orlandi, P. R. Bueno, E. Longo, and J. A. Varela, "The effect of $TiO₂$ on the microstructural and electrical properties of low voltage varistor based on $(Sn,Ti)O₂$ ceramics," *Physica Status Solidi A*, vol. 207, no. 2, pp. 457–461, 2010.
- [3] A. B. Glot and A. P. Zlobin, "Non-ohmic conductivity of tin dioxide ceramics," *Inorganic Materials*, vol. 25, pp. 274–276, 1989.
- [4] S. A. Pianaro, P. R. Bueno, E. Longo, and J. A. Verala, "A new SnO2-based varistor system," *Journal of Materials Science Letters*, vol. 14, no. 10, pp. 692–694, 1995.
- [5] I. Safaee, M. A. Bahrevar, M. M. Shahraki, S. Baghshahi, and K. Ahmadi, "Microstructural characteristics and grain growth kinetics of Pr₆O₁₁ Doped SnO₂-based varistors," *Solid State Ionics*, vol. 189, no. 1, pp. 13–18, 2011.
- [6] J. F. Wang, W. B. Su, H. C. Chen, W. X. Wang, and G. Z. Zang, "(Pr, Co, Nb)-doped SnO₂ varistor ceramics," *Journal of the American Ceramic Society*, vol. 88, no. 2, pp. 331–334, 2005.
- [7] R. Parra, Y. Maniette, J. A. Varela, and M. S. Castro, "The influence of yttrium on a typical SnO₂ varistor system: microstructural and electrical features," *Materials Chemistry and Physics*, vol. 94, no. 2-3, pp. 347–352, 2005.
- [8] R. Parra, J. A. Varela, C. M. Aldao, and M. S. Castro, "Electrical and microstructural properties of (Zn, Nb, Fe) -doped $SnO₂$ varistor systems," *Ceramics International*, vol. 31, no. 5, pp. 737– 742, 2005.
- [9] J.-F. Wang, H.-C. Chen, W.-B. Su, G.-Z. Zang, B. Wang, and R.- W. Gao, "Effects of Sr on the microstructure and electrical properties of (Co, Ta)-doped SnO₂ varistors," *Journal of Alloys and Compounds*, vol. 413, no. 1-2, pp. 35–39, 2006.
- [10] C.-M. Wang, J.-F. Wang, W.-B. Su, H.-C. Chen, G.-Z. Zang, and P. Qi, "Microstructure development and nonlinear electrical characteristics of the SnO2⋅CuO⋅Ta2O⁵ based varistors," *Journal of Materials Science*, vol. 40, no. 24, pp. 6459–6462, 2005.
- [11] G. Zang, J. F. Wang, H. C. Chen et al., "Effects of $Sc₂O₃$ on the microstructure and varistor properties of (Co, Ta)-doped SnO2," *Journal of Alloys and Compounds*, vol. 377, no. 1-2, pp. 82–84, 2004.
- [12] C. P. Li, J. F. Wang, W. B. Su, H. C. Chen, W. L. Zhong, and P. L. Zhang, "Effect of Mn^{2+} on the electrical nonlinearity of (Ni, Nb)-doped SnO² varistors," *Ceramics International*, vol. 27, no. 6, pp. 655–659, 2001.
- [13] J. W. Fan, H. J. Zhao, Y. J. Xi, Y. C. Mu, F. Tang, and R. Freer, "Characterisation of SnO₂-CoO-MnO-Nb₂O₅ ceramics," *Journal of the European Ceramic Society*, vol. 30, no. 2, pp. 545–548, 2010.
- [14] F. M. Filho, A. Z. Simões, A. Ries, L. Perazolli, E. Longo, and J. A. Varela, "Nonlinear electrical behaviour of the Cr_2O_3 , ZnO, CoO and Ta₂O₅-doped SnO₂ varistors," *Ceramics International*, vol. 32, no. 3, pp. 283–289, 2006.
- [15] H. Bastami, E. Taheri-Nassaj, P. F. Smet, K. Korthout, and D. Poelman, "(Co, Nb, Sm)-doped tin dioxide varistor ceramics sintered using nanopowders prepared by coprecipitation method," *Journal of the American Ceramic Society*, vol. 94, no. 10, pp. 3249–3255, 2011.
- [16] A. V. Gaponov and A. B. Glot, "Electrical properties of $SnO₂$ based varistor ceramics with CuO addition," *Journal of Materials Science*, vol. 21, no. 4, pp. 331–337, 2010.
- [17] J. F. He, Z. J. Peng, Z. Q. Fu, C. B. Wang, and X. L. Fu, "Effect of ZnO doping on microstructural and electrical properties of SnO₂-Ta₂O₅ based varistors," *Journal of Alloys and Compounds*, vol. 528, pp. 79–83, 2012.

The Scientific World Journal

[18] F. Jiang, Z. J. Peng, Y. X. Zang, and X. L. Fu, "Progress on rareearth doped ZnO-based varistor materials," *Journal of Advanced Ceramics*, vol. 2, no. 3, pp. 201–212, 2013.