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Abstract
Advances in resting state fMRI and diffusion weighted imaging (DWI) have led to much interest
in studies that evaluate hypotheses focused on how brain connectivity networks show variations
across clinically disparate groups. However, various sources of error (e.g., tractography errors,
magnetic field distortion, and motion artifacts) leak into the data, and make downstream statistical
analysis problematic. In small sample size studies, such noise have an unfortunate effect that the
differential signal may not be identifiable and so the null hypothesis cannot be rejected.
Traditionally, smoothing is often used to filter out noise. But the construction of convolving with a
Gaussian kernel is not well understood on arbitrarily connected graphs. Furthermore, there are no
direct analogues of scale-space theory for graphs — ones which allow to view the signal at
multiple resolutions. We provide rigorous frameworks for performing ‘multi-resolutional’ analysis
on brain connectivity graphs. These are based on the recent theory of non-Euclidean wavelets. We
provide strong evidence, on brain connectivity data from a network analysis study (structural
connectivity differences in adult euthymic bipolar subjects), that the proposed algorithm allows
identifying statistically significant network variations, which are clinically meaningful, where
classical statistical tests, if applied directly, fail.

1 Introduction
The development of diffusion weighted imaging (DWI) and functional magnetic resonance
imaging (fMRI) have laid the groundwork for ambitious initiatives towards a full
characterization of the human connectome (the brain’s wiring diagram) to better understand
the structural and functional aspects of brain connectivity. While such large scale projects
will clearly push the frontiers of neuroscience forward, these efforts must necessarily go
hand in hand with studies seeking to answer more focused questions pertaining to the
variations in the connectivity structure in the context of specific neurodegenerative diseases,
and how its manifestation is modulated by genetic and demographic factors. As such these
studies operate in the small sample size regime, and the first order requirement on analysis
methods appropriate for such applications is to maximize statistical power — in other
words, the likelihood of observing a differential signal in the connectivity data given the
limited size of the cohort.
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Consider a brain connectivity network modeled as an undirected weighted graph denoted as
 = ( , , ω). The vertices,  may denote anatomically meaningful parcellations [5] or

regions exhibiting spatially contiguous BOLD activations where as the weighted edges may
correspond to temporal correlations or strength of tract connectivity. Now, our interest is to
perform statistical analysis on a population of such brain connectivity networks in clinically
disparate groups, to understand which connections are severely affected by the disease. The
overwhelming majority of current literature suggests applying standard hypothesis testing at
the level of individual network edges. This approach generally works well, but when the
group-wise differences are weak to begin with, one finds that after correcting for multiple
comparisons, a statistically significant signal may be unidentifiable. One may smooth out
the noise variance in  and , but it is still an issue in brain connectivity analysis. For
example, even a small head motion in the scanner can influence the DTI connectivity
information. [15] The standard procedure to improve the signal to noise ratio is to smooth
the input signal. In image processing, the measurements are defined on a uniformly sampled
lattice (Euclidean space) where the standard notions of a convolution filter apply directly.
The few instances in the literature which implement a smoothing process on brain network
data essentially average the measurements within a the node or edge ROIs with isotropic
Gaussian kernels [17,13], discarding the network structure. In computer vision, anisotropic
diffusion kernels [14], heat kernels [19] and pyramids [10] have been used extensively, but
mostly in the context of a regular lattice over pixels. Developments of these ideas have led
to much work in scale space theory, towards deriving multi-resolution representations of the
image by incremental smoothing. The question we investigate is whether such connections
can be exploited to analyze brain connectivity network data with enhanced statistical
sensitivity. The literature offers few strategies for filtering of signals on the edges of a brain
connectivity network.

Key contributions
The most natural mathematical tool which offers multi-resolution behavior, i.e., wavelets,
was until recently, restricted to the Euclidean space. But the objects of interest here are
networks with arbitrary topology (non-Euclidean). a) We make use of a recent harmonic
analysis results to show how non-Euclidean wavelets provide tools for defining multi-scale
representations of brain networks. b) We demonstrate an application to analyzing structural
connectivity differences between euthymic bipolar disorder and healthy subjects. Our
framework applies multi-resolutional analysis on the information defined on the edges, not
on the vertices. The noise in raw connectivity data has the effect that few edges show up as
statistically significant after accounting for multiple comparisons correction. But applying
the proposed method, clinically meaningful group differences can be detected at the
Bonferroni threshold of α < 0.01.

2 Non-Euclidean Wavelets
Wavelet transform is conceptually similar to the well-known Fourier transform, however, it
uses a certain shape of oscillating function as a basis with finite duration instead of the sine
and cosine basis with infinite duration. The traditional construction of wavelets is defined by
a mother wavelet function ψ and a scaling function φ, which are band and low-pass filters in
the frequency domain.

The wavelet function ψ on x is a function defined by two parameters, the scale parameter s
and translation parameters a
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(1)

Change in s varies the dilation of the wavelet, and together with a translation parameter a,
approximates a signal in harmonics using wavelet expansion. The function ψs;a(x) forms
bases for the signal and can be used with other basis at different scales to decompose a
signal. The wavelet transform of a signal f(x) is defined as the inner product of the wavelet
basis ψs;a and f(x),

(2)

where Wf (s, a) is the wavelet coeficient at scale s and at location a. The original signal f(x)
can be reconstructed from Wf (s, a) and basis function without loss of information; the
inverse transformation is

(3)

where  is known as the admissibility condition constant, Ψ is the Fourier
transform of the wavelet [8], and ω denotes the frequency domain.

Recent work in harmonic analysis [6] provides wavelet basis on structured data which
expresses in a wide spectrum of frequencies. The solution in [6] relies on a graph Fourier
transform to derive a spectral graph wavelet transform (SGWT). It is shown that SGWT
formalization preserves the localization properties at fine scales as well as other wavelet
specific properties, while addressing the bottleneck of defining scales on a domain where
the space is non-Euclidean.

Let a graph  = { , , ω} be a undirected graph with a vertex set  with N vertices, an edge
set  and corresponding edge weight ω ≥ 0. The adjacency matrix A of  is given as a N × N
matrix whose elements aij are the edge weight ωij if ith and jth nodes are connected. The
degree matrix D is computed as a N × N diagonal matrix whose ith diagonal is Σj ωij. The
graph Laplacian from these graph matrices is defined in the usual way as L = D − A. Then,
the complete orthonormal basis χl and eigenvalues λl, l ∈ {0, 1, ···, N − 1} obtained from the
graph Laplacian, a self-adjoint operator, forms the basis for the graph Fourier
transformation. Note that the λl are increasingly ordered, and are irrelevant to the order of
vertex index in the graph domain. Using these basis, the forward and inverse graph Fourier
transformation are defined using the eigenvalues and eigenvectors of L as,

(4)

Using these transforms, we construct spectral graph wavelets by applying bandpass filters at
multiple scales and localizing it with an impulse function and low-pass filter for the scaling
function.

Here, λl, the spectrum of the Laplacian, serves as an analog of the 1-D frequency domain,
where scales can be easily defined. This directly provides the key component in obtaining a
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multi-resolutional view of the signal localized at n. Constructing a kernel function g which
acts as band-pass filter in the frequency domain, when g is transformed back to the original
graph domain, we directly obtain a representation of the signal for that scale. Repeating this
procedure for multiple scales, the set of coefficients obtained for each s ∈ S gives a multi-
resolution representation for that particular vertex.

Since the transformed impulse function in the frequency domain is equivalent to a unit
function, the wavelet localized at vertex n can now be defined as,

(5)

where m is a graph vertex. With this in hand, the wavelet coefficients of a given function
f(n) is given by the inner product of wavelets and the function,

(6)

SGWT follows the same procedure of constructing wavelets as in the continuous wavelet
transform. In the fine scale limit, SGWT maintains many of the properties of the traditional
wavelet transform, including localization.

Remark
Wavelets in Euclidean space have a rich history in Signal processing. However, defining
wavelets in non-Euclidean space is a recent development [6,4], and is especially interesting
for network analysis in Neuroimaging.

3 Deriving a Multi-Resolution Perspective of a Network
Line Graphs

In graph theory, one defines the line graph L( ) as a dual form of graph . The L( ) is
formed by interchanging the roles of  and  in . Two vertices in L( ) are connected when
the corresponding edges in  share a common vertex. The line graph L( ) = { , , ωL}
has a vertex set for the edges { , ω} and a edge set that corresponds to the vertices  in 
[7].

The transformation of L( ) from a graph  is defined as follows. Let gij be the elements in
the adjacency matrix AL of L( ), then

(7)

where v is a vertex in  and e is an edge in . This means that when two edges share a
common vertex in , these edges are connected to each other by the common vertex. After
this transformation, the isolated vertices in  are completely neglected in L( ). If there are
no isolated vertices in , then  and L( ) have equal number of components. After
constructing a line graph L( ) of a graph , the edges in  form a completely new domain
of analysis and the edge weight ω can be defined as a function defined on each vertex in ,
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where the connection between each vertex in  is given from . Toy examples of this
transformation are shown in Fig. 1.

In a measured signal, the true signal tends to change smoothly while noise varies very
rapidly in high frequencies. Using wavelets, smoothing can be efficiently performed by
removing high frequency components tied to the finer scales, moreover, due to the bandpass
property of wavelet, we can get a multi-resolutional view of the given signal. The multi-
scale view comes from the inverse wavelet transformation of the resultant function that
provides the estimate of the signal at various scales. Rewriting (3) in terms of the graph
Fourier basis,

(8)

which sums over the entire scale s. Limiting the scales to the coarse scales will reconstruct
the smoothed approximation of the original signal, and the original signal can be
reconstructed by adding finer scales.

In order to filter the network structure, it is necessary to bring the network connectivity
information as a signal into another domain. As described above, the transformation of a
graph domain  to a line graph L( ) enables us to view the edge weights as a signal defined
in the domain of L( ). We can therefore define the connectivity as a signal on each vertex
of L( ), and continue with the smoothing technique using wavelet. An illustrative example
of the framework for the network smoothing is given in Fig. 2, where the edge weights are
filtered along their connection and not losing the original topology of . The corresponding
adjacency matrices are displayed at the bottom.

In addition to the filtering, we define Wavelet Multi-scale Descriptor (WMD) using the
wavelet wavelet coefficients over the signal defined on each vertex as

(9)

which characterizes the signal at multi-resolutions on the vertex according to the geometry
of the graph. While [18] uses a sphere to obtain the descriptor, which causes data distortion
by mapping process, WMD is derived based on the eigenfunction of the original graph itself,
and thus avoids ‘ballooning’ [9].

4 Connectivity Differences in Bipolar Disorder
Dataset

We scanned 25 healthy subjects (13 male and 12 female; age: 42.2 ± 10.8) and 25 gender
and age matched bipolar subjects (14 male, 11 female; age: 41.7 ± 12.6). All bipolar subjects
received comprehensive psychiatric evaluations using the structured clinical interview for
DSM disorders (SCID) and met the DSM IV criteria for bipolar I disorder (at the time of
image acquisition all subjects have been in an euthymic state for at least 30 days). A
Siemens 3T Trio scanner was used to acquire the brain MRI data. High resolution T1-
weighted images were acquired with MPRAGE sequence (FOV = 250×250 mm2; TR/TE =
1900/2.26 ms; flip angle = 9°; voxel size = 1×1×1 mm3). Diffusion weighted (DW) images
were acquired using SS-SE-EPI sequences (FOV = 190×190 mm2; resolution 2 × 2 × 2
mm3; TR/TE = 8400/93 ms; 64 gradient directions, b = 1000 s/mm2 and one minimally DW
scan: b=0 image).
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Structural brain networks were generated using a pipeline which integrates multiple image
processing steps. First, DW images were eddy current corrected using FSL by registering all
DW images to their corresponding b=0 images with 12-parameter affine transformations.
This was followed by the computation of diffusion tensors and then deterministic
tractography using the FACT algorithm [12] built into the DTI Studio program (maximum
bending angle 60 degrees; FA cut-off 0.25). T1-weighted images were used to generate label
maps using Freesurfer. The number of tracts connecting 87 cortical/subcortical regions were
used in constructing 87 × 87 connectivity matrix for each subject.

Group Analysis
There are total 3741 edges in the network. In order to detect connectivity differences
between the two groups, we performed a Hotellings T2- test using WMD. WMD was
realized by a Mexican-hat wavelet, which was defined at 5 scales over the spectrum of λ.
Since typically noise lies in high frequency, we dropped 2 scales that correspond to larger λ,
and used the rest for the statistical analysis. When using the raw edge weights, we could not
detect any significant difference between the two groups after accounting for Bonferroni
correction at α = 0.05 significance level. However, after applying WMD on smoothed edge
weights with the proposed method, we identified 5 connections over 9 different brain
regions as having significant connectivity differences at a very conservative Bonferroni
correction level, 10−7.

Interpretation
Results showed that relative to control subjects, bipolar patients on average exhibited
weaker strength for the connections within the frontal lobe (bilateral precentral to superior
frontal) as well as in fiber tracts linking the bilateral hippocampus. These findings are
consistent with past studies where abnormalities in the frontal, limbic, and callosal systems
have been reported (for a review, see for example [11]). Additionally, previous fMRI studies
of euthymic bipolar patients have also consistently revealed frontal hypoactivation [3,2,16].
In contrast, bipolar subjects exhibit a stronger connection, relative to controls, between the
left amygdala and the left temporal pole and between the left superior frontal gyrus and the
right caudal anterior cingulate. Although our subjects were in euthymia at the time of the
scan, these stronger connections in bipolar may be related to amygdala activation during
mania as reported in [1].

5 Conclusion
In this paper, we introduced a novel signal filtering approach for brain network data that
takes into account the non-Euclidean nature of the structured data. Using a line graph
construction from the original network, we perform band-pass filtering of signals defined on
network edges to obtain a multi-resolutional view. The algorithm siginficantly improves the
statistical sensitivity of connectivity differences using Hotelling’s T2-tests and Bonferroni
correction. We believe that adapting non-Euclidean wavelets for improving the statistical
properties of brain connectivity networks may improve analysis of a much wider variety of
studies.
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Fig. 1.
Examples of graphs and the corresponding line graphs. Original graphs with vertices (red)
and edges (yellow) with edge weights (thickness), and corresponding line graphs with
vertices (yellow) with function (vertex size) and edges (red).
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Fig. 2.
A toy example of graph structure filtering. The top panel shows the graph filtering steps: (1)
Construction of the line graph, (2) filtering the signal on the line graph vertices, (3)
reconstructing the filtered graph. The bottom panel shows the corresponding adjacency
matrices.
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Fig. 3.
Anatomical connectivity showing group differences between bipolar and controls after
Bonferroni threshold at α = 10−7. Connection thickness represents the p-value in negative
log scale; color gives sign of strength: red (and blue) are stronger in controls (and bipolar
group). Region labels are: 1. ctx-rh-precentral, 2. ctx-rh-superiorfrontal, 3. ctx-lh-
superiorfrontal, 4. ctx-rh-caudal anterior cingulate, 5. ctx-lh-precentral, 6. ctx-lh-
temporalpole, 7. left amygdala, 8. right hippocampus, 9. left hippocampus.
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