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Abstract
For many neurological disorders, prediction of disease state is an important clinical aim.
Neuroimaging provides detailed information about brain structure and function from which such
predictions may be statistically derived. A multinomial logit model with Gaussian process priors is
proposed to: (i) predict disease state based on whole-brain neuroimaging data and (ii) analyze the
relative informativeness of different image modalities and brain regions. Advanced Markov chain
Monte Carlo methods are employed to perform posterior inference over the model. This paper
reports a statistical assessment of multiple neuroimaging modalities applied to the discrimination
of three Parkinsonian neurological disorders from one another and healthy controls, showing
promising predictive performance of disease states when compared to nonprobabilistic classifiers
based on multiple modalities. The statistical analysis also quantifies the relative importance of
different neuroimaging measures and brain regions in discriminating between these diseases and
suggests that for prediction there is little benefit in acquiring multiple neuroimaging sequences.
Finally, the predictive capability of different brain regions is found to be in accordance with the
regional pathology of the diseases as reported in the clinical literature.
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1. Introduction
For many neurological and psychiatric disorders, making a definitive diagnosis and
predicting clinical outcome are complex and difficult problems. Difficulties arise due to
many factors, including overlapping symptom profiles, comorbidities in clinical populations
and individual variation in disease phenotype or disease course. In addition, for many
neurological disorders the diagnosis can only be confirmed via analysis of brain tissue post-
mortem. Thus, technological advances that improve the efficiency or accuracy of clinical
assessments hold the potential to improve mainstream clinical practice and to provide more
cost-effective and personalized approaches to treatment.

In this regard, combining data obtained from neuroimaging measures with statistical
discriminant analysis has recently attracted substantial interest among the neuroimaging
community [e.g., Klöppel et al. (2008), Marquand et al. (2008)]. Neuroimaging data present
particular statistical challenges in that they are often extremely high dimensional (in the
order of hundreds of thousands to millions of variates) with very few samples (tens to
hundreds). Further, multiple imaging sequences may be acquired for each participant, each
aiming to measure different properties of brain tissue. Each sequence may in turn give rise
to several different measurements. In the present work, we will use the term “modality” to
describe such a set of measurements. In response to those challenges, most attempts to
predict disease state from neuroimaging data employ the Support Vector Machine [SVM;
see, e.g., Schölkopf and Smola (2001)] based on information obtained from a single
modality. Such an approach, however, is not able, in any statistical manner, to fully address
questions related to the importance of different modalities. As we will show in the
experimental section of this paper, even the multi-modality SVM-based classifier proposed
in Rakotomamonjy et al. (2008) lacks a systematic way of characterizing the uncertainty in
the predictions and in the assessment of the relative importance of different modalities.

In this work, we adopt a multinomial logit model based on Gaussian process (GP) priors
[Williams and Barber (1998)] as a probabilistic prediction method that provides the means
to incorporate measures from different imaging modalities. We apply this approach to
discriminate between three relatively common neurological disorders of the motor system
based on data modalities derived from three distinct neuroimaging sequences. In this
application we aim to characterize uncertainty without resorting to potentially inaccurate
deterministic approximations to the integrals involved in the inference process. Therefore,
we propose to employ Markov chain Monte Carlo (MCMC) methods to estimate the
analytically intractable integrals, as they provide guarantees of asymptotic convergence to
the correct results. The particular structure of the model and the large number of variables
involved, however, make the use of MCMC techniques seriously challenging [Filippone,
Zhong and Girolami (2012), Murray and Adams (2010)]. In this work, we make use of
reparametrization techniques [Yu and Meng (2011)] and state-of-the-art sampling methods
based on the geometry of the underlying statistical model [Girolami and Calderhead (2011)]
to achieve efficient sampling.

The remainder of the paper is structured as follows: In Section 2 we describe the motivating
application of statistical discrimination of movement disorders from brain images. In
Section 3 we introduce the multinomial logit model with GP priors and in Section 4 we
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present the associated MCMC methodology. In Section 5 we report a comparison of MCMC
strategies applied to our brain imaging data and in Section 6 we investigate the predictive
ability of different data sources and brain regions, comparing the results with a
nonprobabilistic multi-modality classifier based on SVMs. Section 7 shows how predictive
probabilities can be used to refine predictions, and Section 8 draws conclusions commenting
on the questions that this methodology addresses in this particular application.

2. Discriminating among Parkinsonian disorders
2.1. Introduction to the disorders

For this application, we aim to discriminate between healthy control subjects (HCs) and
subjects with either multiple system atrophy (MSA), progressive supranuclear palsy (PSP)
or idiopathic Parkinson’s disease (IPD), which are behaviorally diagnosed motor conditions
collectively referred to as “Parkinsonian disorders.” MSA, PSP and IPD can be difficult to
distinguish clinically in the early stages [Litvan et al. (2003)] and carry a high rate of
misdiagnosis, even though early diagnosis is important in predicting clinical outcome and
formulating a treatment strategy [Seppi (2007)]. For example, MSA and PSP have a much
more rapid disease progression relative to IPD and carry a shorter life expectancy after
diagnosis. Further, IPD responds relatively well to pharmacotherapy, while MSA and PSP
are both associated with a modest to poor response. Thus, automated diagnostic tools to
discriminate between the disorders is of clinical relevance where they may help to reduce
the rate of misdiagnosis and ultimately lead to more favorable outcomes for patients.

2.2. The clinical problem of discriminating among Parkinsonian disorders
In this study we employed magnetic resonance imaging (MRI), as it is noninvasive, widely
available and, unlike alternative measures such as positron emission tomography, does not
involve exposing subjects to ionizing radiation. A detailed discussion of the imaging
modalities employed in this study is beyond the scope of the present work, but see Farrall
(2006) for an overview. Briefly, the different imaging modalities employed here measure
different properties of brain tissue: T1-weighted imaging is well-suited to visualizing
anatomical structure, while T2-weighted structural imaging often shows focal tissue
abnormalities more clearly. Diffusion tensor imaging (DTI) does not measure brain structure
directly, but instead measures the diffusion of water molecules along fibre tracts in the brain,
thus quantifying the integrity of the fibre bundles that connect different brain regions [see
Basser and Jones (2002) for an introduction to DTI].

A review of the neuropathology of the Parkinsonian disorders is also beyond the scope of
this work, but briefly we note that MSA and PSP are characterized by distinct cellular
pathologies and subsequent degeneration of widespread and partially overlapping brain
regions. For MSA, affected regions include the brainstem, basal ganglia (e.g., caudate and
putamen), cerebellum and cerebral cortex [Wenning et al. (1997)]. Note that MSA is
sometimes subdivided into Parkinsonian and cerebellar subtypes (MSA-P and MSA-C,
resp.), but for the present work we included both variants in the same class. For PSP the
brainstem and basal ganglia both undergo severe degeneration [Hauw et al. (1994)],
although cortical areas are also affected. In contrast, IPD is characterized in the early stages
by relatively focal pathology in the substantia nigra (a pair of small nuclei in the brainstem),
which is difficult to detect using conventional structural MRI where the scans of IPD
patients can appear effectively normal [Seppi (2007)].

There is, however, some evidence that changes in IPD can be detected using DTI [see, e.g.,
Yoshikawa et al. (2004)]. Thus, it is of interest to investigate which data modalities are best
suited to discriminating between MSA, PSP, IPD and HCs, which has practical implications
in planning future diagnostic studies: MRI scans are costly, so it is desirable to know which
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data modalities provide the best discrimination of the diagnostic groups and which scans can
be omitted from a scanning protocol to avoid wasting money acquiring scans that do not
provide additional predictive value.

2.3. State of the art in diagnosis and prediction
We are aware of only one existing study that employed a discriminant approach to diagnose
these diseases based on whole-brain neuroimaging measures [Focke et al. (2011)]. This
study employed binary SVM classifiers to discriminate MSA-P from IPD, PSP and HCs
based on a similar sample to the present study. The authors reported that (i) PSP could be
accurately discriminated from IPD, (ii) that separation of the MSA-P group from IPS and
from controls was only marginally better than chance and (iii) that no separation of the IPD
group from HCs was possible. The authors did not attempt to combine the distinct binary
classifiers to provide multi-class predictions.

The problem of combining different modalities in classification models can be seen as a
Multiple Kernel Learning (MKL) problem [Lanckriet et al. (2004), Sonnenburg et al.
(2006)]. A recent MKL approach to classification referred to as “simpleMKL” has been
proposed by Rakotomamonjy et al. (2008). SimpleMKL is based on a SVM learning
algorithm and shows good performance relative to other MKL approaches; for this reason
we will consider it as a baseline against which we aim to compare the performance of the
proposed approach.

2.4. Data acquisition and preprocessing
Eighteen subjects with MSA, 16 subjects with PSP, 14 subjects with IPD (all in mid-disease
stage) and 14 HCs were recruited according to clinical and experimental criteria described in
Blain et al. (2006). For each subject, a T2-weighted structural image, a T1-weighted spoiled
gradient recalled (SPGR) structural image and a DTI sequence were acquired and
preprocessed (see the Appendix for the details on acquisition).

All images were screened by a trained radiologist and were examined for gross structural
abnormalities, including white matter abnormalities. Diffusion tensor images were then
preprocessed according to an in-house protocol and were summarized by measures of
fractional anisotropy (FA) and mean diffusivity (MD) at every brain location [see Basser
and Jones (2002)]. SPGR images were preprocessed using the DARTEL toolbox included in
the SPM software package (www.fil.ion.ucl.ac.uk/spm), which involved nonlinear
registration to a common reference space, segmentation into grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) in addition to smoothing with a 6mm isotropic
Gaussian kernel.

For this analysis, whole-brain (unmodulated) GM and WM images derived from the SPGR
scans, the T2 structural images plus the FA and MD images derived from the DTI sequence
were used for classification, yielding a total of five distinct modalities for each subject. For
illustrative purposes, an example of each type of image after preprocessing is provided in
Figure 1.

3. Multinomial logit model with GP priors
The aim of this study is twofold: the first is to reliably estimate the probability that new
subjects have MSA, PSP, IPD or none of them, and the second is to assess the importance of
different sources of information in the discrimination among these diseases. We cast this
problem as a multi-modality classification problem, whereby we associate class labels
corresponding to MSA, PSP, IPD and HCs to n subjects described by s = 1, … , q distinct
representations (i.e., modalities), each defined by ds covariates.
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Denote each modality by an n × ds matrix Xs. Let {y1, … , yn} be the set of observed labels
for the n subjects. Assume a 1-of-m coding scheme (m = 4 in our application), whereby the
membership of subject i to class c is represented by a vector yi of length m where (yi)r = 1 if
r = c and zero otherwise.

In this work we propose a probabilistic multinomial logit classification model based on
Gaussian process (GP) priors to model the probability πic := p(yic = 1∣X1, … , Xq) that
subject i belongs to class c. The multinomial logit model assumes that the class labels yi are
conditionally independent given a set of m latent functions fc that model the πic using the
following transformation:

(1)

We assume that the latent variables fc are independent across classes and drawn from GPs,
so that . The assumption of independence between variables belonging to
different classes can be relaxed in cases where there is prior knowledge about that. Note that
the assumption of conditional independence of the class labels given the latent variables is
not restrictive, as the prior over the latent variables imposes a covariance structure that is
reflected on the class labels.

In order to assess the importance of each modality in the classification task, we propose to
model each covariance Kc as a linear combination of covariances obtained from the q
modalities, say, Cs with s = 1, … , q. We constrain the linear combination of covariance

functions to be positive definite by modeling . Note that given the
additivity of the linear model under the GP, it is possible to interpret this model as one
where each latent function is a linear combination of basis functions with covariances Cs.
Since the data modalities employed in this study potentially have different numbers of
features which are are also scaled differently, we employed two simple operations to
normalize the images prior to classification. First we divided each feature vector by its
Euclidean norm, then standardized each feature to have zero mean and unit variance across

all scans. We then chose a covariance for each modality to be  . Given that the
modalities are normalized and that the covariances are linear in the data sources Xs, the
inference of the corresponding weights allows to draw conclusions on their relative
importance in the classification task. In this work we imposed Gamma priors on the weights
exp[θcs], but for the sake of completeness and to rule out any dependencies of the results
from the parametrization of the weights and the specification of the prior, we have also
explored the possibility to use a Dirichlet prior inferring the concentration parameter; we
will discuss this in more detail in the sections reporting the results.

We note here that the representation in equation (1) is redundant, as class probabilities are
defined up to a scaling factor of the exponential of the latent variables. Choosing a model in
which m – 1 latent functions are modeled and one is fixed would remove any redundancy,
but, as described in Neal (1999), “forcing the latent values for one of the classes to be zero
would introduce an arbitrary asymmetry into the prior.” Also, modeling m–1 latent functions
would not allow a direct interpretation of the importance of different modalities given by the
hyper-parameters.

We used all features to perform the classification, because in our experience feature
selection does not provide a benefit in terms of increasing the accuracy of classification
models for neuroimaging data but does increase their complexity. In line with this, a recent
comparative analysis of alternative data preprocessing methods on a publicly available
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neuroimaging data set indicated that feature selection did not improve classification
performance but did substantially increase the computation time [Cuingnet et al. (2011)].

We now discuss how to make inference for the proposed model. In order to keep the
notation uncluttered, we will drop the explicit conditioning on Xs. We will denote by f the
(nc) × 1 vector obtained by concatenating the class specific latent functions fc, and similarly
by y and π the vectors obtained by concatenating the vectors y·c and π·c. Finally, let the m ×
q matrix θ denote the set of hyper-parameters, and K be the matrix obtained by block-
concatenating the covariance matrices Kc.

Given the likelihood for the observed labels, the prior over the latent functions and the prior
over the hyper-parameters, we can write the log-joint density as

One of the goals of our analysis is to obtain predictive distributions for new subjects. Let y*
denote the corresponding label; the predictive density is obtained by marginalizing out
parameters and latent functions via

In this work, we propose to estimate this integral by obtaining posterior samples from p(f,
θ∣y) using MCMC methods. The Appendix gives details of how Monte-Carlo estimates of
this predictive distribution may be obtained. Obtaining samples from p(f, θ∣y) is complex
because of the structure of the model that makes f and θ strongly coupled a posteriori. Also,
there is no closed form for updating f and θ using a standard Gibbs sampler, so samplers
based on an accept/reject mechanism need to be employed (Metropolis-within-Gibbs
samplers) with the effect of reducing efficiency. This motivates the use of efficient samplers
to alleviate this problem as discussed next.

4. MCMC sampling strategies
4.1. Riemann manifold MCMC methods

The proposed model comprises a set of m latent functions, each of which has dimension n,
and a set of q × m weights. Given the large number of strongly correlated variables involved
in the model, we need to employ statistically efficient sampling methods to characterize the
posterior distribution p(f, θ∣y).

Recently, a set of novel Monte Carlo methods for efficient posterior sampling has been
proposed in Girolami and Calderhead (2011) which provides promising capability for
challenging and high-dimensional problems such as the one considered in this paper. In
most sampling methods (with the exception of Gibbs sampling) it is crucial to tune any
parameters of the proposal distributions in order to avoid strong dependency within the
chain or the possibility that the chain does not move at all. As the dimensionality increases,
this becomes a hugely challenging issue, given that several parameters need to be tuned and
are crucial to the effectiveness of the sampler.

The sampling methods developed in Girolami and Calderhead (2011) aim at providing a
systematic way of designing such proposals by exploiting the differential geometry of the
underlying statistical model. The main quantity in this differential geometric approach to
MCMC is the local Riemannian metric tensor which is the expected Fisher Information (FI)
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that defines the statistical manifold; see Girolami and Calderhead (2011) for full details. The
intuition behind manifold MCMC methods is that the statistical manifold provides a
structure that is suitable for making efficient proposals based on Langevin diffusion or
Hamiltonian dynamics. In the case of the sampling of f using RM–HMC, let Gf be the
metric tensor computed as the FI for the statistical manifold of p(y∣f) plus the negative
Hessian of p(f∣θ) (see the Appendix for further details). Introducing an auxiliary momentum
variable  as in HMC, RM–HMC can be derived by solving the dynamics
associated with the Hamiltonian:

Given that the metric tensor is dependent on the value of f, the Hamiltonian is therefore
nonseparable between p and f, and a generalized leapfrog integrator must be employed
[Girolami and Calderhead (2011)]. RM–HMC can be seen as a generalization of Hybrid
Monte Carlo (HMC) [Neal (1993)], where the mass matrix is now substituted by the metric
tensor.

4.2. Ancillary and sufficient augmentation
The proposed classification model is hierarchical, and the application of a Metropolis-
within-Gibbs style scheme, sampling f∣θ, y then θ∣f, y, leads to poor efficiency and slow
convergence. This effect has drawn a lot of attention in the case of hierarchical models in
general [Papaspiliopoulos, Roberts and Sköld (2007), Yu and Meng (2011)] and recently in
latent Gaussian models [Murray and Adams (2010), Filippone, Zhong and Girolami (2012)].
In order to decouple the strong posterior dependency between θ and f, we can apply
reparametrization techniques, whereby we introduce a new set of variables νc related to the
old set of latent variables by a transformation fc = g(νc, θc). This transformation can be
chosen to achieve faster convergence as studied, for example, in Papaspiliopoulos, Roberts
and Sköld (2007), and should be designed to handle both strong and weak data limits,
namely, situations where data overwhelm the prior or not. In the terminology of Yu and
Meng (2011), we identify two particular cases, namely, Sufficient augmentation (SA) and
Ancillary augmentation (AA). In the SA scheme the sampling of θ is done by proposing θ
′∣θ, f, y. In the case of weak data, as it is the case in this application, the SA parametrization
is inefficient, given the strong coupling between f and θ. In contrast, in the AA scheme, the
new set of latent variables νc is constructed to be a priori independent from θ; this is a good
candidate to provide an efficient parametrization in cases of weak data. To see this, in the
case of no data, the posterior over hyper-parameters and the newly defined latent variables
νc corresponds to the prior which is factorized and easy to explore.

This parametrization makes the νc ancillary for y. We propose to realize this by defining fc =
Lcνc, where Lc is any square root of Kc (in the remainder of this paper we will consider Lc as
the Cholesky factor of Kc). This sampling scheme amounts to sampling θ′∣θ, ν1, … , νm, y.
In the next section we will report experiments showing the relative merits of SA and AA
combined with manifold methods, with the ultimate goal of achieving efficiency in inferring
latent functions and hyper-parameters in our application. All implemented methods were
tested for correctness as proposed by Geweke (2004), and convergence analysis was
performed using the  potential scale reduction factor [Gelman and Rubin (1992)].

5. Comparison of MCMC sampling strategies
In this section we investigate the efficiency of various MCMC sampling strategies in our
application. Table 1 lists the sampling approaches that we considered for this study. All
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approaches make use of RM–HMC for sampling the latent variables with different metrics.
Approach (a) uses a simple isotropic metric so that RM–HMC is effectively HMC with an
identity mass matrix. Approaches (c), (d) and (f) use the metric derived from the FI (see the
Appendix), while approaches (b) and (e) use an alternative homogeneous metric, defined as

. Note that this is similar to the definition of the metric tensor
outlined in the Appendix, except πp and Φp are defined by the prior frequency of the classes
in the training set instead of by the likelihood. Employing this homogeneous metric is less
efficient than employing a position specific metric, but it holds two practical advantages: (i)
it has a substantially lower computational cost since it does not recompute and invert the
metric tensor at every step and (ii) the explicit leapfrog integrator may be used in place of
the generalized (implicit) leapfrog integrator used in Girolami and Calderhead (2011).

In sampling the hyper-parameters, approaches (a)–(c) effectively employ an HMC proposal
with identity mass matrix with SA parametrization. Approach (d) uses RM–HMC with
metric derived from the FI as shown in the Appendix, whereas approaches (e) and (f) make
use of Metropolis–Hastings (MH) with an identity covariance with AA parametrization.

Approach (a) can be viewed as a simple baseline approach since it does not incorporate any
knowledge on the curvature of the target distribution and attempts to explore the parameter
space by isotropic proposals. It is presented primarily as a reference for the other
approaches. Approaches (b) and (c) employ manifold methods to efficiently sample the
latent variables only while approach (d) also applies them to sample the hyper-parameters.
Approaches (e) and (f) employ manifold methods for the latent variables and an MH
sampler with AA for the hyper-parameters.

For all the experiments that follow, we applied an independent Gamma prior to each weight
exp(θcs), with a = b = 2, where a and b refer, respectively, to shape and rate parameters. This
prior is relatively vague but nevertheless constrained the sampler to a plausible parameter
range.

We tuned each of the sampling approaches described above using pilot runs and assessed
convergence by recording when all sampled variables had . According to this
criterion, sampling approaches (e) and (f) converged after 1000 iterations for the latent
function variables and after a few thousands of iterations for the hyper-parameters. Sampling
approaches (a)–(d) did not converge even after 100,000 iterations, so will not be considered
further. This demonstrates that the structure of the model poses a serious challenge in
efficiently sampling f and θ, no matter how efficient are the individual samplers employed in
the Metropolis-within-Gibbs sampler. For all subsequent analysis, we discarded all samples
acquired prior to convergence (burn-in). A plot reporting the evolution of Gelman and
Rubin’s shrink factor vs the number of iterations (for the first 10,000 iterations) for the
slowest variable to converge is reported in Figure 2. The left and right panel of Figure 2
correspond to the slowest variable in the approach (e) for the multi-modality and multi-
region classifiers (see next section), respectively; in both cases the slowest variable was one
of the hyper-parameters.

For the latent function variables, we used an RM–HMC trajectory length of 10 leapfrog
steps and a step size of 0.5 for sampling approaches (e) and (f). This appeared to be near
optimal and yielded an acceptance rate in the range of 60–70%, while keeping correlation
between successive samples relatively low. For the hyperparameters, a step size of 0.2
yielded an acceptance rate in the range of 60–70%, although correlation between successive
samples remained high (see below).
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We report the Effective Sample Size (ESS) [Geyer (1992)] for each method in Table 2,
expressed as a percentage of the total number of samples. The ESS is an autocorrelation
based method that is used to estimate the number of independent samples within a set of
samples obtained from an MCMC method. Both approaches (e) and (f) sampled the latent
function variables relatively efficiently, although there was some variability between
different variables. Sampling of the hyper-parameters was much more challenging than the
sampling of the latent function variables, and the MH samplers achieved an ESS less than
0.5% for all variables. Thus, for subsequent analysis we ran a relatively long Markov chain
(5 million iterations) which we thinned by a factor of 500, ensuring independent sampling
for all variables. Note that RM–HMC with metric  and RM–HMC with matrix Gf
[approaches (e) and (f)] performed approximately equivalently for sampling the latent
function variables. Thus, for the remainder of this paper we focus on the results obtained
from the sampler that employed the homogeneous metric  for the latent functions and MH
for the hyper-parameters [i.e., approach (e)], owing to its lower computational cost. The
results reported in this section are in line with what is observed in a recent extensive study
on the fully Bayesian treatment of models involving GP priors [Filippone, Zhong and
Girolami (2012)]. In particular, it has been reported that the sampling of the latent variables
can be done efficiently using RM–HMC and a variant with the homogeneous metric , and
that for the hyper-parameters the MH proposal with the AA parametrization is a good
compromise between efficiency and computational cost.

6. Predictive accuracy and assessment of neuroimaging data modalities
In this section we have three main objectives: first, we aim to demonstrate that the predictive
approach we propose can accurately discriminate between multiple neurological conditions.
Second, we investigate which neuroimaging data modalities carry discriminating
information for these disorders and whether greater predictive performance can be achieved
by combining multiple modalities. Finally, we investigate the predictive ability of different
brain regions for discriminating between each of the disorders.

For estimating the predictive ability of the classifiers we performed four-fold cross-
validation (CV). In the CV procedure, we randomly partitioned the data into four folds so
that each CV fold contained approximately the same frequency of classes as in the entire
data set. We then carried out the inference leaving out one fold that we used to assess the
accuracy of the proposed method; leaving out one fold at a time, it is possible to obtain an
estimate of performance on unseen data.

We compared the performance of the proposed multinomial logit model with simpleMKL.
Similar to the proposed method, simpleMKL allows an optimal linear combination of data
sources or brain regions to be inferred from the data, but, unlike the proposed approach,
simpleMKL is not a probabilistic model. In the MKL literature, each data source is referred
to as a “kernel” which corresponds to a covariance function for the proposed multinomial
logit model. Since SVMs do not support true multi-class classification, we employed a “one-
vs-all” approach to combine multiple binary classifiers to provide a multi-class decision
function. This has the consequence that simpleMKL estimates a linear combination of
kernels that provides optimal accuracy across all binary classification decisions, and is
therefore not able to estimate an independent set of kernel weighting factors for each class.
To ensure the comparison with the multinomial logit model was as fair as possible, we used
nested cross-validation to find an optimal value for the SVM regularization parameter C. We
achieved this by performing an inner “leave-one-out” cross validation cycle (“validation”)
within each outer four-fold cycle (“test”) while we varied C logarithmically across a wide
range of values (10−5 to 105 in steps of 10). We selected the value of C that provided the
optimal accuracy on the validation set, before applying it to the test set. To further examine
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whether any performance difference could be attributed to the extension of simpleMKL to
multiclass classification, we also compared the accuracy of simpleMKL and the proposed
model on all possible binary classification decisions. For simpleMKL, we used the
implementation provided by Rakotomamonjy et al. (2008) where we used the “weight
variation” stopping criterion and the default options.

We employed two measures of predictive performance: (i) balanced classification accuracy,
which measures the mean number of correct predictions across all classes assuming a zero–
one loss and (ii) a multi-class Brier score, which also quantifies the confidence of classifier
predictions on w unseen samples and can be computed as the following error measure:

. Note that simpleMKL does not provide probabilistic
predictions, so the Brier score is not appropriate to evaluate the performance of this
algorithm. Gneiting and Raftery (2007) reported studies on the connections between the
Brier score and predictive accuracy in the case of two-class classification, reporting that
simple accuracy is a proper score unlike the Brier score which is strictly proper. We are
unaware of any results on the connections between the two scores in the case of multi-class
classification.

For comparison we also present predictive accuracy measures derived from classifiers using
each data source independently, and a classifier using an unweighted linear sum of data

sources (i.e.,  for all c).

6.1. Multi-modal classifier
We first studied the classification problem based on the five data sources obtained from the
three modalities, namely, GM, WM, T2, FA and MD, as explained in Section 2, so that q =
5. The overall performance of each model is summarized in Table 3. Note that all classifiers
exceeded the predictive accuracy that would be expected by chance (i.e., p < 0.05, χ2 test).

From Table 3, it is apparent that classifiers based on the T2 and FA data sources achieved
lower classification accuracy than all the other data sources, suggesting they are not ideally
suited to discriminating between these disorders. Further, the linear combinations of sources
did not achieve higher accuracy than the best individual data source and the highest
accuracy was obtained using the GM images only, although the difference is relatively
small. The simpleMKL classifier produced lower accuracy than either linear combination
derived from the multinomial logit model. The mean accuracy for the binary classifiers over
all pairs of classes was slightly higher for the GP classifiers (0.807) relative to simpleMKL
(0.741), suggesting that most of the performance difference between simpleMKL and the
proposed multinomial logit approach can be attributed to the extension of simpleMKL to the
multi-class case.

In contrast to the outcomes for classification accuracy, the linear combinations of data
sources produced more accurate probabilistic predictions than any of the individual
modalities, indicative of a disjunction between categorical classification accuracy and
accurate quantification of predictive uncertainty (Table 3). This is probably a result of this
model having greater flexibility to scale the magnitude of the latent function variables.

6.1.1. Covariance parameters for the latent functions—The posterior distribution
of the weights is an important secondary outcome from this model and is summarized in
Figure 3(a). These hyper-parameters collectively describe the relative contribution (or
weighting factors) for each modality in deriving the prediction for each class.
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The posterior class distribution for covariance weights in this model is relatively flat across
all modalities for each class although each weight has slightly greater magnitude for the PSP
and MSA classes relative to the other classes. Overall, the results from this section provide
evidence that all imaging modalities contain similar information for discriminating disease
groups. In other words, we found little benefit from combining multiple neuroimaging
sequences. This has the important implication that for the purposes of discrimination it
appears sufficient to acquire a single structural MRI scan (i.e., SPGR image), which is
comparatively rapid and inexpensive to acquire. Although the T2 images are also relatively
inexpensive, they do not offer the same discriminative value and the DTI images, which are
time-consuming and expensive to acquire, and appear to offer little additional benefit.

In the left panel of Figure 4 we report the kernel weights obtained by simpleMKL across the
four folds. We can see how the values of the weights are not consistent across the folds; for
example, GM is given zero weight in the fourth fold, whereas it seems to be important for
the other three cases. Modality T2, instead, is consistently given zero weight across the four
folds, suggesting that this might not add any information to the other modalities. This is in
contrast with the results of the probabilistic classifier that suggests that there is not much
evidence in the data to completely ignore the information from one of the modalities.

6.2. Multi-region classifier
In this section we illustrate how the proposed methodology may be used to estimate the
predictive value of different brain regions for classification, although we will investigate the
relative contribution of different brain regions in greater detail and comment on the clinical
significance of these findings in a separate report. For neurological applications, it is
primarily important to assist interpretation, since it is desirable to identify differential
patterns of regional pathology for each disease. While there are other methods to achieve
this goal, an advantage of the proposed approach is that it provides a full posterior
distribution over regional weighting parameters. For this analysis we used only the GM data
modality, since it showed the highest discrimination accuracy, and used an anatomical
template [Shattuck et al. (2008)] to parcellate the GM images into six regions: (i) brainstem,
(ii) bilateral cerebellum, (iii) bilateral caudate, (iv) bilateral middle occipital gyrus, (v)
bilateral putamen and (vi) all other regions, so that now q = 6. As described above, the
cerebellum, brainstem, caudate and putamen are affected to varying degrees in MSA, PSP or
IPD. The middle occipital gyrus region was selected as a control region, as this is
hypothesized to contain minimal discriminatory information.

All sampling approaches performed similarly for this problem in that none of the sampling
approaches (a–d) converged after 100,000 iterations and sampling approaches (e) and (f)
converged after 1000 iterations for the latent function variables and after a few thousands of
iterations for the hyper-parameters (see the right panel of Figure 2). Table 4 reports the
efficiency of the sampling approaches (e) and (f), as they were the only ones that converged
in a reasonable number of iterations.

The sampling efficiency for the latent function values was somewhat lower for this problem
than for the multi-modal prediction problem described in the previous section. On average,
the sampling efficiency for the hyper-parameters was approximately equivalent to the values
reported above, but the minimum ESS was slightly lower. To accommodate this, we thinned
all Markov chains by a factor of 1000, ensuring approximately independent sampling for all
variables.

Predictive accuracy measures for the multi-region classifier are presented in Table 5. All
classifiers exceeded the predictive accuracy that would be expected by chance (p < 0.05, χ2

test) except the simpleMKL classifier which performed very poorly for this data set. As for
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the multi-modal classifier, we compared the predictive accuracy of simpleMKL to the logit
model across all binary classification decisions. In this case, the models produced similar
accuracy (0.765 for the GP classifiers, 0.780 for simpleMKL). This provides further
evidence that the suboptimal performances of simpleMKL can be traced to the extension of
the binary SVM to the multi-class setting. In particular, it is likely that the suboptimal
performance of simpleMKL in the multi-class context is due to the fact that it does not
support different weighting factors for each class. In this case, the classifiers using weighted
and unweighted covariance sums of brain regions produced the most accurate predictions
and quantified predictive confidence most accurately. Again, there was negligible difference
between the classifiers using the weighted and unweighted sums.

6.2.1. Covariance parameters for the latent functions—The posterior distribution
of the weights for the multi-region classifiers is summarized in Figure 3(b). The posterior
means of the weighting factors were again relatively constant between brain regions and also
showed a high variance. This indicates that the relative contribution of different brain
regions was not strongly determined by the data and that we should be cautious about
interpreting the relative contributions of the different brain regions using this approach.
Nevertheless, the clearest differential effect among regions was for the cerebellum, where
the lower quartile of the posterior distribution for the MSA class was greater than the mean
of all other regions. In addition, the brainstem also made a small positive contribution
toward predicting the MSA class. As described above, both the cerebellum and brainstem
are known to undergo severe degeneration in MSA. The strongest positive contributions to
predicting the PSP class were obtained from the brainstem, caudate and putamen, which
once again are regions known to show the extensive degeneration in PSP. The regional
weighting factors for the IPD and control groups were somewhat flatter, which is consistent
with the focal nature of the degeneration in early-mid IPD and with the observation that the
brain scans of these groups are difficult to discriminate from one another. However, the
posterior suggests that the cerebellum showed a relatively increased weighting relative to
other regions for the IPD class, and that the putamen was assigned a relatively increased
weighting for the IPD and HC classes, which is congruent with the expectation that these
classes are characterized by greater GM concentration in those regions relative to the PSP
and MSA classes respectively. From the current analysis, it is difficult to determine the
regions having the greatest predictive value for discriminating the PD from the HC group.
As future work, separate binary classifiers trained to discriminate these classes directly may
be beneficial in this respect. We notice also that the control region (i.e., the middle occipital
gyrus) was assigned comparatively low weighting for every class.

Overall, the results from this section suggest that distributed patterns of abnormality across
multiple brain regions are necessary to accurately discriminate between classes. The
neurodegenerative disorders studied in the present work have relatively well-defined
regional pathology, but even in this case the most accurate predictions were obtained from
the classifiers using all brain regions.

Again, the analysis of the weights obtained by simpleMKL (right panel of Figure 4) shows
that the nonprobabilistic classifier obtains sparse solutions for the weights that are not
consistent across the folds, thus preventing one from being able to properly assess the role
played by each region in the classification task.

6.3. Results with the Dirichlet prior
Here we briefly discuss the results obtained when imposing a Dirichlet prior on the weights
exp(θcs), focusing only on the multi-region classifier for the sake of brevity. The sampling
strategy was as in approach (e), with the difference that the update of the hyper-parameters
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followed a MH sampling with proposal based on Dirichlet distributions. In order to test the
robustness to prior specification, we added a further level in the hierarchy of the model by
imposing a prior over the concentration parameter of the Dirichlet distribution, so that the
model had a joint density p(y, f, θ, α) = p(y∣f)p(f∣θ)p(θ∣α)p(α). Including a hyper-prior over
the concentration parameter has the effect of averaging out the choice of the prior and
inferring the concentration parameter allows inference of levels of sparsity from the data.

From the computational perspective, the sampling of α induces a further level of correlation
in the chains. We ran thorough convergence tests, and we obtained similar convergence and
efficiency results as in the previous analysis. We chose a fairly diffuse hyper-prior p(α) as
exponential with unit rate, so that E[α] = 1, which corresponds to a uniform prior over the
simplex for the weights.

Note that data has quite a weak effect in informing the posterior over the concentration
parameter, as they are three levels apart in the hierarchy [Goel and DeGroot (1981)].
Nevertheless, comparing prior and posterior over α, we notice a slight reduction in the
interquartile range from [0.29, 1.39] to [0.51, 1.49] and a shift of the mean from 1 to 1.16,
thus supporting a diffuse (nonsparse) prior over the weights. In terms of questions addressed
in this particular application, the results obtained by adding a hyper-prior lead to the same
conclusions.

7. Refining predictions using predictive probabilities
We have discussed how a probabilistic approach allows us to assess the importance of
different neuroimaging modalities in disease classification. Another advantage of employing
a probabilistic classification model is that predictive probabilities quantify the uncertainty in
the outcome, which allow a “reject option” to be specified. Under this framework, the
researcher specifies in advance a confidence threshold below which a prediction is
considered to be inconclusive. In cases where the maximum class probability does not
exceed this threshold, the final decision may be deferred to another classification model or a
human expert. To investigate the suitability of the proposed classifier for this approach and
to assess the accuracy of the classifier across varying rejection thresholds, we plotted
accuracy–reject curves for each of the classifiers investigated in this work (Figure 5). These
were constructed by varying the rejection threshold monotonically from 0 to 1 in steps of
0.01. At each threshold, we computed the rejection rate as the proportion of samples for
which the most confident class prediction did not exceed the rejection threshold and
measured the accuracy of the remaining samples. The accuracy–reject curves were then
generated by plotting accuracy as a function of rejection rate.

The accuracy–reject curves show that: (i) predictive performance increases monotonically
across most rejection rates and (ii) the multi-source classifiers perform better than any of the
individual modalities or brain regions across most rejection rates. This implies that the
multi-source classifiers not only make fewer errors, but also quantify predictive uncertainty
more accurately than any of the individual regions. At high rejection thresholds, the multi-
modality classifier is outperformed by the GM modality, owing to two confident
misclassifications deriving from the FA and MD modalities, suggesting the possibility of
atypical white matter pathology in these subjects.

8. Conclusions
In this paper we presented the application of a multinomial logit model based on GP priors
to the problem of classification of neurological disorders based on neuroimaging measures.
The proposed model is flexible and highly descriptive, and it can be employed in scenarios
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where the focus is on gaining insights into the relative importance of different data
modalities or brain regions in the application under study. Also, it allows accurate
quantification of the uncertainty in the predictions, which is crucial in several applications
and especially for predicting disease state in clinical applications.

From a statistical perspective, carrying out the inference task in the model presented in this
paper and in latent Gaussian models in general represents a serious challenge. This paper
presented a combination of advanced inference techniques based on MCMC methods that
allowed us to tackle this problem in an efficient way. Predictions for unseen data were
obtained by integrating out all the parameters in the model, thus capturing the uncertainty in
the inferred parameters. We also investigated the use of a hyper-prior to integrate out the
choice of the prior.

The motivating application for this study aimed to use neuroimaging measures to classify a
cohort of 62 participants, consisting of both healthy controls and patients affected by one of
three variants of Parkinsonian disorder. We demonstrated accurate classification of disease
state that compares favorably with the only existing study of which we are aware of
employing whole-brain neuroimaging measures to discriminate between these disorders
[Focke et al. (2011)]. For future work it will be important to: (i) validate how well the
predictive accuracy obtained here generalizes to earlier disease stages and (ii) investigate
methods to improve the predictive accuracy beyond what was reached here, which will
become increasingly important when the proposed method is evaluated in early stage
disease. Construction of classification features from brain images that better reflect the
underlying pathology may be particularly beneficial in this regard. We showed how the
results of the inference allowed us to draw conclusions regarding the relative importance of
neuroimaging measures and brain regions in discriminating between classes. We also
compared the results with simpleMKL, a nonprobabilistic multi-modality classifier based on
SVMs, which shows lower accuracy and, most importantly, is not able to address questions
regarding the relative importance of neuroimaging measures and brain regions in a
statistically consistent way. In contrast, the proposed method was able to give insights into
the predictive ability of the different neuroimaging sequences, and suggested that all the
modalities investigated in this study carry similar discriminative information. This has
important implications for planning future studies, and suggests that there is little benefit in
acquiring multiple neuroimaging sequences. Instead, for the purposes of prediction,
acquiring a single structural brain image is probably the most cost-effective approach.
Another level of the analysis showed that the proposed method was able to quantify the
predictive ability of different brain regions for discriminating between classes. Similar to the
previous analysis, this analysis showed that all regions carry some discriminative
information, but at the same time seems to indicate that some of them have greater
predictive ability than others for different classes. Further, the regional distribution of these
regions is in accordance with the known pathology of the disorders based on the clinical
literature.

APPENDIX A: DATA ACQUISITION DETAILS
For each subject, a T2-weighted structural image, a T1-weighted spoiled gradient recalled
(SPGR) structural image and a DTI sequence were acquired using a 1.5T GE Signa LX NVi
scanner (General Electric, WI, USA). All images had whole brain coverage and imaging
parameters for the T2 weighted images and DTI sequences have been described previously
[Blain et al. (2006)]. Imaging parameters for the SPGR imaging sequence were as follows:
repetition time = 18 ms, echo time = 5.1 ms, inversion time = 450 ms, matrix size = 256 ×
152, field of view (FOV) = 240 × 240. SPGR Images were reconstructed over a 240 × 240
FOV, yielding an in-plane resolution of 0.94 × 0.94 mm and 124 1.5 mm thick slices.
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Subjects provided informed written consent, and the study was approved by the local
Research Ethics Committee.

APPENDIX B: MCMC ADDITIONAL DETAILS
Let K*. be an m × (mn) block diagonal rectangular matrix where entries in the rth diagonal
block contain the covariance of the test sample with the training samples corresponding to
the rth covariance Kr. Also, let K** be an m × m matrix where the i, j entry is the covariance
of the test sample corresponding to the covariances Ki and Kj . A priori we assumed zero
covariance across latent functions, so K** will be diagonal. Using the properties of GPs,
given f and θ, then  with μ* = K*·K−1f and Σ* = K** – K*·K−1K·*.
Given N1 independent posterior samples for f and θ, we can estimate the integral by

Each of the former integrals can be estimated again by a Monte Carlo sum, by drawing N2
independent samples from p(f*∣f(i), θ(i)) which is Gaussian:

The required gradients of the joint log-density follow as  and

and the FI for the two groups of variables, along with the negative Hessian of the priors are

Gf = K−1 + diag(π) – ΦΦT and , where Φ is a
(mn) × n matrix obtained by stacking by row the matrices diag(πc). The derivatives of the
two metric tensors needed to apply RM–HMC can be computed by using standard properties
of derivatives of expressions involving matrices.
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Fig. 1.
Examples of each data source (after preprocessing), taken from the same slice and subject.
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Fig. 2.
Convergence analysis: plot reporting the evolution of Gelman and Rubin’s shrink factor vs
the number of iterations for the slowest variable to converge in approach (e) for the multi-
modality classifier (left panel) and the multi-region classifier (right panel).
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Fig. 3.
Posterior distributions for the predictive weights for the multi-modality classifier (a) and the
multi-region classifier (b). Panel (a): Data sources: (1) GM, (2) WM, (3) T2, (4) FA, (5)
MD. Panel (b): Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle occipital
gyrus, (5) putamen, (6) all other regions.
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Fig. 4.
Weights of the neuroimaging modalities (left panel) and brain regions (right panel) obtained
by simpleMKL across the four folds. Left panel: Data sources: (1) GM, (2) WM, (3) T2, (4)
FA, (5) MD. Right panel: Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle
occipital gyrus, (5) putamen, (6) all other regions.
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Fig. 5.
(a) Accuracy–reject curve for multi-modality classifiers. (b) Accuracy–reject curve for
multi-region classifiers.
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Table 1

Sampling schemes evaluated

p(f′|f,θ) p(θ′|f,θ)

Approach Sampler Metric Sampler Metric Scheme

(a) RM–HMC I RM–HMC I SA

(b) RM–HMC F̂ RM–HMC I SA

(c) RM–HMC G f RM–HMC I SA

(d) RM–HMC G f RM–HMC Gθ SA

(e) RM–HMC F̂ MH – AA

(f) RM–HMC G f MH – AA
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Table 2

Efficiency of converged sampling schemes (multi-source classifier). Min and max refer to the minimum and
maximum ESS across all sampled variables

Approach
Mean % ESSf

(min, max)
Mean % ESSθ

(min, max)

(e) 27.04 (5.31, 48.06) 0.34 (0.21, 0.48)

(f) 24.11 (5.71, 42.86) 0.31 (0.19, 0.42)
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Table 3

Predictive accuracy (multi-source classifier). Min and max values refer to minimum and maximum values
across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 GM only 0.627 (0.321, 0.854) 0.667 (0.636, 0.712)

2 WM only 0.603 (0.350, 0.771) 0.653 (0.609, 0.710)

3 T2 only 0.545 (0.500, 0.604) 0.663 (0.619, 0.695)

4 FA only 0.569 (0.442, 0.688) 0.675 (0.645, 0.703)

5 MD only 0.623 (0.533, 0.750) 0.631 (0.588, 0.680)

6 Weighted sum 0.598 (0.350, 0.708) 0.588 (0.517, 0.662)

7 Unweighted sum 0.610 (0.400, 0.708) 0.553 (0.469, 0.646)

8 SimpleMKL 0.418 (0.143, 0.625) –
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Table 4

Efficiency of converged sampling schemes (multi-region classifier). Min and max refer to the minimum and
maximum ESS across all sampled variables

Approach
Mean % ESSf

(min, max)
Mean %ESSθ

(min, max)

(e) 8.52 (2.37, 34.85) 0.28 (0.11, 0.64)

(f) 9.42 (2.32, 35.44) 0.31 (0.11, 0.50)
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Table 5

Predictive accuracy (multi-region classifier). Min and max values refer to minimum and maximum values
across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 Brainstem only 0.578 (0.500, 0.688) 0.595 (0.555, 0.643)

2 Cerebellum only 0.478 (0.333, 0.562) 0.634 (0.593, 0.643)

3 Caudate only 0.349 (0.221, 0.520) 0.737 (0.693, 0.764)

4 Mid. occipital gyrus only 0.419 (0.333, 0.479) 0.741 (0.677, 0.773)

5 Putamen only 0.438 (0.354, 0.521) 0.668 (0.604, 0.718)

6 All other regions 0.424 (0.321, 0.563) 0.753 (0.724, 0.779)

7 Weighted sum 0.614 (0.500, 0.708) 0.547 (0.499, 0.593)

8 Unweighted sum 0.624 (0.500, 0.708) 0.546 (0.501, 0.592)

9 simpleMKL 0.229 (0.111, 0.375) –
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