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Summary
The role of epistasis in the genetic architecture of quantitative traits is controversial, despite the
biological plausibility that non-linear molecular interactions underpin the genotype-phenotype
map. This controversy arises because most genetic variation for quantitative traits is additive.
However, additive variance is consistent with pervasive epistatic gene action. Here, I discuss
experimental designs to detect the contribution of epistasis to quantitative trait phenotypes in
model organisms. These studies indicate that epistatic gene action is common, and that additivity
can be an emergent property of underlying genetic interaction networks. Epistasis causes hidden
quantitative genetic variation in natural populations and could be responsible for the small additive
effects, missing heritability and lack of replication typically observed for human complex traits.

Introduction
Understanding how naturally occurring variation in DNA sequences causes phenotypic
variation in quantitative traits is a major challenge of contemporary biology. Efforts to chart
the genotype-phenotype map for quantitative traits using linkage and association study
designs have mainly focused on estimating additive effects of single loci (i.e., the main
effect of the polymorphic locus averaged over all other genotypes). However, quantitative
variation in phenotypes must result in part from multi-factorial genetic perturbation of
highly dynamic, interconnected and non-linear developmental, neural, transcriptional,
metabolic and biochemical networks1. Thus, epistasis (non-linear interactions between
segregating loci) is a biologically plausible feature of the genetic architecture of quantitative
traits. Deriving genetic interaction networks from epistatic interactions between loci will
improve our understanding of biological systems that give rise to variation in quantitative
traits2 as well as mechanisms underlying genetic homeostasis3,4 and speciation5,6.
Knowledge of interacting loci will improve predictions of response to natural selection in
the wild, artificial selection and inbreeding depression (and its converse, heterosis) in
agricultural animal and crop species, and individual disease risk in humans.

Mapping epistatic interactions is challenging experimentally, statistically and
computationally. The experimental challenge is the large sample sizes required to detect
significant interactions and sample the landscape of possible genetic interactions. The
statistical challenge is the severe penalty incurred for testing multiple hypotheses. The
computational challenge is the large numbers of tests that must be evaluated. Genetically
tractable model organisms afford the opportunity to utilize experimental designs that
incorporate both new mutations and segregating variants to detect epistasis, and many recent
studies in model organisms have highlighted the importance of epistasis in the genetic
architecture of quantitative traits. Here, I describe the quantitative genetics of epistasis and
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why the role of epistatic gene action has been controversial, review experimental methods to
detect epistasis in yeast, Drosophila melanogaster, mice, Arabidopsis thaliana and maize,
and summarize empirical results showing that epistasis is pervasive. I discuss the
implications of pervasive epistasis in model organisms for evolutionary models of the
maintenance of quantitative genetic variation and speciation, and animal and plant breeding.
Given that epistasis is pervasive in model organisms, it is likely to also be a hallmark of the
genetic architecture of human complex traits. I discuss how underlying epistatic gene action
can give rise to the small additive effects, missing heritability and lack of replication
typically observed in human genome wide association studies. I do not discuss statistical and
computational methods for assessing epistasis as these have been reviewed previously7,8.

Quantitative Genetics of Epistasis
In classical Mendelian genetics, epistasis refers to the masking of genotypic effects at one
locus by genotypes of another, as reflected by departure from expected Mendelian
segregation ratios in a di-hybrid cross2. In quantitative genetics, epistasis refers to any
statistical interaction between genotypes at two (or more) loci9-11. Epistasis can refer to a
modification of the additive and/or dominance effects of the interacting loci (Fig. 1a-b), and
for two diploid loci can be easily visualized by plotting the phenotypes of the nine different
genotypes (Fig. 1c-e). Epistatic interactions for quantitative traits fall into two categories: a
change of the magnitude of effects, in which the phenotype of one locus is enhanced or
suppressed by genotypes at the other locus (Fig. 1d); or a change of direction of effects (Fig.
1e). In the absence of epistasis the estimates of additive and dominance effects at each locus
are the same regardless of the genotype of the other locus (Fig. 1c). With epistasis, the effect
of one locus depends on the genotype at the interacting locus.

The role of epistasis in the genetic architecture of quantitative traits has been controversial
since early formulations of quantitative genetic theory12,13 and continues today7,14.
Differing perspectives regarding the importance of epistasis arise depending on whether one
focuses on epistatic interactions at the level of individual genotypes or at the level of
epistatic genetic variance in populations2,9. Epistatic interactions at the level of individual
genotypic values (variously called ‘genetical’, ‘biological’ or ‘physiological’ epistasis15) are
independent of allele frequencies at the interacting loci. In populations, the total genetic
variance is partitioned into orthogonal components attributable to additive, dominance and
epistatic variance, which depend on allele frequencies10,11.

Epistatic gene action (Fig. 2a, b) can have peculiar effects in populations because the effects
of one locus (the target locus) vary depending on the allele frequency of the interacting locus
(Fig. 2c, d). If the allele frequency of the interacting locus varies among populations, the
effect of the target locus can be significant in one population but not another, or even of the
opposite sign. Epistatically interacting loci generate substantial additive genetic variance
over much of the allele frequency spectrum, because of non-zero main (additive) effects
(Fig. 2e, f). Epistatic variance is maximal when both interacting loci are at intermediate
frequencies and is of much smaller magnitude than the additive genetic variance unless the
genotypic values effect at one locus are in opposite directions in the different genetic
backgrounds (Fig. 2g, h). Additive genetic variance therefore accounts in theory for most of
the total genetic variance for a wide range of allele frequencies in the presence of epistatic
gene action (Fig. 2i, j)10,11,14.

Most observed genetic variance for quantitative traits is additive. Additive genetic variance
could be ‘real’ if most loci affecting the trait have additive gene action, or ‘apparent’ from
non-zero main effects arising from epistatic gene action at many loci. This distinction is not
important if the goal is to estimate heritability, predict phenotype from genetic relationships
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among individuals16,17 or predict short term response to artificial or natural selection, which
depend on additive variance specific to the population of interest10,11. However, knowing
whether additive variance is an emergent property of underlying epistatic gene action
becomes critical if the goal is to functionally dissect the genotype-phenotype map, determine
genetic interaction networks, understand the effects of mutational perturbations on standing
variation, predict long-term responses to artificial and natural selection and understand the
consequences of genetic drift and inbreeding on quantitative traits.

Distinguishing between real and apparent additive genetic variance requires that we obtain
evidence for the existence of epistatic gene action, as well as estimate genotypic values at
causal, potentially epistatic, pairs (or more) of loci. Genetically tractable model organisms
enable analysis of epistatic interactions using: mutations generated in a common
homozygous genetic background; quantitative genetic analyses of inbred lines and outbred
populations; chromosome substitution, introgression and near-isogenic lines; and induced
mutations as foci for exploring interactions with segregating variants. The ability to
construct mapping populations from crosses of inbred lines where all allele frequencies are
0.5 is particularly powerful, as this maximizes epistatic variance and frequency of the rarer
two-locus genotypes.

Epistasis Between Mutations
Mutations that have been induced in the same homozygous genetic background are excellent
resources for estimating the magnitude and nature of di-genic epistatic interactions. Epistasis
occurs if the difference in phenotype of the double mutant cannot be predicted from the
combined effects of the single mutants. The double mutant phenotype can be more mutant
than expected (this is known as ‘synergistic’, ‘enhancing’, ‘aggravating, or ‘negative’
epistasis) or less mutant than expected (known as ‘antagonistic’, ‘suppressing’, ‘alleviating’
or ‘positive’ epistasisThe advantage of this method is that the interacting partners are
known, facilitating the construction of genetic interaction networks. A disadvantage is that it
does not easily scale beyond pairwise interactions and to large numbers of mutations, since a
comprehensive evaluation of pairwise interactions requires the generation of ~n2 genotypes,
which in practice prevents exploration of the entire interaction space.

Epistasis between small numbers of mutations
Studies utilizing limited numbers of random mutations or mutations affecting the same trait
show that epistasis is common. In Escherichia coli, 14/27 (52%) of pairs of random
mutations that were tested exhibited epistasis for fitness18. In Drosophila melanogaster,
35/128 (27%) of tests for epistasis among pairs random mutations had significant effects on
quantitative traits involved in intermediary metabolism. These epistatic effects were large
and occurred between mutations without significant main effects19. Diallel cross designs
among small numbers of P-element mutations that affect olfactory, locomotor and
aggressive behavior and lifespan in D. melanogaster revealed extensive epistasis and
defined new genetic interaction networks20-23. The interaction networks were influenced by
environmental conditions, sex and the presence or absence of an additional interacting
mutation21,22.

Genome-wide interaction screens
A few model systems are amenable to experimental analysis of genome wide genetic
interaction networks. Analysis of deletions for all 6,000 genes in Saccharomyces cerevisiae
revealed that only 20% of the genome is essential for survival, at least under optimal growth
conditions24. This observation attests to the robustness of biological networks to mutational
perturbation, and sets the stage for synthetic enhancement genetics in this species25. The
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deletion mutation collection and high-throughput methods for generating and selecting
double mutants and for measuring growth rate and quantifying fitness25 have facilitated
large scale genetic interaction screens in yeast26-30. Performing all ~18 million possible
pairwise interaction tests remains a practical impossibility even in this genetically tractable
model system. Therefore, the yeast global genetic network architecture was investigated
with a set of query mutations chosen to represent biological pathways of interest.
Interactions were examined between each of the query mutations and a larger number of
target mutations26,29,30 or for all possible pairwise combinations of the query mutations27,28.
Similar strategies have been adopted for systematic mapping of genetic interactions in
Caenorhabditis elegans31,32 and in D. melanogaster cell lines33 using RNA interference.
Larger scale studies26,27,29-31,33 using qualitative assays typically find that ~1-3% of
interactions have significant effects, while smaller scale studies28,32 that employ quantitative
assays identify a larger number of interactions (~13-35%). These studies have been
instrumental in determining the general properties of genetic interaction networks (Box 1).
The scale-free and small world properties of these networks imply that the major features of
network topology can be inferred by focusing on major hub genes and interactions among
the genes with which they interact.

Gene expression based screens
Mutations typically have pleiotropic effects on many phenotypes; therefore, focusing on
only one phenotype will not uncover the full spectrum of possible interactions. Genome-
wide analysis of differences of gene expression in the presence of single and double
mutations relative to the control can be used to place genes in an interaction network in the
absence of organismal-level phenotypes23,34-36. This approach is particularly powerful for
higher eukaryotes that have long generation intervals and that lack high throughput methods
for generating double mutants and for accurately measuring complex organismal
quantitative traits, but for which large collections of mutations are available37-41. In
Drosophila, single mutations have pleiotropic effects on hundreds of gene expression
traits22,23,42. The genes for which expression is altered in the mutant genetic background are
thus candidate genes for inclusion in a genetic interaction network affecting the organismal
phenotype associated with the focal mutation. A high proportion of such candidate genes
indeed exhibit epistasis with the focal mutation42. Thus, combining mutational perturbations
with gene expression is a powerful approach to iteratively reverse engineer networks. The
large numbers of candidate genes implicated by gene expression profiling indicates that the
interaction space is very large.

Epistasis Between QTLs
To what extent does the extensive epistasis implicated by analysis of induced mutations
translate to epistatic interactions in natural populations? The ability to construct inbred lines,
artificial selection lines and chromosome substitution lines, as well as to map quantitative
trait loci (QTLs) affecting complex traits by linkage and association, facilitates analysis of
epistasis between naturally occurring variants in model organisms.

Comparing broad and narrow sense heritability
Narrow sense heritability, h2, refers to the fraction of the phenotypic variance of a
quantitative trait due to additive genetic variance, whereas broad sense heritability, H2,
refers to the fraction of the phenotypic variance due to all components of genetic variance.
In model organisms that can be crossed as well as inbred, one can obtain unbiased estimates
of narrow sense heritability from half-sib family designs or from the response to directional
artificial selection. The genetic component of broad sense heritability that is estimated from
fully inbred lines is due to additive variance and additive-by-additive epistatic variance (Box
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2)10. Thus, epistatic variance can be inferred to contribute to the genetic architecture of traits
for which the broad sense heritability is much greater than expected from strictly additive
variance (Box 2). However, further gene mapping studies are necessary to identify the
individual loci affecting the traits.

QTL-QTL interactions
QTLs are mapped either by linkage to, or association with, molecular markers. In model
organisms, linkage mapping is typically conducted using line cross analysis. Linkage
mapping populations are established by crossing two lines that differ genetically for the trait
of interest, and generating backcross, F2 or advanced intercross individuals, or recombinant
inbred lines (RILs) (Fig. 3a)10,11. Association mapping utilizes samples of individuals (or
inbred lines) from a natural population. In both cases molecular marker genotypes and
quantitative trait phenotypes are obtained for members of the mapping population. Standard
statistical methods are used to determine whether there is a significant difference in
phenotype between marker genotypes, in which case the QTL affecting the trait is either
linked to, or in linkage disequilibrium (LD) with, the marker locus21. These tests are
performed for each marker in turn, and genomic regions for which the P-value of the test
passes an appropriate threshold that accounts for multiple tests correspond to the position of
the QTL. Association mapping can be performed for candidate genes or genome wide.
Compared to linkage mapping using a population of the same size, association mapping
captures more genetic diversity and has increased mapping precision, but is prone to
artifactual LD induced by population structure and has reduced power to detect QTLs that
have minor allele frequencies < 0.5 (Ref. 21).

Epistasis between QTLs is estimated by fitting a statistical model that includes the main
effects of each QTL and the effects of the QTL × QTL interaction term (Fig. 4). Utilizing
multi-factorial perturbations in epistasis screens has the advantage that many interactions
can be tested using genotypes and phenotypes that are determined for a relatively small
number of individuals. As a result, it is more efficient for exploring interaction space than is
laboriously constructing all possible pairwise combinations of mutant alleles. The power to
detect epistasis between QTLs in mapping populations derived from inbred lines is maximal,
because all polymorphic alleles have frequencies of 0.5. However, in small mapping
populations the number of lines that carry the rarer double-homozygous genotype classes is
small, which increases the variance in the mean value of the trait within each class; in
addition, other segregating QTLs can confound the estimate of epistasis for the tested pair of
loci. These factors, plus the severe multiple testing penalty for pairwise epistasis screens,
make it difficult to detect all but extremely strong interactions, particularly in association
mapping populations where allele frequencies are not balanced. Given these inherent biases
against detecting epistasis, most studies only evaluate additive QTL effects. However, when
epistasis is evaluated in linkage mapping populations, it is often found. Epistatic effects can
be as large as main effects, and can occur between QTLs that are not individually
significant.

A sampling of traits for which epistatic interactions have been detected in QTL mapping
experiments includes sporulation efficiency43,44 and gene expression traits45 in yeast;
thermal preference in C. elegans46; bristle number, wing shape, longevity, enzyme activity,
metabolic rate and flight velocity in D. melanogaster20,21; body weight and adiposity
traits47-50, litter size51 and serum insulin-like growth factor 152 in mice; growth rate53,54 in
chickens; growth rate55 and metabolites56,57 in Arabidopsis thaliana; and differences in
whole-plant and inflorescence architecture between maize and teosinte58. While these
studies demonstrate that epistasis cannot be ignored when describing the genetic architecture
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of complex traits, QTL mapping alone does not identify the causal interacting genes since
the QTL intervals contain many loci.

Model organisms allow further dissection of QTLs. First, one can construct near isogenic
lines (NILs), in which a region containing the QTL is introgressed into the isogenic
background of one of the parental lines, and successive generations of recombination are
used to whittle down the QTL to a small genomic interval (Fig. 3d). This approach was used
to confirm the epistatic effects of two QTLs with no individual main effects for C. elegans
thermal preference, but for which the interaction accounted for 50% of the total variance in
this behavior46. Similarly, genetic dissection of A. thaliana NILs for a region with no overall
effect on growth rate revealed two epistatically interacting QTLs that affect growth rate, for
one of which the effect on growth was in opposite directions in the different genetic
backgrounds55. Second, one can perform transformation and allelic replacement to prove
that variants are causal, as well as to engineer all possible combinations of causal variants to
investigate epistasis at nucleotide resolution. These approaches were used in D.
melanogaster to demonstrate that each of three domains in the Adh gene, as well as an
intragenic epistatic interaction, contributed to the difference in Adh protein levels between
the Fast and Slow electrophoretic alleles59, and in S. cerevisiae to reveal strong epistasis for
causal variants affecting sporulation efficiency43,44.

A powerful QTL mapping design is to introgress genomic regions from one strain into the
genetic background of another. This can be done at the level of entire chromosomes, to
create a panel of chromosome substitution strains60 (Fig. 3b), or for introgressions that tile
across the genome of the donor line (Fig. 3c), as for genome tagged mice61. A relatively
small number of introgression lines can be used to map QTLs with high precision. Epistasis
occurs if the sum of the effects of the introgressed fragments is significantly greater than, or
significantly less than, the mean difference in phenotype between the two parental strains. In
rodents, introgression designs detect more QTLs, and QTLs that have larger effects, than do
classical mapping populations for a wide variety of blood chemistry, bone and behavioral
traits. In addition, the sum of the effects of individual QTLs are several orders of magnitude
greater than the difference in phenotype between the parental strains60-62. Similar results are
found for aggressive behavior in D. melanogaster63. These results indicate that the
combined effects of individual introgressed regions in the genome of the donor line are less
than additive. Less-than-additive effects of introgressed QTLs have also been demonstrated
for several fruit quality traits in tomato64,65.

Epistatic interactions lead to differing main effects of each of the interacting loci for
different allele frequencies of the interacting locus (Fig. 2c, d). As such, they also lead to
lack of replication of estimated QTL effects in populations in which allele frequencies of
causal interacting loci differ66. In model organisms one can construct mapping populations
with different QTL allele frequencies to determine how often allelic effects vary; here, lack
of replication of QTL effects can identify potentially interacting loci. The D. melanogaster
Genetic Reference Panel (DGRP) is a collection of ~200 sequenced inbred lines derived
from a single population, which enables genome-wide association mapping for quantitative
traits using all polymorphic molecular variants67. Flyland is a large outbred advanced
intercross population derived from 40 DGRP lines68. In this population, QTLs can be
rapidly mapped by phenotyping large numbers of individuals and sequencing pools of
individuals from the phenotypic extremes of the distribution; QTLs have significant
differences in allele frequencies between the two pools of sequenced flies68,69. None of
QTLs detected for each of three quantitative traits were replicated in extreme QTL mapping
in the Flyland population. However, 50-60% of the QTLs detected for the three traits in
either population participated in at least one epistatic interaction, and these interactions
perturbed common, biologically plausible, and highly connected genetic networks68.

Mackay Page 6

Nat Rev Genet. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although these analyses point to pervasive epistasis, the challenge remains to determine
which of the statistically predicted interactions are biologically significant.

Epistasis Between Mutations and QTLs
Analysis of epistasis between induced mutations does not scale well to large numbers of
mutations, but has the advantage that the interacting partners are specified. Analysis of
epistasis between QTLs has the advantage that interactions among large numbers of
polymorphisms and genes can be evaluated, but due to the severe multiple testing penalty,
there will be large numbers of false positive associations among the top interactions for
which there is the highest level of statistical support. An alternative strategy is to carry out
one-dimensional screens that evaluate the phenotypic effects of a known mutation in
different genetic backgrounds. Although these designs have not been implemented on a
large scale, there are many studies indicating that this will be a very powerful approach.

Waddington3 noted the contrast between the large effects and phenotypic variability of
mutations and the apparent stability of wild type strains, despite exposure to naturally
occurring genetic and environmental perturbations. He coined the term ‘canalization’ to
refer to the buffering of natural variation against such perturbations. In modern parlance,
genetic canalization refers to suppressing (less than additive) epistatic interactions between
naturally segregating variants. To the extent that these interactions occur between different
genetic loci, one can probe the nature and magnitude of the naturally occurring epistatic
modifier loci by asking to what extent they modify the effects of a mutant allele.

One of the first experiments to demonstrate the occurrence of naturally segregating epistatic
modifiers of a mutation was Rendel’s introgression of a scute (sc) mutation into a wild
derived background70. D. melanogaster has four large scutellar bristles on the dorsal thorax
– this number is invariant in nature. Mutations at sc reduce this number to an average of one
or less. In a wild type genetic background segregating for sc and sc+ alleles, the number of
scutellar bristles increased to ~3 in sc mutants and to 5-6 in sc+ individuals following
artificial selection for increased bristle number. These results are consistent with selection of
epistatic modifiers of sc that were segregating in the initial population and that suppress the
mutant sc phenotype. However, the genetic backgrounds for this experiment were not well
defined. More recently, introgressions of mutant Ultrabithorax, Antennapedia, Sevenless
and scalloped alleles into different wild-derived D. melanogaster backgrounds have
demonstrated variation outside the invariant wild type phenotype for, respectively: haltere
size, shape and bristle number71,72; the antenna to leg transformation homeotic phenotype72;
eye roughness and size73; and wing morphology74. The epistatic effects ranged from
complete suppression to enhancement of the mutant phenotype.

A variant of the mutant introgression design is to cross the mutant allele to a sample of wild-
derived lines and evaluate phenotypes of F1 genotypes. The advantage of this method is that
it is easier to implement than constructing introgression lines; the disadvantage is that any
phenotypic variation cannot be attributed to allelic complementation (dominance effects) or
non-allelic complementation (epistasis) unless the experiment is conducted in a QTL
mapping population. In D. melanogaster, crosses of a dominant Epidermal Growth Factor
Receptor mutation to wild-derived lines gives a range of eye roughness phenotypes73,75.
Approximately 1-2% of F1 progeny from crosses of D. melanogaster strains carrying mutant
alleles of the heat shock protein gene Hsp90 to outbred strains had a wide variety of
morphological abnormalities, suggesting that Hsp90 normally suppresses alleles affecting
multiple phenotypes76. These results indicate that populations harbor a hidden reservoir of
genetic variation for invariant traits that is only revealed in the ‘decanalizing’ background of
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the mutation. Such variation has been called ‘potential variance’ or ‘cryptic genetic
variation’77.

Experimental designs to assess epistasis between mutations and QTLs can be adapted to
assess the effect of naturally segregating epistatic modifiers of mutations that affect traits
exhibiting quantitative phenotypic variation in natural populations. Here, the effects of both
the mutant and wild type alleles of the locus in question need to be assessed for the
quantitative trait phenotype in different genetic backgrounds, in an introgression or F1
design. Epistasis occurs if the additive effect of the mutation varies with genetic
background, detected as a significant statistical interaction between the mutant and
background genotypes. These designs have been utilized in D. melanogaster to demonstrate
epistasis for the extended lifespan phenotype that is caused by overexpression of a human
Superoxide dismutase transgene in motorneurones78, and between several mutations
affecting startle response79 (Fig. 5), olfactory behavior and sleep traits80 in different DGRP
line backgrounds. Similarly, there is epistasis between a null myostatin allele and genetic
background for growth traits in mice81; between the disease resistance mutation Rp1-D21
and genetic background for the hypersensitive response in maize82; and for an RNAi knock
down Hsp90 allele and genetic background for morphological and life history traits in A.
thaliana83.

Only a few studies to date have analyzed QTL mapping populations to map, by linkage or
association, loci that interact with focal mutations 72,74,75,81-83. Some studies have used
candidate gene association analyses to test whether naturally occurring alleles at the mutant
locus75 or naturally occurring variants at a known interacting locus74 interacted with the
mutant allele. Others performed unbiased genome scans in a QTL mapping
population72,81-83, typically uncovering unlinked interacting loci without significant main
effects.

Implications of Pervasive Epistasis
The studies reviewed here indicate that epistatic gene action is a common feature of the
genetic architecture of quantitative traits in model organisms. By extension, the same is
likely to be true for quantitative traits in other organisms where gene-gene interactions are
more difficult to detect, including humans. The epistatic interactions that have been detected
define previously uncharacterized, highly interconnected genetic networks that are enriched
for biologically plausible gene ontology categories, metabolic and cellular pathways.
Analysis of epistasis reveals that much quantitative genetic variation is hidden and not
apparent from analysis of main effects of causal variants, and that additivity is an emergent
property of underlying epistatic networks. Furthermore, several types of observation suggest
that natural populations have evolved suppressing epistatic interactions as homeostatic
(canalizing) mechanisms. These observations include: less-than-additive interactions
between QTLs; cryptic genetic variation for invariant phenotypes in natural populations that
can only be observed in the presence of a decanalizing mutation; and naturally segregating
variation that largely suppresses the effects of induced mutations for quantitative traits.

This realization is paradigm-shifting. Rather than perceiving phenotypic variation for
quantitative traits in natural populations as highly variable, it may be more accurate to
wonder why there is not more variation in organismal phenotypes, given the large amount of
segregating molecular genetic polymorphism. Genome wide association studies in model
organisms67 as well as humans84 typically find an inverse relationship between minor allele
frequency and additive effect, such that the rarer alleles are associated with larger effects
than common alleles. Statistically, rare alleles must have larger effects than common alleles
to be detected in a mapping population of the same size; the puzzle is why so few common
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alleles of large effect are found segregating within natural populations. One possible
explanation is that rare alleles have large effects because they are relatively new mutations,
and epistatic modifiers that ameliorate their effects have not yet occurred in the population.
Common alleles are presumably older, and could achieve an intermediate frequency due to a
modifier mutation at another locus that suppresses the effect of the polymorphism.

On the other hand, QTLs detected by linkage mapping in populations derived from crosses
of inbred lines typically have moderately large effects20,21. Possibly, these loci were not
common in the populations from which the parental inbred lines were derived. Alternatively,
the lines which survived inbreeding could be enriched for compatible epistatic interactions
that were decanalized by crossing to a different genetic background. In this case, one would
predict that adding additional parental lines to linkage mapping populations might
incorporate additional canalizing alleles, such that more QTLs, with smaller effects, will be
found compared to populations derived from crosses of two inbred lines. This prediction
appears to be borne out in an outbred advanced intercross population derived from eight
inbred mouse strains85, as well as in the maize nested association mapping population,
consisting of 200 RILs from each of 25 crosses between diverse inbred lines and a single
common parental line86.

Pervasive epistasis has consequences for plant and animal breeding, evolutionary biology,
and human genetics. Applied breeding programs rely on artificial selection within
populations as well as transfer of exotic genetic material to elite lines to improve
quantitative traits of agronomic importance. In the presence of epistasis, the genetic
architecture of response to artificial selection from the same base population could differ
among replicate lines as well as within the same line over time, due to allele frequency drift
and changes in frequency of causal alleles due to selection. Loci with beneficial effects in
one genetic background will not have the same effects when introgressed into another
background, unless interacting loci are identified and co-introgressed. Many modern
breeding programs use additive models based on dense molecular markers and estimates of
trait phenotypes from a reference population to predict breeding values of selection
candidates based on genotype information only16,17; in the presence of epistasis genomic
prediction may be poor if the frequency of causal alleles varies between the reference and
test populations.

Two major unresolved questions in evolutionary biology concern the mechanisms
maintaining quantitative variation in natural populations, and the causes of adaptation and
speciation. The former puzzle10,87,88 arises because heritabilities of quantitative traits are
appreciable in natural populations such that the magnitudes of genetic and environmental
variation are approximately equal; yet most quantitative traits appear to be under strong
stabilizing selection89, which reduces genetic variation. Direct estimates of mutational
variance for quantitative traits in many model organisms are ~0.001 of the environmental
variance90. Most theoretical models that are used to assess the possibility that quantitative
genetic variation is maintained by a balance between elimination of variation by stabilizing
selection and re-introduction by mutation cannot simultaneously account for the empirical
estimates89, 91. Estimates of mutational variance are too low to generate the observed levels
of genetic variance under strong selection. Suppressing epistasis between QTLs or mutations
could cause overestimates of the strength of stabilizing selection and underestimates of the
magnitude of mutational variation, respectively, necessitating a revision of the inference that
mutation-selection balance does not account for much segregating variation for traits under
stabilizing selection79. Furthermore, inbreeding and genetic drift cause variation in allele
frequencies from the parental population. With epistatic gene action, this can result in the
‘conversion’ of epistatic variance to additive variance, potentially enabling rapid adaptation
to new environments92-94. Epistasis is central to Wright’s13 models of the genetic basis of
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evolution and founder effect speciation models92. With epistasis, the genetic architecture of
response to natural selection will be different in different populations, potentially increasing
the likelihood of evolution of Dobzhansky-Muller incompatibilities5,6 and consequent
speciation events.

Epistasis is one of several non-mutually exclusive explanations for small effects, missing
heritability, and lack of replication of top trait-associated variants in different populations in
human GWA studies84. First, with suppressing epistasis, additive effects of common
interacting loci will be small. Second, estimates of narrow sense heritability in humans are
obtained from twice the difference in the correlation of monozygotic and dizygotic twins10,
and are biased upward in the presence of dominance and epistasis. Thus, suppressing
epistasis could potentially account for the high levels of heritability and small amounts of
additive genetic variation that have been estimated from mapped loci in human populations.
Third, estimates of additive effects of causal alleles will differ between populations with
different allele frequencies but the same underlying epistatic genetic architecture66,68.
Additive genomic prediction methods utilizing all variants explain a much higher proportion
of phenotypic variance in human GWA studies than obtained by summing the variance
explained from individual markers exceeding the genome-wide significance threshold95, but
the prediction accuracy of these methods is low in independent populations96,97. Genomic
prediction methods that allow for non-additive effects98.99 are likely to increase the accuracy
of individual risk prediction, but understanding the biology of human quantitative traits and
complex diseases will require knowledge of the underlying loci.

Conclusions and Future Prospects
Mapping epistatic interactions is statistically and experimentally challenging. Much progress
in understanding and predicting genetic interaction networks affecting quantitative traits has
been made by taking advantage of the unique resources and experimental designs that are
available for model organisms. Epistasis is common and can cause cryptic genetic variation
for quantitative traits in natural populations; however, mapping the causal interacting
variants is in its infancy. Future advances will be made by employing these experimental
designs on a much larger scale, taking advantage of falling costs of sequencing individual
genomes as well as prospects for high throughput and accurate measurements of quantitative
trait phenotypes21. Molecular variants, singly and in combination, perturb transcriptional,
metabolic and protein interaction networks, which in turn causally affect organismal
phenotypes21. However, systems genetic models to date only consider additive effects of
variants on transcripts and traits21. In the future, we must assess the effects of pairwise and
higher order epistatic interactions between polymorphic DNA variants on molecular
interaction networks, and in turn evaluate their effects on organismal phenotypes in order to
understand the mechanistic basis of epistasis. Only then will we be able to go beyond
describing the phenomenon of epistasis to predicting and testing its consequences for
genetic systems.
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GLOSSARY

Heterosis Also known as ‘hybrid vigour’, heterosis is the phenomenon
whereby the mean value of a quantitative trait in the F1 progeny
of two inbred lines exceeds (in the direction of increased fitness)
the mean value of the parental lines (‘mid-parent heterosis’) or the
mean value of the best parent (‘high parent heterosis’).

Di-hybrid cross A cross between parental lines that are fixed for alternative alleles
at two unlinked loci (e.g., A1A1B2B2 × A2A2B1B1, where A and
B denote the loci and the subscripts are the alleles) in which nine
genotypes segregate in the F2 generation.
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Dominance effect The difference between the genotypic value of the heterozygous
genotype from the average of the two homozygous genotypes at a
locus affecting a quantitative trait.

Standing variation Allelic variation that is currently segregating within a population,
as opposed to alleles that appear as the result of new mutation
events.

Main effects Also known as marginal effects, these are the effects of a variable
averaged over all other variables.

Diallel cross A class of experimental designs that are used to estimate additive
and non-additive variance components for a quantitative trait from
all possible crosses among a population of inbred lines. Full diallel
designs include reciprocal crosses, whereas half-diallel designs do
not; parental lines can be included or excluded in either case.

Synthetic
enhancement

A type of epistatic interaction whereby the phenotype of a double
mutant is more severe than predicted from the additive effects of
the single mutants.

Minor allele
frequency

The frequency of the less common allele at a bi-allelic locus.

Multiple testing
penalty

The downward adjustment of the significance threshold for
individual statistical tests required when multiple hypothesis tests
are conducted on a single data set; for n independent tests, the
Bonferroni adjusted 5% significance threshold is 0.05/n.

Introgression The substitution of a genomic region from one strain into that of
another, typically by repeated backcrosses.

Founder effect
speciation models

A class of models for the evolution of reproductive isolation that
is based on changes in selection pressures and allele frequencies
of epistatically interacting loci, which result from the
establishment of a new population in a new environment from a
small number of individuals.

Dobzhansky-Muller
incompatibilities

Substitutions that occur during divergence of two lineages that are
neutral in the respective genetic backgrounds but which cause a
reduction in fertility and/or viability in hybrids between the two
lineages.

Missing heritability The phenomenon whereby the fraction of total phenotypic
variance explained by all individually significant loci in human
genome wide association analyses for common diseases and
quantitative traits is typically much less than the heritability
estimated from relationships among relatives.

Genomic prediction
methods

Models, which are derived from a discovery sample that consists
of individuals with measured phenotypes and genome wide
marker data, that are used to predict individual phenotypes in an
independent sample from the same population using genome wide
marker data only.
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Box 1

Properties of genetic interaction networks

Genetic interaction networks in budding yeast25-30, C. elegans31,32 and D.
melanogaster33 share common properties that are likely to be generalizable to genetic
interaction networks in other species.

1. The fitness of the double mutant tends to be lower than expected when genes act
in separate but compensatory pathways, and higher than expected if the genes
act in the same pathway.

2. The distribution of the number of interactions per gene (connectivity) follows a
power law distribution, such that many genes have no or few interactions, while
a few genes have many interactions. Genes with many interacting partners are
hubs in the interaction network.

3. Genetic interaction networks are ‘small world’ networks, such that the shortest
path between a pair of genes is small, resulting in dense local neighborhoods of
interacting genes that interact with each other.

4. Genetic interactions occur among functionally related genes that belong to the
same pathway or biological process. The ‘guilt by association’ principle can
thus be used to infer the function of a computationally predicted gene from the
function of the genes with which it genetically interacts.

5. Network hub genes have the following characteristic compared to genes with
fewer interactions: they are more important for fitness; they are more
pleiotropic; their mRNAs are expressed at higher levels;they are more sensitive
to environmental perturbations; and they are more evolutionarily conserved.

6. Genetic interaction networks are largely decoupled from protein-protein
interaction networks.

7. Although properties of genetic network architecture are conserved across
species, the network connectivities are not conserved.
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Box 2

Evidence for epistasis from realized and broad sense heritability

The response to a single generation of artificial selection for a quantitative trait is given
by the breeder’s equation, R = h2S. R is the difference in mean between the parental and
offspring generation. h2 is the realized heritability, (VA + ½VAA)/VP, where VA is the
additive and VAA is the additive by additive genetic variance (ignoring higher order
epistatic interactions for simplicity), and VP is the phenotypic variance (VA + VAA + VE,
where VE is the environmental variance). S, the selection differential, is the difference
between the mean of the parental population and the mean of the selected group10. The
realized heritability is thus h2 = R/S. If selection is conducted over several generations,
the realized heritability can be estimated from the regression of the cumulated response
(ΣR) on the cumulated selection differential (ΣS); that is, h2 = ΣR/ΣS. In contrast, broad
sense heritabilities determined from variation among completely homozygous inbred
lines (ignoring higher order additive by additive epistatic interactions) are H2 = (2VA +
4VAA)/VP, where VP, the phenotypic variance, is 2VA + 4VAA + VE (Ref. 100). Note that
in this scenario there is no dominance variance and no epistatic interaction variance terms
involving dominance, since there are no heterozygotes. If all variation is additive (VAA =
0), then the broad sense heritability (H2) among inbred lines is related to the realized
heritability from artificial selection from the outbred populations from which the inbred
lines were derived: H2 = 2h2/(1 + h2) (Ref. 101). Realized and broad sense heritabilities
for D. melanogaster behavioral traits are given in the table (values come from references
102-106). In all cases broad sense heritabilities are greater than expected from strictly
additive variance, implying that epistatic variance contributes to the genetic architecture
of these traits.

Observed Expected

Trait h2 H2 H2 = 2h2/(1+h2)

Copulation latency 0.07 0.25 0.13

Startle response 0.16 0.58 0.28

Aggressive behavior 0.09 0.78 0.17

Ethanol knock-down time 0.08 0.24 0.15
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KEY POINTS

• A major challenge of contemporary biology is to understand how naturally
occurring genetic variation causes phenotypic variation in quantitative traits.
Despite the biological plausibility that genetic variation affects non-linear
networks at multiple levels of biological organization, most efforts to explain
the relationship between genetic and phenotypic variation concentrate on
additive effects of single loci.

• Mapping gene-gene interactions (epistasis) is challenging experimentally,
statistically and computationally due to the large number of interactions to be
evaluated (of the order of the square of the number of single locus tests for
pairwise interactions).

• Epistatic interactions for quantitative traits result in either a change of the
magnitude or direction of allelic effects at one locus, depending on the genotype
at the interacting locus. With epistasis, the additive (main) effect of a locus
changes with the allele frequency of the interacting locus, such that estimates of
effects at a single interacting locus will differ between populations with
different allele frequencies.

• Epistasis generates largely additive variance for quantitative traits; therefore, the
observation that most genetic variance for quantitative traits is additive is not
inconsistent with underlying epistatic genetic architecture. Experimental designs
that are only possible in model organisms enable the exploration of the gene-
gene interaction space, and the results of these analyses indicate that epistasis is
pervasive.

• Genetic interaction networks are derived by assessing quantitative trait
phenotypes of wild type, single mutant and double mutant genotypes. The
networks exhibit scale-free and small world properties, such that the major
features of network topology may be inferred by focusing on major hub genes
and interactions among the genes with which they interact. Combining
genomics with mutant-interaction screens may aid in identifying network hubs.

• Leveraging multi-factorial perturbations in QTL mapping populations is less
laborious than constructing all pairwise combinations of mutant alleles, and the
ability to construct chromosome substitution lines, introgression lines and near
isogenic lines in model organisms maximizes power to detect interactions.
Epistasis is commonly observed, even between loci without significant main
effects, but there are only a few cases where the actual interacting variants have
been identified.

• Natural populations harbor hidden reservoirs of cryptic genetic variation that
can be revealed by introducing mutations into wild-derived backgrounds. When
this approach is implemented in a QTL mapping population, it is a powerful
experimental design for identifying naturally occurring variants that enhance or
suppress the mutant phenotype.

• Observations of cryptic genetic variation and less-than-additive epistatic
interactions between QTLs suggest that natural populations have evolved
suppressing epistatic interactions as homeostatic (canalizing) mechanisms for
quantitative traits. Pervasive epistasis has consequences for plant and animal
breeding, evolutionary biology, and human genetics.
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• In the future, assessment of the pleiotropic effects of genetic interactions on
transcriptional, metabolic and protein interaction networks will provide insights
into the mechanistic basis of epistasis for organismal phenotypes.

Mackay Page 21

Nat Rev Genet. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. Two-locus genotypic effects
(a) Genotypic values for loci X and Y, each with two alleles (X1, X2, Y1, Y2). The additive
effect (a) of each locus is one half the difference in mean phenotype between the two
homozygous genotypes. The dominance effect (d) is the difference between the mean
phenotype of heterozygous individuals and the average phenotype of the homozygous
genotypes10. d = 0 indicates additive gene action; d ≠ 0 denotes departures from additivity
due to dominance. (b) Genotypic values for two-locus genotypes. The first two terms for
each genotype denote the additive combination of single locus additive and dominance
effects. With epistasis additional terms reflecting additive by additive (aaXY), additive by
dominance (adXY, daXY) and dominance by dominance (ddXY) epistasis contribute to the
genotype value. (c-d) Graphical representations of genotypic effects at two biallelic loci. (c)
Additive gene action at locus X, partial dominance at locus Y, and no epistasis between X
and Y. (d) Epistasis where the additive effect of locus Y is much greater in the X1X1 than
the X2X2 genetic background. (e) Epistasis where the additive effects of locus X are
opposite in the Y1Y1 and Y2Y2 genetic backgrounds.
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Fig. 2. Quantitative genetics of additive by additive interactions
The four double homozygote genotypes at two hypothetical bi-allelic loci (X and Y) are
depicted. (a) Genotypic values for an epistatic model (Model 1) in which the effect of the X
locus is greater in the Y1Y1 genetic background (blue line) than the Y2Y2 genetic
background (red line). (b) Genotypic values for an epistatic model (Model 2) in which the
effect of the X locus is of similar magnitude but in the opposite direction in the Y1Y1
genetic background (blue line) than the Y2Y2 genetic background (red line). (c, d) The
additive effect of the X locus depends on the frequency at the Y locus for epistatic Models 1
and 2, respectively. (e, f) Additive genetic variance (VA); (g, h) Additive by additive genetic
variance (VAA); and (i, j) the ratio of additive genetic variance to the total genetic variance
(VA/(VA + VAA)) for epistatic Models 1 and 2, respectively.
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Fig. 3. Genotypes for mapping QTLs between two genetically divergent lines
(a) Parental lines (P1 and P2) are crossed to produce an F1 generation. Common segregating
generations used for QTL mapping are backcrosses of the F1 to either parental line (BC1,
BC2), F2 derived from mating F1 individuals, and recombinant inbred lines (RILs) derived
by inbreeding F2 families. (b-d) Experimental designs based on introgression. (b)
Chromosome substitution lines, (c) introgression lines, (d) near-isogenic lines. Three
chromosomes (C1 – C3) are depicted.
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Fig. 4. Two dimensional search for epistatic interactions
Data from an experiment mapping QTLs affecting Drosophila lifespan in an RIL population
are depicted109. The x-axis and y-axis depict the marker loci. Two main effect QTLs are
indicated at cytological positions 46C-49D and at 50D (indicated by red shading on the x
and y axes). The body of the graph depicts the P-values of the QTL × QTL interaction terms.
Main effect QTLs do not interact with each other, but do interact with QTLs without
significant main effects. QTLs without significant main effects show significant interaction
effects. Red: P < 0.0001; orange: 0.0001 ≤ P < 0.001; yellow: 0.001 ≤ P < 0.01; green: 0.01
≤ P < 0.05; blue: P ≥ 0.05.
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Fig. 5. Epistasis between naturally occurring variation and mutations in D. melanogaster
(a) Graphical representation of genotypes of i homozygous Drosophila Genetic Reference
Panel (DGRP) lines, in which C1, C2 and C3 represent the three major chromosomes. Co-
isogenic C2 chromosomes containing a wild type allele (DGRP_i wt) or a mutant allele (red
star, DGRP_i M) of a focal gene affecting a quantitative trait have been introgressed into
each DGRP line. The quantitative trait is measured for all pairs of wt and M DGRP
introgression lines. The difference in phenotype between the wild type and mutant allele in
the background on which the mutant was generated is 2a. If there are only additive effects
on the phenotype, the expectation is that the effect of the mutation will be the same in each
DGRP line background and the expected phenotype of the ith DGRP line with the mutant
C2 allele is DGRP_i wt + 2a. If not, the difference between the expected and observed
phenotypes is due to epistasis. (b) Estimates of epistatic interactions for ten mutations
affecting startle response in 20 DGRP backgrounds. The interaction effects vary among
mutations and DGRP lines, and are large and predominantly positive; i.e., naturally
occurring variation suppresses the effects of the mutations. (Data from Ref. 79)
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