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IntroductIon
Carrier screening is performed either preconception or dur-
ing pregnancy to determine a couple’s risk of having a child 
with a recessive genetic disorder. The number of individuals 
who could benefit from such screening is substantial because 
roughly 2 million women give birth to their first child each year 
in the United States1. The disorders for which testing is recom-
mended vary based on a number of different patient-specific 
factors. For instance, the American Congress of Obstetricians 
and Gynecologists recommends that screening for cystic fibro-
sis be offered to all women of reproductive age2 and that testing 
be performed for additional disorders if indicated by family his-
tory, partner’s carrier status, or ethnicity.3–5

Today, carrier screening is typically performed using 
focused genotyping technologies that are designed to inter-
rogate specific mutations within a gene of interest. However, 
because of cost and complexity, these tests often do not 
include all known disease-causing mutations. By contrast, 
next-generation DNA sequencing (NGS) can comprehen-
sively genotype a set of genes in a cost-efficient manner and is 
therefore poised to supplant current technologies for routine, 
high-volume carrier screening.

For NGS to be used for carrier screening in a clinical setting, it 
must satisfy at least three requirements. First, analytical accuracy 

must be both high and well characterized within the clinically 
relevant genes or regions. Previous reports have demonstrated a 
broad range of accuracy values, and in some cases it is unclear 
whether these values hold within the relevant regions of the 
genome.6–9 In addition, accuracy for insertions and deletions is 
generally either substantially lower or uncharacterized, and mea-
sured to lower precision. Second, the NGS workflow employed 
should yield data sufficient to cover the vast majority of targeted 
bases at a depth sufficient to make high-quality genotype calls 
(both variant and nonvariant). It has been noted, however, that 
the percentage of bases callable at a given depth varies widely 
with both the sample preparation workflow and the total amount 
of sequencing.8,10 Finally, the workflow must be highly robust and 
reproducible, which can often be achieved through automation. 
However, typical NGS sample preparation workflows are not 
amenable to high-throughput automation because of rate-limit-
ing mechanical shearing, reaction purifications, size selections, 
and kitted reagent costs (typically $50–200 per sample).

Here, we describe an integrated NGS workflow that meets 
these requirements for carrier screening. The workflow com-
bines automated, optimized molecular inversion probe target 
capture with molecular barcoding to maximize the sample 
throughput of an NGS machine and employs a novel read 
assembly–based alignment method that enables accurate 
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identification of both substitution and insertion/ deletion lesions 
(Figure 1). We apply this workflow to sequence the protein-
coding regions of 15 genes in which loss-of-function mutations 
cause recessive Mendelian disorders often included as part of 

routine carrier screening, and demonstrate through realistic 
simulation and comparison with Sanger sequencing data that 
our approach achieves high accuracies and detects the vast 
majority of disease-causing mutations.
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MAterIALs And MetHods
Molecular inversion probe design
Molecular inversion probes11,12 were designed to capture 
the coding regions and certain well-characterized noncod-
ing regions of 15 genes (see Supplementary Tables S1 and 
S2 online). The 5′ and 3′ targeting arms (extension and liga-
tion, respectively) comprised a total of 40 nucleotides and 
were designed to flank 130-bp target regions. Further details 
can be found in the Supplementary Materials and Methods 
online.

target capture, barcoding, and nGs
Genomic DNA was purchased from the Coriell Cell 
Repositories (Camden, NJ) or isolated from whole blood by 
the Gentra Puregene method (Qiagen, Gaithersburg, MD) 
concluding with an overnight incubation at 65 °C. All samples 
were considered “IRB Exempt” by Liberty IRB, our indepen-
dent institutional review board. Genomic DNA was subjected 
to multiplex target capture using molecular inversion probes. 
Captured product was subjected to PCR to attach molecular 
barcodes in a manner that allowed sequencing from either 
end of the captured region.12 The PCR product was pooled 
and sequenced on the Illumina HiSeq 2000. Further details 
can be found in the Supplementary Materials and Methods 
online.

nGs data analysis with alignment-only algorithm
Raw .bcl files were converted to qseq files using bclCon-
verter (Illumina). Fastq files were generated by “debarcoding” 
genomic reads using the associated barcode reads; reads for 
which barcodes yielded no exact match to an expected bar-
code, or contained one or more low-quality base calls, were 
discarded. The remaining reads were aligned to hg18 on a 
per-sample basis using Burrows-Wheeler Aligner version 
0.5.7 for short alignments,13 and genotype calls were made 
using Genome Analysis Toolkit version 1.0.4168 after base-
quality score recalibration, realignment (with GATK version 
1.0.5083),14 and targeting arm removal (to prevent synthetic, 
reference-designed molecular inversion probe arm sequence 
from interfering with genotype calling). High-confidence 
genotype calls were defined as having depth ≥50 and strand 
bias score ≤0. Clinical significance of variant calls was deter-
mined by matching against a VCF-formatted database of 
disease-causing mutations curated from the literature, with 
equivalent insertion/deletion regions calculated as previously 
described.15

nGs data analysis with Genotyping by Assembly-templated 
Alignment algorithm
Debarcoded fastq files were obtained as described above and 
partitioned by capture region (exon) using the target arm 
sequence as a unique key. Reads were assembled in paral-
lel by exon using SSAKE version 3.7 with parameters “-m 30 
-o 15”.16 The resulting contiguous sequences (contigs) were 
aligned to hg18 using BWA version 0.5.7 for long alignments17 
with parameter “-r 1”. Short-read alignment was performed as 
described above, except that sample contigs (rather than hg18) 
were used as the input reference sequence. Software was devel-
oped in Java to accurately transfer coordinate and variant data 
(gaps) from local sample space to global reference space for 
every BAM-formatted alignment. Genotyping and base- quality 
recalibration were performed on the coordinate-translated 
BAM files using GATK version 1.6.5.

sanger sequencing
PCR was carried out with the genomic DNA described in the 
“Target capture, barcoding, and NGS” section using a modified 
version of the protocol from Zimmerman et al.18 and using PCR 
primers from Jones et al.19 with M13 tails removed (regions in 
Supplementary Table S3 online). More information can be 
found in the Supplementary Materials and Methods online.

sanger data analysis and cross-validation to nGs
Mutation Surveyor software (MS; Softgenetics, State College, 
PA) version 4.0.5 was used in batch-mode with default param-
eters to align ab1 files to target reference sequence and make 
genotype calls. Positions at which MS base calls did not match 
in the forward and reverse directions were removed from con-
sideration. All high-quality NGS genotype calls (both reference 
and non- reference) within 10 bp (inclusive) of target exons 
were subjected to cross- validation against VCF-converted MS 
variant calls and orthogonal confirmation, if necessary (see 
Supplementary Figure S1 online). A detailed description of 
cross-validation to NGS is provided in the Supplementary 
Materials and Methods online.

Assessment of detectability of clinical mutations by 
simulation
A total of 145 Coriell samples were sequenced and analyzed 
by Genotyping by Assembly-Templated Alignment (GATA, 
described above). Specific fields (base sequence and quali-
ties) within aligned reads (BAM records) from the Illumina 
sequencer were manipulated in silico to introduce the clinically 

Figure 1 next-generation dnA sequencing workflow. Genomic DNA samples are input to a molecular inversion probe capture reaction. Each target 
(depicted by blue and orange regions) is captured by multiple probes that anneal to nonoverlapping genomic intervals. PCR is performed using primers 
containing patient-specific barcodes, yielding barcode libraries (turquoise and purple). Equal volumes of the libraries are pooled and enter the Illumina 
HiSeq high-throughput sequencing workflow. Following sequencing, reads enter either the alignment only (AO, left) or Genotyping by Assembly-Templated 
Alignment (GATA, right) analysis pipeline. AO first partitions reads by sample molecular barcode, then in parallel for all samples performs short-read alignment, 
base-quality recalibration, realignment around putative indels, and genotyping. GATA partitions reads first by sample molecular barcode, then by target. Reads 
are assembled into contiguous sequences (contigs) that are then aligned to the reference genome. Raw reads are then aligned to the contigs, and raw-read 
mapping and variant information relative to the reference are determined using reference-contig and read-contig alignments. Finally, base-quality score 
recalibration and genotyping are performed on the mapped, raw reads. gDNA, genomic DNA.
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relevant DNA lesion pattern within the context of empirical 
sequencing errors and sample-specific proximal variants. To 
simulate heterozygous carriers, input reads covering the muta-
tion were chosen at random for sequence manipulation with an 
average probability of 0.5. All reads, whether manipulated or 
not, were output in fastq format for subsequent GATA analysis 
as described. This process was repeated for each of 81 clinically 
significant mutations whereupon genotyped (observed) alleles 
were cross-referenced back to the original simulated (expected) 
allele. Samples for which the allele was already present were 
excluded from simulation (e.g., many Coriell samples in the set 
contained the common CFTR F508del mutation). Mutations 
with detection rates <100% between the expected and observed 
alleles were classified as undetectable by NGS.

determining clinical significance of variant allele calls
Each NGS-detected variant allele is annotated for functional 
(clinical) significance by determining its relative position within 
the corresponding consensus coding sequence. Truncating muta-
tions were considered clinically significant lesions for the pur-
poses of the work presented here. A more detailed description 
of how clinical significance of variant allele calls was determined 
can be found in the Supplementary Materials and Methods 
online.

resuLts
completeness and reproducibility
We performed automated target capture and molecular bar-
coding followed by NGS on a set of 194 samples derived from 
immortalized cell lines (55 containing specific disease-causing 
mutations and 139 chosen to represent ethnic diversity, see 
Supplementary Figure S2 online) and 59 samples derived from 
whole blood (see Supplementary Table S4 online). We targeted 
all exons including 10 nt of flanking intronic sequence, plus 
additional intronic regions known to contain disease-causing 
mutations in 15 genes causative of 14 recessive Mendelian dis-
eases (see Supplementary Table S1 online) using tiling molec-
ular inversion probes (see Materials and Methods section). 
A total of 25,907,612,945 base pairs (bp) of de-multiplexed 
sequence were generated, corresponding to an average per-base 
coverage per sample of 2,399× (minimum: 891×; maximum: 
4,000×), see Supplementary Table S4 online. Of the 42,858 
bases targeted for capture in each sample, we made high-confi-
dence genotype calls (both reference and non-reference) at an 
average of 97.3% (minimum: 92.2%; maximum: 99.8%) for cell 
line-derived DNA and 99.9% (minimum: 99.8%; maximum: 
99.9%) for blood-derived DNA (see Supplementary Table S2 
online).

The DNA extraction protocol used for our blood samples 
concluded with an overnight incubation at 65 °C in a Tris-based 
buffer. Subsequent experiments showed that this step reduced 
the mean size of the purified DNA (see Supplementary Figure 
S3 online); shearing was likely caused by acid hydrolysis dur-
ing a temperature-induced pH shift of the buffer.20 We hypoth-
esize that lower-molecular-mass genomic DNA is more readily 

denatured and therefore more accessible to molecular inversion 
probes, resulting in improved capture performance. Consistent 
with this hypothesis, we find that reducing the overnight incu-
bation temperature to 25 °C significantly reduces the percent-
age of target bases that yield high-confidence genotype calls 
(see Supplementary Figure S3 online). To assess reproduc-
ibility, a subset of 126 samples derived from cell-line DNA (see 
Supplementary Table S4 online) was processed twice, each 
time by a different operator on different liquid-handling equip-
ment. At least 92% of bases were called at ≥50× coverage in 
all samples, with high agreement between replicates (Pearson 
correlation coefficient 0.868). Of 5,177,206 total genotype 
calls compared, 17 were discordant, for a concordance rate of 
0.999997. These occurred at only five unique genomic posi-
tions, consistent with systematic sequencing error as the pri-
mary cause.

sanger concordance
To assess the overall accuracy of our NGS genotype calls 
(reference and non-reference) on a set of 194 samples (see 
Supplementary Table S4 online), we compared genotype 
calls for the target region from the NGS pipeline with those 
generated by automated analysis (Mutation Surveyor) of 
bidirectional Sanger sequence of PCR amplicons. Within a 
total of 6,997,906 bp of sequence called by both methods, we 
observed 3,973 concordant and 1,220 discordant single-nucle-
otide variant (SNV) genotype calls. We performed a manual 
review of discrepant calls and ultimately determined that nine 
high-quality SNV calls were true discrepancies, correspond-
ing to eight NGS false positives and one NGS false negative 
(Table  1, see Supplementary Note 1 online). We observed 
a total of 4,000 true-positive SNV calls and 6,992,746 true-
negative SNV calls (Table 1). The NGS SNV false-positive 
rate was 1.14 × 10−6 (95% Wilson binomial confidence interval 

table 1 Comparison of NGS genotype calls (alignment-
only algorithm) to Sanger-derived genotype calls

tP FP Fn tn

SNV
Heterozygous

dbSNP 2,495 0 1

6,992,746

Not dbSNP 247 8 0

Homozygous
dbSNP 1,245 0 0

Not dbSNP 13 0 0

Unique 231 3 1

Indel Total 61 396 3

6,992,358Unique 17 27 2

Known 31 – 0

FN, false-negative calls (reference NGS, non-reference Sanger); FP, false-positive 
calls (non-reference NGS, reference Sanger); Indel, insertion and deletion; NGS, 
next-generation DNA sequencing; SNV, single-nucleotide variant; TN, true-
negative calls (reference NGS, reference Sanger); TP, true-positive calls (non-
reference NGS, non-reference Sanger).

Sanger genotype calls were considered truth. dbSNP membership was determined 
relative to version 129. Indel calls were considered unique if they differed by 
sequence pattern or equivalence region. Known indels are disease-causing 
mutations present in previously annotated samples.
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[5.80 × 10−7 − 2.26 × 10−6]). Positive predictive value for com-
mon (i.e., in dbSNP) SNV calls was 100%; it was 97% for novel 
(i.e., not in dbSNP) calls. The false-positive calls occurred at 
five unique genomic loci, three of which were at adjacent posi-
tions in a single exon of the gene MCOLN1 and were caused by 
GATK realignment.

The NGS SNV false-negative rate was 2.50 × 10−4 (95% 
Wilson binomial confidence interval [1.28 × 10−5–1.41 × 10−3]. 
Sensitivity for common SNV calls was 99.97% (95% CI: 99.9–
100%), and sensitivity was 100% (95% CI: 98.6–100%) for novel 
calls. The false-negative call observed occurred in chromosome 
11 of a sample previously characterized as aneuploid.21 Of 473 
NGS reads covering the false-negative locus, 9.5% supported 
the correct heterozygous A/C genotype call (Figure 2a), with 
Sanger sequencing showing low peak height for the alternate 
A allele (Figure 2b). Shotgun full-genome sequencing of this 
sample demonstrated a bimodal distribution of allele ratios for 
heterozygous calls in chromosome 11 (Figure 2c) and illus-
trated variable chromosome copy numbers (Figure 2d), sup-
porting the conclusion that this sample was aneuploid.

For insertions and deletions (indels), we observed a total of 
61 true positives, 394 false positives (27 unique alleles), and 3 
false negatives (2 unique alleles, both in exon 1 of SMPD1), for 
a sensitivity of 95.3% overall (95% CI: 86.9–99.0%), and 100% 
if exon 1 of SMPD1 is excluded from analysis (95% CI: 94.1–
100%). Of 31 clinically relevant disease mutations, we detected 

all 31, for a sensitivity at disease-causing loci of 100% (95% CI: 
88.8–100%).

detection of pathogenic mutations
We next sought to assess our ability to detect variants that 
cause the Mendelian diseases targeted by our panel (see 
Supplementary Table S1 online) in a set of 194 cell line–
derived samples. Of these samples, 55 were derived from 
individuals who were either carriers of or affected by one of 
the diseases being assayed and collectively contained a total 
of 95 previously characterized disease mutations. During 
the design of our NGS workflow, we determined that three 
of these lesions would be inaccessible by our approach—
two were large deletions spanning multiple exons, and one 
was within a region of CFTR exon 10 that is paralogous to 
other genomic regions (see Supplementary Table S5 online). 
Of the 92 mutations we could expect to detect by NGS, we 
detected all 92 (see Supplementary Table S5 online), and 
coverage-based analyses of the regions harboring the two 
large deletions illustrated that evidence of these lesions is 
present in the sequencing data (see Supplementary Figure 
S4 online). We also identified truncating (and likely disease-
causing) mutations in two affected samples in which previ-
ously only one mutation was known (see Supplementary 
Figure S5 online and Supplementary Table S5 online), as 
well as 9 carriers in the set of 139 previously uncharacterized 

Figure 2  skewed allelic fractions in aneuploid cell-line GM18540. (a) IGV view of NGS data from GM18540 for the non-reference genotype call of 
interest (shown between vertical lines). (b) Bidirectional Sanger data for the variant-containing region. (c) Histogram of allele ratios for all non-reference 
genotype calls in chromosome 11 derived from whole-genome shotgun sequencing (WGSS) of GM18540 and control sample GM18537. (d) Genome-wide 
relative coverage for GM18540. WGSS coverage data for each of the autosomes was binned into 50 kb intervals and the log-ratios of the per-sample mean 
normalized values were plotted versus chromosome position. Dashed vertical lines denote chromosome boundaries; within a chromosome the ratios are 
arranged according to genomic position. IGV, integrative genomics viewer; NGS, next-generation DNA sequencing.
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HapMap, 1000 Genomes Project, and Human Diversity Panel 
samples (see Supplementary Table S5 online).

GAtA
Although substitutions comprise the majority of coding varia-
tion in the human genome, indels are often clinically relevant. 
Indels, especially when large or present in cis with substitu-
tions, are notoriously difficult to detect with short NGS reads. 
Assembly of short reads can improve indel detection sensi-
tivity, but this is often at the cost of decreased SNV and indel 
specificity due to the presence of spurious contigs. We devised 
an algorithm, termed GATA, that first forms an assembly from 
reads partitioned into subsets by targeting arm sequence and 
then performs base quality– and coverage-informed genotyp-
ing by alignment of raw reads back to the assembled contigs 
(Figure 1). We compared the performance of GATA for indel 
genotyping to the more conventional genotyping-by-alignment-
only (AO) algorithm used in the Sanger concordance studies. 
Across a set of 147 samples analyzed, both indel sensitivity and 
specificity were increased with GATA relative to AO (Table 2). 
GATA detected 23 unique insertions and deletions, which were 
confirmed by manual review of Sanger traces. Of these, nine 
(39%) were not detected by AO in one or more samples, includ-
ing BLM c.2207_2212delinsTAGATTC—the most common 
disease-causing mutation for Bloom syndrome in people of 
Ashkenazi Jewish descent22—as well as several alleles in SMPD1 
(see Supplementary Table S6 online), the gene associated with 
Niemann–Pick disease (Figure 3). Performance for substitu-
tions was identical for both detection methods (AO and GATA). 
GATA and AO both utilize GATK; however because versions 
and functionality differ, we assessed whether the newer (GATA) 
version of GATK, when used with AO, would improve indel 

performance. Although this eliminates false-positive indel calls, 
sensitivity is only marginally improved (Table 2).

simulation to assess detectability of rare pathogenic 
mutations
Although we were able to empirically demonstrate detectabil-
ity for all disease-causing mutations present in our sample set, 
there exist a number of disease-causing mutations for which 
samples cannot be readily obtained. To assess whether our NGS 
workflow can detect these additional mutations, we sought 
to perform simulations in silico. Because detectability can be 
affected by any element of the workflow, we implemented a 
simulator that employed read sets from actual samples rather 
than model reads derived from the reference genome at uni-
form coverage. This allowed for realistic representation of tar-
get abundance distribution, neighboring in cis variants, as well 
as cycle- and context-dependent sequencing errors. Disease-
causing variants were introduced into raw reads by a Bernoulli 
process, with an average 0.5 probability of introducing the 
lesion, to simulate the heterozygous genotypes carrier screen-
ing aims to detect. A total of 81 heterozygous variants were 
simulated in a read set of at least 144 samples, with the excep-
tion of CFTR c.1521_1523delCTT (F508del), the most com-
mon disease-causing mutation for cystic fibrosis in Caucasian 
populations23,24 (see Supplementary Table S7 online). This 
mutation was present in several samples, which were removed 
from simulation analysis (see Materials and Methods section). 
Of the simulated variants, 67 (83%) were correctly genotyped 
in all (generally 145 of 145) samples and only four relatively 
large (>7 bp) deletions were undetected in one or more samples 
(see Supplementary Table S7 online). We were unable to make 
high-confidence genotype calls for the remaining 10 variants. 
We did not find any variants to be undetectable in all samples 
(see Supplementary Table S7 online).

dIscussIon
Robustness, completeness, and accuracy are three of the main 
factors that define the utility of a genetic carrier testing work-
flow in a clinical laboratory. By utilizing a target enrichment 
methodology that is performed in a single tube and requires 
no mechanical shearing or purifications of individual sam-
ples, we have developed an automated NGS workflow that 
yields highly reproducible results across samples and opera-
tors. This reproducibility ensures that samples will not have 
to be rerun frequently, minimizing both turnaround time and 
per-sample cost.

Because each clinically meaningful base pair must be 
sequenced before an actionable medical report can be gen-
erated, a high level of completeness minimizes the amount 
of costly rework necessary for a sample. We have demon-
strated completeness consistent with low to no rework for 
the samples and target set studied here, and substantially 
better than other previously reported methods using mul-
tiplex target capture or PCR with NGS.8,11,12,25 This improve-
ment is probably the result of a number of optimizations 

table 2 Genotyping by Assembly-Templated Alignment 
(GATA) algorithm improves detection of insertions and 
deletions

Ao Ao/GAtK165 GAtA

TP 104 116 211

FP 28 0 0

FN 47 46 0

Uncalleda 70 59 10

Sensitivity 0.689 0.716 1.0

Precision 0.788 1.0 1.0

FN, false-negative; FP, false-positive; NGS, next-generation DNA sequencing; TP, 
true-positive.

Raw variant alleles (positive calls) from 147 samples were filtered by depth and 
strand bias (for AO/GATK165 and GATA) and categorized according to NGS 
data analysis method, alignment only (AO), AO/GATK165, which utilized version 
1.6.5 of GATK that was also used for GATA, or GATA. We first classified variant 
calls using calls automatically generated by Mutation Surveyor (MS) from Sanger 
traces. Next, for calls that were discordant between MS and either AO or GATA, 
we manually reviewed the Sanger data to resolve these calls as AO or GATA TP/
FP/FN shown below. Variant calls flagged as low confidence (depth <50 or strand 
bias <0) were considered uncalled.
aPolymorphisms in the first exon of SMPD1 accounted for the majority of uncalled 
and discordant alleles, which were not considered in accuracy calculations.
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we have made, including the use of a tiling MIP design that 
ensures multiple probes capture each base, thereby reducing 
the probability of allele dropout and systematic sequencing 
error, and the use of a DNA extraction protocol that effort-
lessly shears the DNA to a lower molecular mass. It should 
be noted, however, that performance with other sets of genes 
may vary due to interfering effects such as extreme GC con-
tent (see Supplementary Figure S6 online), repetitive or 
low-complexity regions, and paralogous sequence.

Regarding accuracy, the only SNV false negative that we 
observed was in a sample that exhibited skewed allele ratios 
along the chromosome, which should not commonly occur 

when testing for germline mutations in clinical specimens 
derived from whole blood. In addition, the SNV false-pos-
itive rate of ~1.1 per million base pairs corresponds to a low 
confirmation burden for clinical testing and surpasses values 
previously reported. Given our small target set and the rare 
nature of indels, it is difficult to provide a precise measure-
ment of our accuracy for indels, although our data do suggest 
that the use of GATA substantially improves our ability to 
detect small lesions. The high level of coverage used in this 
study probably had a positive effect on both the accuracy 
and completeness achieved. Although lower levels of cover-
age could be used, it would be reasonable to expect that this 

Figure 3  Genotyping by Assembly-templated Alignment correctly genotypes insertions and deletions that are undetectable by the alignment-
only method. Read from top to bottom, each panel provides tracks for cumulative depth of coverage (vertical gray bars); representative MIP alignments 
(horizontal gray bars) with mismatches (colored letters), insertions (purple bars), and gaps (dashed lines); chromatogram; reference DNA and amino acid 
sequence for (a) heterozygous BLM c.2207_2212delinsTAGATTC in sample GM04408 as well as several alleles in the first exon of SMPD1 including (b) a 
heterozygous 18-bp deletion in sample GM20342 (minus strand), (c) a heterozygous 12-bp insertion and homozygous substitution in sample GM17282 (plus 
strand), and (d) compound heterozygous 6- and 12-bp deletions in sample GM00502 (minus strand). Chromatogram trace offsets corresponding to specific 
heterozygous insertion and deletion patterns are indicated with slanted lines color coded by reference base. For clarity, offsets are shown for (c) and (d) only. 
MIP, molecular inversion probe.
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would lead to either lower accuracy (ability to detect hetero-
zygous lesions) or completeness, and might be unnecessary 
because list sequencing reagent costs here approximate those 
for genotyping arrays, although capital costs may be substan-
tially different.

It is worth noting that measuring accuracy to a sufficient level 
of precision and generality can be challenging within conserved 
coding regions because selective pressure limits the spectrum 
of variation present. Although we sequenced a large number of 
samples, the relatively small size of our target limited the num-
ber of unique alleles observable and meant that ~90% of such 
variants were common (i.e., present in dbSNP). Nonetheless, 
there is no a priori reason to believe that our measured accuracy 
will not generalize to other rare and private mutations present 
in the targeted loci. Supporting this point, our simulations using 
real data and controlled for sample-to-sample variability indi-
cate that we can detect a number of very rare disease-causing 
alleles of different types and sequence contexts, including inser-
tions (up to 12 bp), deletions (up to 22 bp), and complex combi-
nations thereof. 

The reference standard one considers ground truth can 
impose a ceiling on measurable accuracy. We employed a 
large-scale automated analysis of what is widely deemed the 
“gold standard” for DNA sequencing: bidirectional Sanger 
traces derived from PCR amplicons.26 The NGS workflow 
detected allele dropout in the Sanger data, a known limitation 
of that technology (see Supplementary Figure S7 online)27 
and not surprising because each base sequenced by NGS was 
captured by multiple probes with independent targeting arms. 
Had we instead employed the less laborious and more com-
monly used reference of HapMap Project genotyping data, we 
would have observed 12 NGS false negatives and 7 false posi-
tives in the subset of samples characterized by this approach 
(see Supplementary Table S8 online). Because these were all 
shown by our Sanger analysis to be HapMap Project genotyp-
ing errors, this would have underestimated both sensitivity 
and specificity.

Indel detection methods that only employ gapped align-
ment of short reads to reference are often limited by false posi-
tives introduced by systematic, context-dependent sequencing 
error, and false negatives introduced by failure of the aligner 
to open or extend gaps. An assembly-based paradigm would 
address these limitations, but raw contigs do not always carry 
base-quality and coverage information. The GATA algorithm 
combines these approaches to deliver sensitive and specific 
indel detection with SNV performance on par with a tradi-
tional AO pipeline. 

Many alleles detected exclusively by GATA were from a 
short-tandem-repeat region encoding the N-terminal signal 
peptide in SMPD1 (see Supplementary Table S6 online). 
Consistent with previous reports, GATA detected non-refer-
ence alleles in 96% of samples, a rate that is strikingly high 
because hg18 contains a minor allele that is frequently sub-
stituted (V36A). Although common hexanucleotide indels at 
this locus are clinically benign,28,29 any pathogenic mutation 

present in cis would probably be missed using a conven-
tional approach for variant detection. Indeed, when reads 
were aligned independently, several genomic positions in this 
region consistently fell below our specified coverage threshold. 
GATA therefore should yield higher sensitivity for rare muta-
tions linked to polymorphisms in the first exon of SPMD1 and 
potentially other short-tandem-repeat loci as well.

The simulation methodology applied here attempts to assess 
detectability of rare pathogenic mutations in a highly realistic 
manner. Simply deriving reads from a reference genome mod-
ified to include the mutation of interest can overestimate the 
detection probability because of real-world factors that would 
otherwise render the mutation undetectable. In addition, 
we are able to determine whether a mutation is sometimes, 
rather than always or never, detectable because it is simulated 
in the read sets of hundreds of samples; for example, this 
could occur in a particular genetic background with a low-
frequency in cis variant that interferes with alignment of reads 
containing the mutation. Nonetheless, certain mutation types, 
particularly large deletions, are still not amenable to this para-
digm because they could fundamentally alter the distribution 
of reads generated across the relevant region. In these cases, 
either human samples or synthetic templates remain the only 
way to assess detectability. Furthermore, the outcome of this 
analysis can feed back into the probe design phase if it identi-
fies genes or regions that harbor variants that will be difficult 
to accurately detect.

We have presented an automated, integrated workflow 
that converts human genomic DNA isolated from blood or 
cell lines into clinically relevant variant calls within 6 days. 
We achieved high genotype concordance with conven-
tional electrophoretic sequencing across a set of 15 genes, 
and demonstrated the ability to detect a range of important 
disease-causing mutations. Our new analysis pipeline allows 
for sensitive and specific detection of indels, while simul-
taneously incorporating raw base quality and coverage into 
SNV (non-reference) genotype calls. Realistic simulation on 
actual run data indicates that a number of pathogenic muta-
tions undetectable by a traditional alignment-based geno-
typing approach are accessible by GATA. Collectively, the 
data presented here indicate that our workflow has met our 
three requirements for a carrier screening test, and hence is 
ready for clinical use.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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