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Abstract

Groupwise segmentation that simultaneously segments a set of images and ensures that the
segmentations for the same structure of interest from different images are consistent usually can
achieve better performance than segmenting each image independently. Our main contribution is
that we adopt the groupwise segmentation framework to improve the performance of multi-atlas
label fusion. We develop a novel statistical model to allow this extension. Comparing to previous
atlas propagation and groupwise segmentation work, one key novelty of our method is that the
error produced during label propagation is explicitly addressed in the joint label fusion framework.
Experiments on hippocampus segmentation in magnetic resonance images show the effectiveness
of the new groupwise segmentation technique.
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1 Introduction

As a primary mechanism for quantifying the properties of anatomical structures and
pathological formations from imaging data, image segmentation is an important task in
medical image analysis. Typically, a segmentation algorithm is applied to segment one
image at a time, i.e. segmenting one image is independent from segmenting other images.
However, different segmentation tasks may not be independent, especially when images
share common structures and similar appearances. When some images share similarities, one
may expect that their segmentations should be related as well. By enforcing consistency in
the segmentations produced for them, one may improve the robustness of automatic
segmentation against random effects.

The idea of incorporating region coherence of same or similar objects across different
images to reduce segmentation errors was initially addressed in the joint registration and
segmentation framework, e.g. [2, 7, 10], motivated by the observation that image
registration and image segmentation are highly correlated tasks. Improving one can help
improve the other. By registering multiple images into a common space, appearance models
of the same structure of interest from all images can be collected and re-enforced to ensure
similar appearances for the segmented structures from different images. The estimated
segmentations can then be used to improve registration such that segmentation alignments
after registration are improved. With registrations between testing images, both appearance
and shape consistencies can be enforced in groupwise segmentation.

Since the groupwise segmentation idea can be implemented with any non-groupwise
segmentation algorithms, to directly improve upon the state of the art medical image
segmentation techniques, we adopt the groupwise segmentation framework to improve the
performance of multi-atlas label fusion (MALF). Through establishing one-to-one
correspondence between a target image and a pre-labeled image, i.e. atlas, by image-based
deformable registration, MALF transfers segmentation labels from the atlas to the target
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image and uses label fusion to combine solutions produced by different atlases. The highly
competitive performance over many challenging applications, e.g. [5, 13, 15], show that the
example-based knowledge representation and registration-based knowledge transfer model
employed by MALF can produce highly accurate segmentation for medical applications.

Since pairwise or groupwise registration among testing images are often required in
groupwise segmentation, it is a natural extension to apply techniques developed in MALF
for groupwise segmentation. Our first contribution is to realize this extension through a
novel statistical model for groupwise segmentation. Similar to the atlas propagation work
[15] and the recent groupwise segmentation work [6], in our approach, each testing image
and its estimated segmentation is applied as an additional atlas to help improve the
segmentation accuracy for other testing images. However, when a testing image is applied as
an atlas, due to the errors in producing its automatic segmentation, it is expected to be less
reliable than the original atlases. Our second contribution is to extend the joint label fusion
technique [14] to address this limitation. For validation, we apply our approach to segment
the hippocampus from MRI and show significant performance improvements over MALF
and other label propagation work.

2 Methods

Image segmentation can be addressed via estimating the conditional probability p(Ts|Tg, P),
where Tg is the image to be segmented, Ts is a segmentation for Tg and P is the training
data, which, for example, may include some images and their gold standard segmentations.
The conditional probability can be estimated through various methods, e.g. discriminative
learning or MALF.

In the MALF framework, P contains all atlases. The conditional probability is estimated in
the form p(l|x, Tk, P) through warping each atlas to the target image, followed by label
fusion, where | indexes through all labels and x indexes through all voxels in Tg. This
technique is described in detail below. With accurate conditional probabilities, the true
segmentation can be estimated by Tg(x) = argmaxp(l|x, Tg, P).

2.1 Multi-Atlas Label Fusion
Since our work is based on MALF, we briefly describe the technique. Let
1 1 1 n n n -
I={A'=(A,,A)),..., A :.(AF, AS_)} be n atlases, warped to the space of a target image
by deformable registration. A’ and A’, denote the iy, warped atlas image and manual
segmentation.

One simple and powerful label fusion technique is weighted voting, where each atlas
contributes to the final solution according to a weight. Among the weighted voting
approaches, similarity-weighted voting strategies with spatially varying weight distributions
have been particularly successful [1, 13, 14]. The consensus votes received by label | are:

p(l|z, T, Q)ZZwip(l\m, Ai) Q)
i=1

where p(l[x, Tg, D) is the estimated probability of label | for the target image. p(I|x, Al) is the
probability that A' votes for label I at x, with Zicg1, 13 p(I|x, A') = 1. Typically, for

deterministic atlases that have one unique label for every location, p(l|x, Al) is 1 if l:Ag (z)

and 0 otherwise. w! is the voting weight for the i, atlas, with Zizlwizl.
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To estimate voting weights, similarity metrics employed by image-based registration such as
sum of squared distance and normalized cross correlation can be applied such that atlases
with more similar appearance to the target image at location x receives higher votes. One
limitation of this approach is that the voting weights for each atlas is estimated
independently from other atlases, ignoring potential correlations among the atlases. To
address this problem, the joint label fusion algorithm estimates voting weights by
simultaneously considering pairwise atlas correlations. As shown in [14], joint label fusion
performed better than label fusion with independent weight estimation.

In the joint label fusion approach, segmentation errors produced by one atlas are modeled as

Ty, (z)=AL (z)+68' (). Tg(x), A%, () € {0,1} are the observed votes for label | produced
by the target image and the i, warped atlas, respectively. Hence, J(x) € {-1, 0, 1} is the
observed label error. Note that both Ts | and &(x) are unknown. The probability that different
atlases produce the same label error at location x are captured by a dependency matrix My,
with M, (2, 7)=p(8* (z)¢’ (z)=1|T, A;, A{F) measuring the correlation between iy, and jy,
atlases. In [14], the pairwise atlas correlation is estimated by appearance correlation as

) . B
ALY g _ J _
Mo (2, 7) {Z%Mm) A% () =T ()1 47 ()T (y)‘] , where ~(x) defines a neighborhood
around x and gis a model parameter. The expected label difference between the combined
solution and the target segmentation is:

2
{ wa o Fan} =wi M, w, ()

where t stands for transpose. To minimize the expected label difference, the voting weights

are solved by Wz= — where 1, =[1; 1; ...; 1] is a vector of size n.

N M

2.2 Formulation for groupwise segmentation

Let %:{T;, -, T7"} be m testing images to be segmented. Groupwise segmentation can
be formulated as jointly segmenting all testing images using the training set P and can be

solved via estimating the joint conditional probability p(ﬁS:{T;, s T T, Z), where

Tsl, ..., T2 are the estimated segmentations for T;, ..., T, respectively. Since it is
difficult to directly estimate the joint probability, we apply the pseudolikelihood
approximation technique [3] and estimate the joint probability by:

11712, 7, TNTED TP (F ()2, 2, 75, TNTEY) 3
k=1

k=1z

where " (z)=argmax;p(l|z, 2, 7,., 7,\{T*}) is the estimated label for the k, testing
image. In this model, we assume that the label probability for each voxel is conditionally
independent given the images and segmentations in (3). Note that the segmentation of each
testing image is estimated by both the original atlases and the remaining testing images.
Hence, the correlations between testing images are explicitly considered to make their
solutions compatible.

Like the pseudolikelihood approach, the segmentations for all testing images are computed
through iterative estimation. First, the segmentation of each testing image is independently
estimated with MALF only using the atlases. In each of the following iterations, the
estimated segmentation for each testing image is updated one at a time to maximize the joint
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probability (3). Using weighted voting based label fusion, we estimate the label probability
for one testing image 7" by:

p(lle, 2, T, T\{TEN =D WAL + > w¥al,
i=1 j=1,j#k

where al is the candidate segmentation produced by warping the segmentation produced for
the ji, testing image to TP’f. wis the voting weight assigned to it, with

n P m 5
Zizlwl‘kz‘i:lhj#k“’a =1 Note that, for a simpler notation, the parametrization by x is
implicit.

Potential risk in using testing images as atlases Due to registration and label fusion errors, it
is reasonable to expect that the segmentation produced for each testing image is less
accurate than those of the original atlases. Hence, when applying a testing image as an atlas
to segment other testing images, in addition to the errors produced by image-based
deformable registration, segmentation errors produced for the testing image are also
propagated to other testing images. This potential risk may result in overall less accurate
candidate segmentations produced by warping a testing image than by directly warping an
original atlas.

Image similarity based label fusion is effective for detecting and reducing segmentation
errors caused by registration errors. However, it can not detect whether the atlas contains
errors in its segmentation. To address the unreliability of using testing images as additional
atlases, we propose a solution based on the following observation. If an atlas produces more
segmentation errors than other atlases, it is expected that its voting weight should be smaller
than other atlases in the optimal solution. We propose to incorporate such prior knowledge
in similarity-based weighted voting for more robust label fusion. To this end, we explicitly
control the contribution from testing images in (4). Following the joint label fusion
technique, we estimate the label probability for each testing image by solving the following
optimization problem:

2

il—gwiA;l— Z w“jag’l) |2, 9F} z[w;wa]t]\,[[w;w“] subjecttonizl—)\, Z w =) (5)

j=1j#k i=1 j=Lj#k

For segmenting one testing image, the contribution from the remaining testing images is
controlled by the total weight assigned to them, 0 < A < 1. Typically, when the atlases
cannot produce reliable segmentation, one may expect more contribution from testing
images to regularize the results and vice versa.

Applying Lagrange multipliers, we can solve (5) in closed form by:
[w;w ' =M (pectpad)  (6)
wherec=11;...;1;0;...;0],d=10; ...; 0; 1; ...; 1]. Only the first n entries in ¢ and the last

1
[1-AA]

| M M |

He | _
dtM~te, dtM—1d

m—1 entries in d are non-zero. [ Hd
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3 Experiments

Imaging data and Experiment setup

Results

Our study is conducted using 1.5 T baseline MR images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Among these images, 57 are normal controls, 84 are
patients with mild cognitive impairment (MCI) and 41 are patients with AD. Manual
segmentations of the hippocampus are provided by ADNI as well. For cross-validation
evaluation, we randomly selected 10 images to be the training images, i.e. the atlases, and
another 50 images for testing. The cross-validation experiment was repeated for five times.
In each experiment, a different set of atlases and testing images were randomly selected. The
results reported below are averaged over the five experiments. To examine the performance
with respect to the number of atlases used for producing the initial segmentation, in each
cross-validation experiment, we also tested with different numbers of atlases, varying from 1
to 10.

For label fusion, we applied a 5 x 5 x 5 neighborhood for . In our experiments, we fixed S
= 2 for computing the atlas correlation matrix, which is shown to be optimal in [14] for
hippocampus segmentation. For groupwise segmentation, we fixed 1 = 0.5. Hence, the
expected contribution from each testing image is significantly smaller than the contribution
from each atlas.

As shown in Fig. 1, our iterative optimization usually converges within a few iterations, with
the first iteration producing the maximal performance improvement and dramatic
diminishing performance gains in later iterations. In our experiment, we set the maximal
iteration number to be 3. Fig. 1 also shows the performance produced by applying MALF
alone and our groupwise segmentation method (MALF+groupwise). The results are shown
in terms of average number of mislabeled voxels produced for each hippocampus. Fig. 2
shows some results produced by the two methods. As expected, the performance of MALF
increases as the number of atlases increases. Our groupwise method produced consistently
better results than applying MALF alone. The error reduction rates caused by groupwise
segmentation vary from ~10% to ~30%.

Fig. 3 (left) shows the Dice similarity coefficient (DSC)( fj‘fﬂg“) for controls, patients with
MCI and AD, respectively. When only one or two atlases were used by MALF to produce
initial segmentations, the improvement by our groupwise method is about 10 % DSC. Our
results using one atlas are better than the hippocampus segmentation results, ~0.76, reported
in [12], which also performed groupwise segmentation using one training image. When 5
and 10 atlases were used, the improvements caused by our groupwise approach are >2% and
>1% DSC, respectively. To further test the generalization performance, we also repeated 5
cross-validation experiments, each with randomly selected 10 normal controls as atlases and
50 randomly selected subjects as testing images. As shown in Fig. 3 (right), our groupwise
segmentation method produced an average DSC of 0.892, 1 % improvement over applying
MALF alone. All improvements are statistically significant, with p<0.01 on the paired
Students t-test for each cross-validation experiment. Our results also compare well to the
state-of-the-art hippocampus segmentation performance, as summarized in Table 11.
Overall, our results compare favorably over the state-of-the-art but we used many fewer
atlases than the competing works.

1Due to the differences in the images and manual segmentations used in different studies, quantitative comparisons across different
publications may not be fair.
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ns and Discussion

We extended the powerful MALF technique to perform groupwise segmentation and
validated our method in a hippocampus segmentation task. One drawback of groupwise
segmentation is the additional computational cost for registrations among the testing images.
However, this added cost is justified by the performance gain. For applications, where
manually labeled atlases are limited and testing images are abundant, this technique will be
more suitable to be applied.
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convergence of group wise optimization (2 atlases)
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Fig. 1.

Left: Segmentation accuracy (in terms of Dice similarity coefficient f)‘mg“) of our groupwise
segmentation algorithm at each iteration. The results are averaged over 5 cross-validation
experiments. Error bar is at 0.25 standard deviation. The segmentation produced by MALF
used two atlases; Right: Segmentation performance in terms of average number of

mislabeled voxels per hippocampus.
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image MALF MALF+groupwise

Fig. 2.
Sagittal views of hippocampus segmentation. Red: manual segmentation; Blue: automatic
segmentation; Green: overlap between manual and automatic segmentation.
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Segmentation accuracy produced by using randomly selected atlases (left) and normal
control atlases (right). The number of atlases used by MALF and our groupwise method
(gw) is given in parentheses. Results are averaged over 5 cross validations.
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Table 1

Hippocampus segmentation performance in the recent literature.

method : number of atlasesused | Dice Jl Tested Cohort
[13] : 38 atlases 0.87 - normal control, AD
[4] : 79 atlases 0.887 - normal control
[11]: 30 atlases 0.880 - normal control
[8] : 55 atlases 0.80/0.81 normal control/MCI
[15] : 30 atlases <0.85 - normal control/MCI/AD
[14] : 20 atlases 0.892 - normal control/MCI
[9] : 17 atlases 0.870 0.771 -

Our method : 10 atlases 0.893 0.805 normal control/MCI/AD
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