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Abstract
The progressive increase in the elderly population worldwide has resulted in higher numbers of
individuals affected by age-associated diseases, such as neurodegenerative and heart diseases,
metabolic impairment, or cancer, with the subsequent burden for national health systems.
Therapeutic interventions aimed to increase the quality of life at advanced age are visualized as
important demands for the future, both at the level of individuals and society. Novel advances in
telomerase function from several independent laboratories have resulted in potential new
therapeutic strategies which appear as promising new venues to prevent cellular and tissue
dysfunction and organismal decline, thereby increasing the so-called “health span”. Here, we
analyze these recent advances.

Ageing as the cause of disease
Ageing, previously though has an unmodifiable trait, is nowadays viewed as a dynamic
process. Furthermore, aging is currently seen as a causative factor for tissue dysfunction and
increased risk for developing various age-associated diseases, including cancer. This
highlights the importance of understanding the molecular and genetic causes of aging for the
developed world, which is experiencing a dramatic increase in the elderly population [1]. In
particular, a better understanding of how ageing results in tissue dysfunction and/or cancer
and how we can circumvent ageing-associated decline are important questions at the present
time. It has been demonstrated that ageing could be modulated and respond to several
biological pathways [2]. A number of these pathways are conserved in different species,
demonstrating that ageing can involve common cellular processes, which are conserved over
evolution. In particular, pathways involved in genome stability, nutrient sensing, oxidative
damage balance, and growth, seem to be central in ageing modulation [2,3]. In this review,
we will focus on the relatively recent notion that aging is produced by accumulation of DNA
damage associated to cell division. In particular, we will discuss recent advances for health
improvement in mammals (in particular laboratory mice), based on prevention of the
accumulation of critically short telomeres, a particularly deleterious type of DNA damage
which induces a persistent DNA damage response (DDR), leading to cell death and
senescence at the cellular level, and to loss of regenerative capacity of tissues at the
organismal level [4-6]. This review will examine what is known on the historical role of
telomerase in ageing, paying special attention to recent works which undoubtedly
demonstrate that ageing can be actually reversed (and not only retarded) through telomerase
re-expression.
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Telomerase, DNA damage, and ageing
Tissue degeneration occurs in long-lived organisms. The accumulation of dysfunctional
cells, together with a limited regenerative capacity of tissues, is thought to determine the
age-related decline of body organs [7,8] and, in some situations, settle a basis for cancer
progression [9]. Dysfunctional cells, usually characterized by the presence of short
telomeres, are a barrier for tumor progression when presenting an intact DNA damage
response which directs cells for senescence or cell death [8,10,11], although recent evidence
demonstrated that transient telomere dysfunction per se could promote chromosomal
instability and carcinogenesis in telomerase-proficient mice [12]. If DNA damage response
barriers are bypassed (for instance through deletion of p53 [11]) short telomere cells resume
and accelerate transformation phenotypes. In this scenario, re-activation of telomerase
further enables full malignancy [13].

Therapies that prevent the appearance or that decrease the number of damaged cells are
therefore viewed as potentially effective in slowing the ageing progression. In this regard,
increased gene dose of tumor suppressor genes that eliminate damage cells from the
organism through apoptosis and senescence such as p53 and p16 are known to increase life
span [14,15] furthermore, clearance of senescent cells from already-adult organisms also
delays aging, thus confirming the involvement of damaged cells in tissue dysfunction [16].
Similarly, prevention of metabolic damage also increases health span, as recently shown for
SIRT1 and PTEN gain of function mouse models [17-19]. Interestingly, a link between
telomeres and mitochondrial function has been also proposed [20,21]. In particular, aging
provoked by telomere-dysfunction leads to changes in key metabolic genes that involve a
functional p53 and are characterized by a repression of PGC-1α. In turn, telomerase re-
activation in old wild-type mice, results in increased PGC-1α levels [21]. These metabolic
changes associated to telomere dysfunction could potentially synergize with the DNA
damage response triggered by short telomeres and contribute to senescence and/or apoptosis,
and the eventual organismal failure associated to the aging process. Here we will focus in
strategies aimed to decrease the accumulation of persistent DNA damage associated to short/
dysfunctional telomeres by using telomerase reactivation strategies, which has been
extensively linked to organismal aging [4,22,23].

Telomerase phenotypes
Telomerase is a multiprotein complex encompassing a reverse transcriptase catalytic subunit
(Tert) and an associated RNA component (Terc) [24]. Telomerase adds DNA repeats
(TTAGGG in mammals) to chromosome ends, thereby counteracting telomere shortening
associated to DNA replication (the so-called end-replication problem) or to DNA degrading
activities [25-28]. Animal models with mutations in telomerase or telomere-associated
proteins (shelterin) have been instrumental to unveil the role of telomeres in cancer and
ageing [4-6,22,23,29-33]. In particular, knockout mice for Tert or Terc with critically short
telomeres are characterized by an increased incidence of age-related diseases and premature
tissue degeneration which mostly, but not only, affects tissues with elevated cellular
turnover such as the bone marrow or the gastrointestinal system [34]. In this regard, a role
for telomerase and telomere integrity in stem cell functionality has been shown for different
adult stem cell niches, including the skin and the bone marrow [29,35-38]. In particular,
some adult stem cell compartments are telomerase positive and present longer telomeres
than the surrounding tissues [37, 39, 40]. Further supporting a role for stem cells in tissue
functionality, mice with mutations directly affecting the pools of stem cells are characterized
by accelerated aging [41]. Late generation Tert or Terc knockout mice present a decrease in
mean telomere length and a higher percentage of short telomeres in several organs
(including the pools of stem cells), which correlate with an incapacity of tissues to
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regenerate and result, ultimately, in an accelerated tissue degeneration and a concomitant
decrease of the lifespan [5,6,42]. These seminal studies characterizing telomerase deficient
mice have placed telomeres and telomerase as key elements for organismal aging. Further
supporting it, there is recent evidence demonstrating that telomere size measured early in
life is a bona fide predictor of lifespan in birds [43], and telomere dynamics seems to
similarly correlate with the lifespan of laboratory mice (Vera E.; Bernardes de Jesus B.;
Foronda M.; Blasco MA.; Cell Reports, In Press, [2012]).

Anti-ageing role of telomerase
Telomerase constitutive expression by using mouse transgenesis in adult tissues has
pinpointed a role for telomerase in tissue fitness and prevention of aging, although at the
expense of an slightly increased incidence of cancer [22,44,45], Importantly, when
cancelling the increased cancer incidence associated to constitutive transgenic telomerase
expression by generating telomerase transgenic mice in a cancer resistant background owing
to increase gene dosage of tumors suppressor genes [p16, Arf and p53], this resulted in an
improved extension of lifespan of 43% when comparing to the corresponding WT mice [22].

The cancer promoting activity of telomerase observed in the transgenic mouse models,
however, is not apparent when telomerase is re-activated late in life. In particular, we have
recently shown by using a gene therapy strategy with non-integrative adeno associated virus
(AAV), that re-activation of telomerase in adult or old mice results in delayed aging and
significant lifespan extension in the absence of increased cancer susceptibility [21]. A single
telomerase (TERT) treatment of WT mice with these vectors was sufficient to rescue the
age-dependent decline and to delay normal mouse physiological aging (Fig. 1). In this
experimental setting, median lifespan was extended by up to 24% in 1-year-old mice, and by
13% in animals of 2 years of age. This study confirms that telomerase expression, by means
of a gene therapy, could be considered a feasible approach to extend lifespan without
increasing cancer incidence. Old mice treated with TERT showed a better skin and
metabolic fitness and less bone loss after treatment, which are well characterized indicators
of ageing progression. Moreover, TERT-treated mice showed an improved age-related
impairment of balance and coordination and interestingly, a tendency for memory
improvement. Telomerase has been proposed to have telomere-independent roles
(independent of its catalytic activity) as a cofactor on the promoter of Wnt targeted genes
[46], although questions have been raised about the relevance of this activation [42,47]. In
this regard, when mice were treated with a catalytically dead TERT (TERT-DN [48]) the
beneficial effects of TERT could not be reproduced and longevity was not increased,
demonstrating that healthspan amelioration requires telomerase reverse transcriptase activity
[21].

Importantly, the safety of this type of strategy is illustrated by the fact that adult mice
expressing TERT did not develop more cancer. This could be related to the fact that AAV
vectors are non-integrative, leading to a loss of TERT expression in highly proliferating
cells or tissues, such as cancer cells. Other explanation, could be the fact that AAV
preferentially targets post-mitotic cells from peripheral tissues (of adult mice in that case),
which are considered more refractory to cancer than the highly proliferative tissues. In this
regard, telomerase re-introduction in an accelerated model of ageing involving accelerated
telomerase loss (G4TERT-ER model) rescues the “ageing-phenotype” [49] without increasing
cancer incidence. This could be related to the fact that cells lacking telomerase are resistant
to cancer initiation [50], mimicking the tumor suppressor situation and, somehow, can
preserve this characteristic after a telomerase pulse, even in the presence of a higher
genomic instability [49]. These studies validate that telomerase could play important roles in
tissue regeneration of adult organisms and are a proof-of-principle that ageing can be
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reversed and retarded. Moreover, normal aging comprises similar changes to those observed
in aging produced by accelerated telomere shortening further linking telomere biology to the
aging process. Novel therapeutic strategies involving telomerase expression could unveil
potential mechanisms against tissue deterioration.

Chemical activators of telomerase are promising strategies nowadays. Some telomerase
activators were assessed in the literature. TA-65, a single chemical compound extracted
from Astragalus Membranaceus, was shown to activate telomerase in vitro and in vivo
[51,52]. Adult mice supplemented with this compound presented an improved healthspan, in
particular at the metabolic level. Previously (to the study in mice), data in humans
demonstrated a better dynamics of the immune system (CD8+ T lymphocytes) from HIV-
infected humans [51] and a similar increase in health-span of aged healthy costumers [53].
Recently, new compounds activators of telomerase have been described, for instance a novel
telomerase activator (AGS-499) was demonstrated to play neuroprotective effects after
NMDA treatment in mice and delayed the progression of amyotrophic lateral sclerosis
(ALS) in SOD1 transgenic mice increasing their survival, further supporting a role for
telomerase in tissue functionality [54].

These new findings open a new door in ageing research and degenerative healing. The
modulation of telomerase and/or its associated “ageing-network” [55] in adult tissues
establishes an important basis for ageing research and demonstrates that age-associated
degeneration is a potential target of biomedical intervention. Further studies; in particular
long-term follow ups, should be carried to assess adverse effects and to discriminate changes
at the tissue-level.

Perspectives for a healthy life
The increase in the worldwide life expectancy was accompanied by intensification in age-
associated diseases. Characterization of biomarkers and modulation of different pathways
are candidates for a faster characterization of disease and discovery of novel therapeutics,
respectively. In this aspect telomerase has been recently scrutinized as an anti-ageing factor.
Several independent works demonstrated that telomerase expression through genetic
modifications, viral delivery or chemical activation result in a significant rescue of age-
related pathologies. These new results are exciting however additional efforts will be needed
to translate these findings into actual therapies. This opens an unprecedented door for anti-
aging research.
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in the brain may exert neuroprotective properties.

55. Sahin E, Depinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol.
2012
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Fig.1. Rescue of age-dependent tissue degeneration in adult mice.
Therapies involving telomerase expression in adult tissues have demonstrated a potential
impact in rescuing of age-associated degenerative pathologies [21,49]. Extension of short
telomeres is one of the outcomes, but we cannot dismiss novel roles for telomerase in
distinct networks [55].
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