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ABSTRACT For assessing the degree of population subdi-
vision, and therefore the extent to which group selection might
favor an altruistic trait, an appropriate measure is Nei’s Gsr,
defined by (Fy — F)/(1 — F). F, is the probability that two
alleles drawn from the same group are identical in state and F
is the probability for two alleles drawn at random from the
entire population. These probabilities can be assessed from
molecular polymorphisms. Gsy has a number of properties
that make it useful for empirical studies. When the mutation
rate is small relative to the migration rate and the reciprocal of
the group size, Gsr depends mainly on the absolute number of
migrants per generation, moves rapidly to near equilibrium,
and is independent of the number of alleles. The relative ho-
mogenizing effect of migration in the island and stepping-stone
models is not as different as might be expected; one immigrant
chosen randomly from the rest of the population is only one to
two times as effective as one from a neighboring group, appre-
ciably exceeding 2 only when there are 1000 or more groups.
The use of molecular data to estimate the degree of population
subdivision may permit testable predictions of the extent of
altruistic behavior.

In an earlier article (1) we noted that an additively polygenic
trait that is deleterious to the individual but beneficial to the

group will increase in frequency if
-B,./B, < 2F/(1 — F). (1]
B, and B, are the between- and within-group genetic regres-
sions of fitness on the value of the trait; in the case of inter-
est B, > 0 and B,, < 0. F is Wright’s fixation index, Fsr (2).
If the population is at equilibrium between migration and
random drift
(1 - F)/2F = 2M,, (2]
where M, is the effective number of migrants exchanged
each generation between a group and rest of the population
(1). If the sex ratio of the group or of the immigrants is 1, M,
is the absolute number of migrants, M. If the sex ratio of
immigrants deviates from equality in the same direction as
that of the group, M, < M; if they deviate in opposite direc-
tions, M, > M. If c (= —B,,) is the expected cost in reduced
fitness per unit change in the value of the character and b (=
B, — B,) is the increase in group benefit per unit change in
the average value of the character, then Eq. 1 becomes
c/b<2F/(1+ F)=r. [3]
This is the familiar Hamilton cost/benefit inequality (3) and r
is Wright’s coefficient of relationship, a measure of shared
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genes. Very similar conclusions have been reached by Leigh
(4), who employed an entirely different procedure. We as-
sumed that group selection occurs by differential increase
and decrease in group sizes. Eq. 1 is only slightly modified if
the mechanism of group selection is extinction balanced by
fission of larger groups (5). If the selection occurs over long
time periods, both processes are involved. The evolution of
reciprocal altruism by kin or group selection can be analyzed
by using the same approach (6).

The more the population is subdivided the greater is the
ratio of the between- to the within-group variance and the
larger —B,,/B,, (or ¢/b) can be and still meet the conditions
for the altruistic trait to increase. Eq. 1 tells us that the pres-
ent extent of population subdivision can be determined by
measuring F. It could also be determined from Eq. 2 by ob-
serving the number of migrants and assuming that this pat-
tern of migration has existed long enough for the population
to be at equilibrium.

The purpose of this note is to discuss more fully two
points: First, what is the appropriate definition of F and how
might it be measured? In particular, how can molecular data
be used to assess the degree of population subdivision? Sec-
ond, if migration data are available, what are the conse-
quences when the migrants come from nearby groups rather
than at random from the rest of the population, as was as-
sumed in the derivation of Eq. 2?

Estimation of F

Wright’s Fsr (2) measures the genetic differentiation of a
group relative to the population as a whole. This could be
measured from pedigrees if there were sufficient informa-
tion, but this is unrealistic in most, if not all, situations. A
more practical possibility is to use data on protein or DNA
polymorphism to estimate allelic identity.

We are assuming that the molecular markers are near
enough to selective neutrality that they can be used to assess
the degree of group differentiation brought about by migra-
tion and random drift. Likewise, we are assuming that the
altruistic trait, which need not be behavioral, is polygenic;
the number of loci determining the trait is assumed to be
large enough that selection on any one locus is very weak
and selection for the trait does not change the genetic vari-
ance. Under these circumstances molecular data can be used
to assess the relative opportunity for group vs. individual
selection.

Let F, be the probability that two homologous genes
drawn at random from a group are the same allele (identical
in state) and let F be the probability for genes drawn at ran-
dom from the entire population. Then, following Nei (7, 8)
we define Gsr as

Gsr = (Fo — F)/(1 — F). [4]
Gsr and Fgr are the same when there are only two alleles
(ref. 8, p. 151). Ggr is preferable for our purposes since it
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lends itself to specific models of mutation and migration.

Recurrence relations for these quantities are readily de-
rived if we assume that all groups are the same size and that
the mutation rates from any allele to any other are the same.
Let m be the proportion of genes in a group that are ex-
changed each generation for genes chosen at random from
the rest of the population. N is the number of individuals in a
group and n is the number of groups. The mutation rate from
an allele to a particular allele is u/(K — 1), where K is the
number of alleles. Then the total rate of mutation from one
allele to all others is u. F; is the probability that two alleles
drawn from two different groups are the same.

Letting primes stand for the next generation, we have

Fj = v[a{c + (1 = o)Fo} + (1 — a)F]
+ wla(l — )1 — Fp) + 1 — a)(1 — Fy)] [5a]

Fi =v[b{c + (1 — ¢)Fg} + (1 — b)F,]
+ wlb(l — ) — Fy) + (1 — b)(1 — F;)] [5b]

F = [Fy + (n — 1)Fy}/n, [5¢]
where
v=>1 - u’ + u?/(K - 1);

_2u - w WK -2
K-1 (K - 1)

a=Q10-mp?+ m(n-1);

=1-v/K-1

b=Q1A-a)/(n - 1);c=1/2N.

The last term in the expression for v is the probability of both
alleles mutating to the same allele. Likewise, in the expres-
sion for w, the first term is the probability that one of two
chosen alleles mutates to the other; the second term is the
probability of both mutating to a third type. The derivations
of a and b are analogous.

We can obtain the exact equilibrium values by dropping
the primes and solving the resulting equations. Our interest
is in the case where u << m, 1/N << 1. Under these condi-
tions (i.e., neglecting terms of order «?, um, u/N, m?, and
m/N) the approximate solutions of interest are

_m+ uA(n — 1) + ANmnuB
m + ANmnuA + (n — uA

nm + 4ANmn*uB + (n — 1)uA + (n — 1)’uB
nim + ANmnuA + (n — 1uAl]

Fy

[6a]

F=

» [6b]

where

A=K/(K -1); B=1/(K - 1).

When A = 1and B = 0 we have the infinite allele model. In
this case, Egs. 6 reduce to Nagylaki’s (9) equations 70 and
71. We have derived our equations on the assumption of hap-
loid rather than diploid migrants, but Nagylaki (9) has shown
that under many circumstances the haploid equations pro-
vide a good approximation.

Substituting Egs. 6 into Eq. 4 yields

1
" 4Nma + 1

a = [n/(n — DI

Gsr [7]

Proc. Natl Acad. Sci. USA 81 (1984)

with the pleasing result that this approximation is indepen-
dent of the mutation rate, #, and the number of alleles, K.
Actually, Eq. 7 is correct even if terms of order m* and m/N
are retained in the approximation.

The infinite allele model has beén studied extensively. Eq.
7 for this model was given by Takahata (10). An exact solu-
tion was given earlier (ref. 8, equation 5.108); Nei’s formula
appears different, but only because his m is defined assum-
ing that immigrants come from the entire population, not just
from the other groups. A complete solution for the infinite
allele island model was found by Li (11).

When n is large Eq. 7 reduces to the familiar form first
given by Wright (12)

1 1

Fsr=~Nms1 "+ 1

(8]

Useful properties of Gsr

From Egs. 6 we see that the equilibrium values of Fy and F
depend on all five parameters. On the other hand, Eq. 7 tells
us that (to the order of approximation appropriate to the as-
sumption u << m, 1/N << 1) the equilibrium value of Ggris
independent of the mutation rate and the number of alleles.
Furthermore, the dependence on the number of groups, n, is
very weak unless n is very small. These properties greatly
enhance the utility of G5 for our purpose; we need not be
concerned with the mutation rate, number of possible al-
leles, or the total population size. These are quantities that
are usually unknown.

If there is any practical utility in assuming that Gsris near
its equilibrium value, the equilibrium must be attained rapid-
ly. Fy and F do not have this property. Consider first a pan-
mictic population of size Nn, and let X stand for the differ-
ence between F and its equilibrium value. Then X' = X(1 —
c)(v — w). Thus, the time to go half way to equilibrium is
approximately (In 2)/[2uK/(K — 1) + 1/2Nn]. Unequal mu-
tation rates among the alleles reduce the rate of approach
(13). For the finite island model, the maximum eigenvalues
are approximately 1 — 2uK/(K — 1) — 2m/(n — 1) if m <<
1/N<<1land1 = 2uK/(K—-1) - 1/2Nnif 1/N << m <<
1; so the procéss can be very slow.

On the other hand, G goes rapidly almost all of the way
to equilibrium, even though Fy and F may be changing very
slowly and the entire structure approaches equilibrium at
rates ultimately determined by the maximum eigenvalue
(14). We can get a rough idea of the early change of Gsr by
using Eqgs. 4 and § and assuming u is very small and n large.
Letting Y be the difference between Gsr and its equilibrium
value, Y’ = Y(1 — 2m)(1 — 1/2N). The time for Ggr to go half
way to equilibrium is approximately (In 2)/2m + 1/2N),
regardless of allele number. That the value quickly goes al-
most to equilibrium has been verified by numerical calcula-
tions. From numerical examples it also appears that the time
is quite insensitive to n, although it is less when n becomes
very small. So a second useful property of Ggr is that it rap-
idly moves most of the way to equilibrium, at a rate mainly
dletermined by 2m + 1/2N, even though the final approach is
slow.

A third useful property of Ggr is that the two parameters
N and m enter the equation only as their product, M. The
equilibrium structure does not depend on the group size, but,
except for weak dependence on 7, only on the absolute num-
ber of migrants exchanged per generation, M. Thus, groups
can contract and expand without changing G¢r, provided M
remains constant. Such change in group size is required, of
course, if there is to be any opportunity for group selection
by differential growth rates (1).
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Other migration patterns

The island model is often unrealistic. It is more likely that
migrants come from nearby groups rather than being ran-
domly chosen. An extreme alternative is the two-dimension-
al stepping-stone model (15, 16). The groups are regarded as
being arranged in a rectangular lattice, with migration occur-
ring only between adjacent colonies. Exact formulae for a
finite population have not been found. However, if the oppo-
site edges of the rectangle are brought together, the resulting
figure is an abstract torus whose properties are known (17—
19). Except for edge effects this should mimic a rectangular
plane.

Explicit formulae are not illuminating so we resorted to
numerical calculations, which showed that the equilibrium
value of Gz is nearly independent of the mutation rate as in
the island model. Table 1 shows some representative values.
In contrast to the island model, as might be expected, Gsris
dependent on the total population size. The dependence is
weak, however; in the example as the number of groups
changes from 9 to 40,000 the value of Gsr changes only by a
factor of 2.6. Fig. 1 shows that Gsr is roughly proportional to
log n.

The rapid rate of approach to near-equilibrium of Gsr was
also studied numerically for the stepping-stone model. The
results are not shown here but were very similar to those of
the island model except when the total population is very
large. We believe that these desirable properties of Gsr ap-
ply to a wide variety of migration patterns, since the island
and stepping-stone models represent opposite extremes and
most populations probably lie somewhere between them.

Fig. 2 illustrates another property of stepping-stone mod-
els. If the area is narrow the situation approaches that of a
linear habitat, and it is well known that this leads to much
greater group divergence than an area model. The values in
Fig. 2 are thought to be typical of many primate populations.
If the length of the habitat is much greater than its width, Gsr
can increase substantially.

Application to primate data

Gsr can be measured from protein and DNA polymorphism
and we can expect increasingly extensive and accurate data
in the near future. Aoki and Nozawa (20) have summarized
the relevant data from the Japanese monkey (Macaca fus-
cata). From polymorphic variation at 12 blood protein loci in
a sample of about 1500 individuals distributed over 33 troops
they estimated an average Ggr of 0.0935, corresponding to a
coefficient of relationship, r, of 0.167. The values of r from
five other primate species lie mostly in the range 0.10-0.15.
Aoki and Nozawa suggest that these values may also be ap-
propriate for Pleistocene man.

Effect of nonrandom migration on the effectiveness of
migration

Equation 7 relates the equilibrium value of G to the abso-
lute migration rate between groups using the island model.
With the stepping-stone model a migrant has less effect than
in the island model because of the correlation in allele fre-
quencies in adjacent groups. In our earlier paper (1) we sug-
gested that a migrant from an adjacent group rather than
from the entire population has its effectiveness in reducing
group differences reduced by a factor of —#/In 2u, where u
is the mutation rate. If ¥ = 107° the factor is 4.2; if 107, it is
3.4. This formula, which comes from Malécot (21), assumes
that the total population is infinite. A more accurate expres-
sion was given by Kimura and Weiss (22). We now look at
finite populations and will see that reduction is typically con-
siderably less than when the population is infinite.
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Table 1. Examples showing that, while the equilibrium values
of Fy and F depend on the mutation rate, G is nearly
independent of it

Equilibrium value

Number Group Number of Mutation —
of groups  size migrants rate F, F Gsr
25 20 2.0 1077 1.000 1.000 0.120

106 0.998 0.998 0.120
1075 0.980 0.980 0.120
104 0.837 0.815 0.120
1073 0.388 0.306 0.118

225 30 0.3 1077 0.997 0.993 0.613
1076 0.975 0.935 0.613

1073 0.841 0.590 0.612

107* 0.649 0.130 0.597

1073 0.526 0.017 0.517

9 20 1.0 1073 0.993 0.991 0.172

25 0.981 0.974 0.223

100 0.928 0.899 0.283
400 0.784 0.675 0.337
2,500 0.534 0.233 0.393
10,000 0.463 0.067 0.425
40,000 0.453 0.017 0.443

The lower part shows the weak dependence of G5 on the number
of groups.The numbers were calculated from a stepping-stone model
for an abstract torroidal surface.

We compared the two-dimensional stepping-stone model,
using the abstract torus formulation, with the island model
for a large number of parameter values. We have computed
the number of migrants from the four adjacent groups that is
equivalent to one migrant chosen at random from the rest of
the population. As expected, this number ranges from near
one when the number of groups is small to the Malécot limit
as the number of groups increases. Some representative val-
ues are shown in Fig. 3. Unless the number of groups is enor-
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Fic. 1. Equilibrium value of Gsr as a function of number of
groups in the stepping-stone model. Gsr increases approximately as
the logarithm of the number of groups. The parameters are thought
to be reasonable for many primates. L X L (=n) is the total number
of groups in the population; N is the number of individuals per
group; m is the migration rate.
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F1G. 2. Effect of habitat shape on the equilibrium value of Gs7.
As the habitat becomes long and narrow Ggr increases. L; X L, is
the total number of groups in the rectangular torus.

mous these are in the range 1-2. This is also reflected in
calculations of the time for Gsr to go half way to equilibrium.
The time is greater with the stepping-stone model, but only
slightly so.

The exact correspondence between the torus model and a
rectangular plane is not known, but according to Maruyama
(18), in a continuous model a torus-like figure of size L x L
gives approximately the same value of F as a plane of size 2L
X 2L. We conclude that, except for narrow habitats, mi-
grants from the population at random are typically between
one and two times as effective as if they came from neigh-
boring groups.

Discussion

Our general approach is to use molecular markers, which are
selected very weakly at most, as neutral indicators of popu-
lation structure. Gsr gives us an appropriate description of
the relevant aspect of the structure. By using Eq. 3 we can
state the maximum value of cost/benefit of a quantitative
trait if that trait is to increase in average value or frequency
in the population. Gs7 describes the present structure of the
population; it does not tell us how it got that way. If this
value has been roughly stable in the past, we could expect
that traits with ¢/b up to this value would have increased in
the population, assuming of course that such traits exist and
have heritability greater than zero.

Of more interest than the maximum c/b of a selected trait
is the average c/b ratio of traits that are incorporated into the
population. This question has been investigated by Engels
(23), who showed that if there is a continuum of c¢/b values
available, evolution of altruistic behavior tends to maximize
rb — c. If selection is weak, the average value at equilibrium
is r/2, one-half the upper limit given by the Hamilton in-
equality. If we take Aoki and Nozawa’s estimate of r = 1/6
for Japanese monkeys, we would expect that if this structure
is stable traits with ¢/b < 1/6 would increase and that the
average value at equilibrium would be 1/12. (Of course we
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FiG. 3. Migration conversion factor (C) as a function of the num-
ber of groups, n. The conversion factor is the number of immigrants
from immediate-neighbor groups that is equivalent to one immigrant
chosen randomly from the rest of the population in determining the

equilibrium value of Gs7. The group size is 20 and the mutation rate
is 10%; m is the migration rate.

would expect greater altruism of post-reproductives toward
pre-reproductives than vice versa, but that is another sub-
ject.)

The effect of migration in homogenizing the population is
more similar between the island and stepping-stone models
than one might at first expect. Only with a very large number
of groups does the effect of a random migrant exceed that of
a migrant from a neighboring group by a factor larger than 2.
Actual populations are probably somewhere between these
two extreme models. Comparison of Gsr, which measures
the present genetic structure that is the result of the migra-
tion pattern in the past, with M, which measures the present
pattern of migration, can provide a possible test of the stabil-
ity of the structure.

The relations between local gene identity, Fy, and global
identity, F, in this article employ a different definition of m
from that originally used by Wright. In Wright’s formulation
m is the rate at which individuals are exchanged between a
group and a pool to which the entire population contributes.
Here we assume, as some others have (e.g., refs. 9 and 10),
the immigrants have come from a pool drawn from all other
groups. This makes the model more comparable to the step-
ping-stone model; as n decreases the island and stepping-
stone models become more and more similar. Of course,
when n is large the definition of m in the island model is
immaterial.

Fig. 2 suggests that the shape of the habitat can be impor-
tant. The degree of divergence of subpopulations, and hence
the opportunity for intergroup selection, is substantially in-
creased if migrants come from nearby groups and the habitat
is long and narrow.

This analysis gives no information as to whether the requi-
site heritable altruistic characters exist and whether there
has been sufficient time for such traits to evolve. We have
chosen to emphasize polygenic inheritance because this
seems to us to be much more likely than monogenic inheri-
tance where complex traits, especially behavioral traits, are
involved; hence, our concentration on regressions and vari-
ances. Molecular data are brought in because they can reveal
the details of population structure.

Much discussion of altruism has involved close relatives.
We have tried here to model a system in which the trait,
whether behavioral or not, affects the other members of the
group without regard to their relationship. When an individ-
ual migrates to another group, its descendants behave the
same way as if their ancestors had been in this group. In
other words, the altruism is dispensed toward whatever
group the individual grows up in regardless of where its
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genes ultimately come from. To us, this seems like a reason-
able assumption, but we invite the scrutiny of those more
familiar with animal behavior.

In summary, we suggest that molecular measurements can
be used to estimate Ggr and thus to assess the degree of
population subdivision relevant to the evolution of altruistic
behavior. This could permit testable predictions—for exam-
ple, by observations of behavior in otherwise similar popula-
tions with differing G values or comparison of behavior in
populations with areal vs. linear habitats.

A number of people have contributed in a variety of ways to our
understanding of this subject. They include Carter Denniston, Bill
Engels, Motoo Kimura, Takeo Maruyama, Thomas Nagylaki, Ma-
satoshi Nei, Naoyuki Takahata, and Yoshio Tateno. This is paper
no. 2729 from the Laboratory of Genetics, University of Wisconsin,
and contribution no. 1564 from the National Institute of Genetics.
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