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Abstract
Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated
kinase activity within their cytoplasmic domain and play a critical role in signal transduction in
both normal and malignant cells. Besides B-cell receptor (BCR) signaling in CLL, multiple RTKs
have been reported to be constitutively active in CLL B-cells resulting in enhanced survival and
resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to
increased plasma levels of various types of cytokines/growth factors in CLL, we and others have
detected that CLL B-cells spontaneously produce multiple cytokines in vitro which may constitute
an autocrine loop of RTK activation on the leukemic B-cells. Moreover, aberrant expression and
activation of non-RTKs, for example Src/Syk kinases, induce resistance of the leukemic B-cells to
therapy. Based on current available knowledge, we detailed the impact of aberrant activities of
various RTKs/non-RTKs on CLL B-cell survival and the potential of using these signaling
components as future therapeutic targets in CLL therapy.
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INTRODUCTION
While treatment approaches in the past were based on disease control that largely employed
single agents that for the most part achieved a chronic indolent disease, treatment goals
nowadays are aimed at achieving long-term remissions for at least in low risk patients(1)
with the use of chemoimmunotherapy (CIT). The treatment of B-cell chronic lymphocytic
leukemia (CLL) is in the process of substantial changes as the novel therapies increasingly
turn to oral drugs that attack signal pathways in the leukemic B-cell. The complex signaling
pathways particularly those transmitted via various receptor tyrosine kinases (RTKs) are
responsible for the enhanced survival and apoptotic resistance in CLL(2–6). Activation of B-
cell receptor (BCR) signaling pathway either via antigen or “tonic signaling” plays an
important pro-survival role in CLL B-cells even without any somatic mutation in the
immunoglobulin heavy chain variable region gene (IGHV) which encodes part of the
antigen-binding domain of the BCR. However, this review is primarily focused on non-BCR
RTK signaling pathways in CLL irrespective of the IGHV mutational status of the leukemic
clone.

RTKs constitute one of the largest classes of signaling molecules and have long served as a
model for elucidating cellular signaling networks(7). However, oncogenic mutations and
gene fusions generated by chromosomal translocations in RTKs are frequently observed in
human cancers, leading to their constitutive activation(7). Moreover, oncogenic mutations or
overexpression of RTKs can promote misfolding and aggregation of these proteins and
impair trafficking to the cell surface(8). Although CLL B-cells from CLL patients of various
risk for progression have been reported to express a number of non-BCR RTKs (2–6), their
precise role in CLL B-cell biology and therapeutic applications directed at the RTKs have
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not been explored extensively. Here, we will focus on the expression and activation status of
the RTKs and non-receptor kinases known to be expressed in CLL B-cells. We will, where
possible, discuss current of future approaches to target these kinases in order to treat CLL
patients. Our final section focuses on potential treatment approaches to CLL using the
knowledge of these RTKs.

Membrane RTKs in CLL B-cells
This section discusses relatively more well-studied membrane RTKs that have known
involvement in CLL B-cell survival, well described signal pathways and selected in vitro
and or in vivo attempts to interfere with these pathways in CLL.

Insulin-like growth factor receptor and insulin receptor
Insulin-like growth factor-I (IGF-I) produced by bone-marrow stromal cells is involved, as a
paracrine factor, in the differentiation of normal pro-B to pre-B lymphocytes, stimulating μ-
heavy chain expression(9). IGF-I plays a role in maintaining hematopoietic cells by
increasing the proliferation of progenitor cells(10) and by preventing the apoptosis of
interleukin (IL)-3-deprived cells(11). IGF-I receptor (IGF-IR) is undetectable in CD34+ cells
but is expressed in committed precursors(12) and in mature B-lymphocytes(13).

It is now known that IGF-I and IGF-IR are involved in the genesis of cancer. IGF-IR
expression is a prerequisite for the development of several tumors because it facilitates
transformation by viral and cellular oncogenes(14). The IGF-IR is a phylogenetically
conserved RTK and belongs to the insulin receptor family, involving also the insulin
receptor (IR) (see below), hybrid receptors and the IGF-2R/mannose 6-phosphate receptor.
The function of the hybrid receptor is still not well understood(15). The IGF-2R/mannose 6-
phosphate receptor is a monomeric receptor without TK activities(15). Both IGF-IR and IR
are preformed dimeric TK receptors made up by two extracellular α-subunits and two β-
subunits involving a small extracellular domain, an intramembraneous one and an
intracellular domain(16). The latter includes the juxtamembraneous domain, the TK domain
and the C-terminal domain. Interestingly, the IGF-IR is primarily involved in regulation of
cell proliferation, apoptotic resistance, differentiation and cell motility, while IR is mostly
involved in the control of glucose uptake and metabolism(15). In contrast to IR, IGF-IR is
ubiquitously expressed in tissues in which it plays a role in tissue growth, mostly via growth
hormone, which liberates IGF-I to activate IGF-IR. However current evidence suggests that
IGF-IR is not an absolute requirement for normal growth (14).

The ligand-receptor interaction results in phosphorylation of tyrosine residues in the IGF-IR
TK domain (spanning amino acid 973-1229) of the β-subunit. In the unstimulated receptor
state, the activation loop (a-loop), containing the critical tyrosine (Y) residues 1131, 1135
and 1136, behaves as a pseudo substrate that blocks the active site. However, there are
numerous intracellular adaptor proteins (e.g,, Shc, Grb2, CrkII, CrkL, etc) that link receptor
signaling to downstream pathways(17–21). After ligand-binding, phosphorylation of Y1131
and Y1135 destabilizes the auto inhibitory conformation of the a-loop, whereas
phosphorylation of Y1136 stabilizes the catalytically optimized conformation of the
RTK(22). In turn, phosphorylation of the adapter proteins insulin receptor substrate 1 - 4
(IRS-1- 4) and Shc leads to activation of the phosphatidyl inositol-3 kinase (PI3K), the
mitogen-activated protein kinase (MAPK) and the 14-3-3 pathways(23).

The first demonstration of IGF-IR expression in CLL B-cells from a subgroup of CLL
patients was reported in 2005(6). IGF-IR protein and mRNA were shown to be present in
CLL B-cells in 44% and 59% of CLL patients, respectively. Importantly, IGF-IR expression
in CLL patients was positively correlated with the expression of the anti-apoptotic protein
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Bcl-2 and was involved in CLL cell survival in vitro(6). IGF-IR expression in CLL cells has
been shown to be associated with CD38 expression, a marker associated with cells with poor
response to treatment and shorter patient survival. Interestingly, serum IGF-I was elevated in
CLL patients, but growth hormone (GH), an inducer of IGF-I expression, was normal(6).
Therefore, local tissue site production of IGF-I by CLL B-cells may account for the
increased levels of serum IGF-I, independent of GH, and may be related to paracrine/
autocrine control of leukemic lymphocyte-survival by binding to and activating IGF-IR(6).
This information highlights the importance of this growth factor receptor signaling as a
possible therapeutic target in CLL. Indeed, blocking of IGF-IR with a neutralizing antibody
induces apoptosis in CLL B-cells, but not in normal cells, in vitro(6). Indeed, IGF-IR
inhibition using IGF-IR antibodies and tyrosine kinase inhibitors has been reported to
enhance the tumor-cell killing effects of numerous conventional chemotherapeutic agents
such as gemcitabine, irinotecan, etoposide, carboplatin, adriamycin, ifosfamide, navelbine,
5-fluorouracil and vincristine both in vitro and in vivo in various types of human
malignancies(24).

More recently, detection of differential expression of the insulin receptor has been reported
in CLL cases with higher levels in the majority of CLL with 11q chromosomal
abnormalities (11q-del)(25). Indeed, a mean of about 10-fold higher IR mRNA expression
level was documented in CLL with 11q-del cases as compared to CLL cases with other
genomic categories(25). This study also found that exogenous addition of insulin stimulated
canonical IR-signaling pathways including AKT/mTOR and Ras/Raf/Erk in CLL B-cells in
vitro. Importantly, this study demonstrates a positive correlation of IR expression levels in
CLL cells with shorter time to first therapy and shorter overall survival(25), suggesting a
biologically meaningful link between IR expression levels in the leukemic B-cells and
clinical course of the disease in a subset of CLL patients.

Vascular Endothelial Growth Factor Receptors
In humans, vascular endothelial growth factor (VEGF) ligand family consists of five
members, VEGF A, B, C, D, and placenta growth factor (PLGF). These ligands bind in an
overlapping pattern to three RTKs, VEGF receptor (VEGFR1), VEGFR2 and VEGFR3 as
well as to their co-receptors. VEGFA, B and placental growth factor (PLGF) bind to
VEGFR1, VEGFA binds to VEGFR2, and VEGFC and D bind to VEGFR3 however,
proteolytic processing of the human VEGFC and D allows for binding to VEGFR2 albeit at
much lower affinity than VEGFR3(26) (Fig. 1). The VEGFRs are members of the RTK
superfamily and they belong to the same subclass as receptors for platelet-derived growth
factor and fibroblast growth factors (FGFs). VEGFR1 is a positive regulator of monocyte
and macrophage migration, and has been described as a positive and negative regulator of
VEGFR2 signaling capacity. Negative regulation is exerted, at least in part, by an
alternatively spliced soluble VEGFR1 variant that binds to VEGF and thereby prevents
VEGF from binding to VEGFR2. VEGFR2 is implicated in many aspects of normal and
pathological conditions, whereas VEGFR3 is important for lymphatic-endothelial-cell
development and function(26).

The VEGFRs contain an approximately 750 amino-acid-residue extracellular domain,
followed by a single transmembrane region, a juxta-membrane domain, a split tyrosine
kinase domain that is interrupted by a 70-amino-acid kinase insert, and a C-terminal tail.
Interestingly, alternative splicing or proteolytic processing of VEGFRs gives rise to secreted
variants of VEGFR1(27) and VEGFR2(28), and in humans, to a C-terminal truncated
VEGFR3(29). Guided by the binding properties of the ligands, the VEGFRs are able to form
both homodimers and heterodimers(30). Dimerization of receptors is accompanied by
activation of the receptor-kinase activity that leads to the autophosphorylation of the
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receptors. Phosphorylated receptors recruit interacting proteins and induce the activation of
signaling pathways including Ras, Src, PI3K, focal adhesion kinase (FAK), phospholipase C
(PLC)-γ, leading to proliferation, vascular permeability, cell migration and cell survival(26,
31).

In CLL, the pro-angiogenic factor VEGF (VEGFA) acts as an important survival factor for
the leukemic B-cells, at least in part, by activating the STAT1/STAT3 signaling pathway
and upregulating the critical anti-apoptotic protein, myeloid cell leukemia-1 (Mcl-1)(5).
Indeed in a limited number of CLL patients (n=88), a strong correlation between Mcl-1 and
VEGF mRNA expression levels was found(5). Angiogenesis and signaling via angiogenic
cytokines have increasingly been recognized as an important process in the growth of both
solid tumors(32) and hematologic malignancies(33), including CLL(34). This latter work
has invoked the well-known “angiogenic switch” as a factor in CLL progression(35). Early
work in CLL demonstrated that the CLL B-cell synthesizes and secretes pro-angiogenic
molecules(36) (i.e. VEGF and bFGF) as well as anti-angiogenic molecules but the balance
favors a pro-angiogenic environment. In addition, bone marrow microvessel density, a
marker of angiogenesis, correlates with CLL disease stage(37, 38) and identifies patients
with a shorter progression-free survival(39). Other reports also suggest that serum and urine
levels of pro-angiogenic factors VEGF and bFGF are increased in CLL(40). Indeed,
increased levels of serum VEGF or bFGF have been found to be associated with disease
progression in patients with early-stage CLL(41).

CLL B-cells express VEGF receptors (R1 and R2)(42–44), and these receptors are
constitutively phosphorylated(2). Culture of CLL B-cells with exogenous VEGF is
associated with increased levels of the anti-apoptotic proteins MCL-1 and XIAP, as well as a
reduction in both spontaneous and drug-induced apoptosis(2, 45). VEGF has also been
implicated in CLL B-cell migration(46, 47), and can modulate the expression of B-cell
receptor signaling through effects on protein kinase CβII(48). In addition, clinical studies
found that patients with early-stage CLL who had higher serum VEGF levels had
significantly shorter progression-free survival (40), Interestingly, VEGF levels in
pretreatment plasma were associated with response to CIT treatment in patients with
CLL(49). While these receptors were shown to be expressed on tumor cells and are likely to
be involved in both autocrine survival and/or neovascularization in tumor models, there is
increasing evidence that another VEGF receptor, neuropilin-1 (NRP-1), is critical in tumor
angiogenesis and most likely involved in VEGF-mediated resistance to apoptosis(50).
Aberrant NRP-1 expression has been shown in acute myeloid leukemia (AML) and
associated with shortened overall survival of the AML patients(51). Importantly, it has also
been reported that a subset of CLL B-cells, but not normal B-lymphocytes, express
NRP-1(52). However, since VEGF supports an autocrine pathway that promotes CLL B-cell
survival (2, 45, 53) and NRP-1 expression is limited to a subset of CLL patients, it will be
critical to establish a relationship of NRP-1 expression with the known CLL prognostic
factors. In addition, most recently our unpublished observations has detected the expression
of VEGFR3 in CLL B-cells leading to the possibility that all three VEGF-receptors may be
part of a network that results in the enhanced survival of the leukemic B-cells (unpublished
observations: Kay and Ghosh). Consistent with this, we have also found that VEGF-C levels
in early stage CLL (Rai stage 0) are comparable with that obtained from normal, healthy
individuals but higher than in more advanced stages of CLL (Fig. 2A) suggesting that
VEGF-C could be mediating disease progression in the early stage CLL patient.
Interestingly, we see a reverse trend for VEGF-D with highest levels in the plasma of late
stage CLL (Rai stages 3/4) when compared to that in normal plasma and lower stage CLL
(Fig 2B) (unpublished observations: Kay and Ghosh). Importantly, we found that VEGF-A
and -C are both produced by CLL B-cells via ELISA assays of their culture medium (data
not shown: unpublished observations).
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In total, these results suggest that signaling via the VEGF receptor signaling pathway may
be an important process in the pathogenesis of CLL and could provide an important
therapeutic target for patients with this disease.

Although various in vitro experiments on VEGF/VEGFR axis underscore a pro-survival role
of this axis in CLL in addition to in vivo correlation of serum VEGF with early-stage CLL
progression, it is important to note that a phase II clinical trial using anti-VEGF agents
targeting VEGF or VEGFR (single agent) in relapsed/refractory CLL patients (n=46) has
shown minimal clinical activity in this cohort of patients(54) (see below for detail).
Information obtained from that clinical study also suggests that VEGF-VEGFR axis may not
likely be the primary or predominant pro-survival axis in CLL.

Axl
It was originally detected in 1988 from patients with chronic myelogenous leukemia (CML)
as an unidentified transforming gene and later was cloned from patients with CML and
chronic myeloproliferative disorders(55). The name “Axl” was derived from the Greek word
“”anexelekto” which meant “uncontrolled”. The human Axl gene is located on chromosome
19q13.2(55) and encodes a protein of molecular mass between 100 and 140 kD (depending
on the extent of post-translational modifications) that contains an extracellular (N-terminal)
domain and an intracellular (C-terminal) tyrosine kinase domain(56). Axl is a highly
conserved gene across species (20 exons), but has two alternative variants due to a splicing
site in exon 10 within the transmembrane domain(57–59). The promoter region of Axl is
GC-rich and contains recognition sites for a variety of transcription factors, including Sp1
(specificity protein 1), AP2 (activating protein 2) and CREB (cAMP-response-element-
binding protein)(60). Indeed, Axl is regulated by the Sp1/Sp3 transcription factors and
methylation of CpG sites within specific Sp1 motifs(61). Given this, post-transcriptional
regulations play a critical role in modifying and stabilizing the protein levels depending on
cellular context. In addition, PKCα, PKCβ and constitutive activation of the Erk1/2 pathway
have been reported to be critical for the overexpression of Axl in tyrosine kinase inhibitor-
resistant cell lines(62).

Axl is a member of the TAM receptor tyrosine kinase family that also includes Tyro3 and
Mer(63). Axl is composed of two immunoglobulin-like domains and dual fibronectin type
III repeats in the extracellular region, a single transmembrane and a cytoplasmic domain
with kinase activity(55). Axl is ubiquitously expressed in a wide variety of organs and cells,
including hippocampus and cerebellum, monocytes, macrophages, platelets, endothelial
cells, heart, skeletal muscle, liver, kidney and testis(58, 64, 65). However, Axl
overexpression has been reported in several human cancers including colon, esophageal,
thyroid, breast, lung, liver, and astrocytoma-glioblastoma(66–72).

Protein S and growth arrest specific gene 6 (Gas6) are the ligands for Axl, where the latter
has very high-affinity to the Axl receptor(73, 74). Axl activation and signaling have been
implicated in multiple cellular responses, including cell survival, proliferation, migration,
adhesion and angiogenesis(75–79).

We identified Axl in CLL B-cells during our reported work on microvesicles in CLL plasma
where we detected that CLL microvesicles carry the Axl RTK. CLL B-cells from the
majority of CLL patients showed expression of constitutively phosphorylated and
functionally active Axl RTK(3). Importantly, Axl RTK is physically associated with
multiple non-receptor kinases and enzymes including Lyn (a member of the Src family
kinases), Syk/ZAP70, PLC-γ2 and PI3K(3). In particular, the PI3K/AKT axis is a critical
signaling pathway in many human malignancies including CLL and that over expression and
increased activity of Lyn kinase has been reported in CLL. Interestingly, although CLL B-
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cells express c-Src, Axl showed very little affinity to bind to c-Src but did exhibit a very
high affinity towards Lyn [Fig. 2B of ref(3)]. Our study suggests that Axl RTK is likely to
be the primary RTK as inhibition of Axl induced massive cell death in CLL B-cells(3).

We have examined Axl expression on CLL B-cell surface from over 200 previously
untreated CLL patients and detected variable levels of Axl expression (Kay and Ghosh:
unpublished observations). However, we did not find any correlation of Axl expression with
the known novel cell based prognostic factors in CLL (data not shown). In a related study
most recently, we identified a miR-34a binding site on the Axl 3′-untranslated region
(UTR). Interestingly, miR-34a is a direct target of the tumor suppressor p53 which has been
reported to be inactive in many human cancers including CLL(80–82). Indeed, findings
from a series of experiments suggest that miR-34a targets Axl 3′-UTR in response to p53
activation suggesting the existence of an inverse relationship between p53 functionality and
regulation of Axl RTK expression in CLL(83).

Although Axl expression appears to be a predominant pro-survival signaling pathway in
CLL, its relation or association with the CLL clinical course is yet to be established.

c-MET
The RTK c-MET, originally identified as a TRP-MET fusion gene from a human
osteosarcoma cell line, encodes a prototypic member of the c-MET RTK subfamily(84). The
tyrosine kinase c-MET is the high affinity receptor for hepatocyte growth factor (HGF)/
scatter factor, a multifunctional cytokine with pleiotropic effects. The HGF/c-MET signaling
pathway is one of the most frequently dysregulated pathways in human cancers. Aberrant
HGF/c-MET signaling has been reported in a wide range of human malignancies, including
bladder, breast, cervical, colorectal, endometrial, esophageal, gastric, head and neck, kidney,
liver, lung, nasopharyngeal, ovarian, pancreatic, prostate and thyroid cancers, as well as
cholangiocarcinoma, osteosarcoma, rhabdomyosarcoma, synovial sarcoma, Kaposi’s
sarcoma, leiomyosarcomas and MFH/fibrosarcoma(85). In addition, abnormal HGF and/or
c-MET expression has also been reported in hematological malignancies such as acute
myelogenous leukemia, adult T-cell leukemia, chronic myeloid leukemia, lymphomas and
multiple myeloma, as well as other tumors like melanoma, mesothelioma, Wilms’ tumor,
glioblastoma, astrocytomas and CLL(85, 86).

The c-MET RTK subfamily is structurally distinct from most other RTK subfamilies. The
mature form of the c-MET receptor is a disulfide-linked heterodimer containing an
extracellular α-chain and a transmembrane β-chain, both of which result from the proteolytic
cleavage of the same precursor protein(87). The β-chain consists of an extracellular domain,
a transmembrane domain and a cytoplasmic portion containing juxtamembrane and kinase
domains, and a C-terminal tail that is essential for substrate docking and downstream
signaling(88–91). The binding of HGF ligand to functionally mature c-MET leads to
receptor dimerization or multimerization, phosphorylation of multiple tyrosine residues in
the intracellular region, catalytic activation, and downstream signaling through docking of a
number of substrates(85) including RAS-MAPK, PI3K-AKT, STATs, PLCγ, and c-Src (88–
90, 92). The c-Met signaling pathway has been shown to affect a wide range of biological
activities, including cell motility, proliferation and protection from apoptosis. HGF/c-Met
pathway is necessary for the normal growth and development of various cell types,
including hematopoietic progenitors in embryonic life and adults(93, 94). Prior studies
indicate that the signaling pathways of HGF/c-Met system and integrin family of adhesion
molecules are linked and can cross-modulate their separate functions(95).

Recently, a group of investigators has reported that CLL B-cells express increased levels of
c-METα and c-METβ while no expression was detected on normal CD19+ B-cells.
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Interestingly, this increase was found to be inversely correlated with decreased expression of
adhesion molecules(86). In addition, serum level of HGF in CLL was reported to be
increased(86). In vitro studies demonstrate that expressions of critical signaling molecules
shared by adhesion molecules VLA-4 and HGF/c-MET systems including Bcl-xL, AKT,
PI3K and phosphor-BAD136 following HGF stimulations of CLL B-cells have been found to
be increased(86). These findings suggest that c-MET activation plays an important role in
enhanced survival and apoptotic resistance of the leukemic B-cells. However, critical
involvement of the HGF/c-MET signaling axis in CLL pathobiology or the prognostic
relevance of HGF/c-MET expression in CLL B-cells remains to be investigated.

Novel Membrane RTKs in CLL
This section discusses more recently discovered or less well studied membrane RTKs that
are likely involved in CLL B-cell survival.

Fibroblast Growth Factor Receptors
The FGF factor family and their four receptor tyrosine kinases, FGFR1/2/3/4, mediate
multiple physiologic processes including cell migration, proliferation, survival and
differentiation. All the four FGFRs are encoded by distinct genes and their structural
variability is increased by alternative splicing(96). FGFRs are expressed on nearly every cell
type of hematopoietic origin and deregulation of FGFR gene expression and/or gene
mutation has been found in hematologic malignancies(97). Given the importance and critical
roles of the FGF/FGFR signaling pathway, it is not surprising that aberrant FGFR signaling
is detected in many human malignancies including multiple myeloma, gastric, endometrial,
prostate, and breast(98, 99). For example, FGFR1 amplification in about 20% of squamous
non-small cell lung carcinoma(100) and about 10% of breast cancers(101) has been
reported. The FGFR2 gene is amplified in some cases of gastric cancer, resulting in a highly
over expressed and constitutively active RTK(102, 103). On the other hand, t(4;14)
(p16;q32) chromosomal translocation detected in 15% of multiple myeloma patients often
results in overexpression of FGFR3(104–106). The overexpressed FGFR3 is usually wild
type; sensitive to ligand-binding and the activated FGFR3 has a role in
myelomagenesis(107). Amplification of FGFR4 has been detected in rhabdomyosarcoma
and activating mutations characterized in 7% of cases(108). The affinity of bFGF with
various FGFRs is different, and the downstream signaling pathways of different FGFRs are
also varied(109), although the signaling domains of FGFRs are highly conserved. Several
signaling pathways can be activated by FGFRs, such as the PLC-g, Src, Crk, and SNT-1/
FRS2(110).

We and others have found that CLL B-cells constitutively produce the pro-angiogenic basic
fibroblast growth factor (bFGF) in vitro(36, 111, 112). Increased levels of bFGF have also
been reported in blood and urine of CLL patients(37, 111, 112). It is likely that the leukemic
cells are the primary source of bFGF in vivo. Interestingly, higher plasma levels of VEGF
and bFGF (FGF-2) have been reported to be predictors of longer survival in acute
lymphoblastic leukemia (ALL)(113), while Bairey and co-investigators(114) showed that
Bcl-2 expression correlates positively with serum bFGF and negatively with cellular VEGF
in patients with CLL. Indeed an in vitro study using CLL-derived cell lines showed bFGF
upregulates Bcl-2 expression resulting in delaying apoptosis(115). Interestingly, a recent
study established a functional link between FGF- and VEGF-signaling pathways(116). This
latter finding underscores that inhibition of both bFGF and VEGF signaling pathways may
be necessary to sufficiently impair CLL B-cell survival.

A gene expression study using leukemic B-cells from CLL patients detected FGFR1
transcript with higher expression levels in CLL B-cells with unmutated IgVH status(117).
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However, this study did not demonstrate any expression of FGFR2, FGFR3 or FGFR4 in
CLL B-cells. Most recently, our laboratory has indeed detected expression of FGFR1 and
FGFR3, but not FGFR2 and FGFR4, in CLL B-cells from previously untreated CLL patients
by both flow cytometric and Western blot analyses (Kay and Ghosh: unpublished
observations). Constitutively phosphorylated FGFRs were also detected in CLL B-cells
suggesting the existence of a paracrine/autocrine loop for activation of this FGF/FGFR-
signaling pathway. However, at present whether this RTK-signaling pathway is critical for
CLL B-cell survival and apoptotic resistance remains unknown.

ROR
Receptor tyrosine kinase-like orphan receptor (ROR) proteins are a conserved family of
RTKs that function in developmental processes including skeletal and neuronal
development, cell movement and cell polarity. Recent studies suggest that depending on
cellular context, Ror proteins can either activate or repress transcription of Wnt target genes
and can modulate Wnt signaling by sequestering Wnt ligands(118). It is not surprising that
deregulated RTKs cause severe developmental defects and diseases like cancers. Thus, ROR
proteins are no exception and disruption of human ROR proteins are associated with skeletal
deformities and with increased incidence of leukemia(118).

Vertebrates express two ROR family members encoded by ROR1 and ROR2 genes(119).
Ror proteins are type-I transmembrane RTKs and located predominantly in the plasma
membrane(120). The extracellular region of Ror proteins contains an immunoglobulin (Ig)
domain, a Cys-rich domain (CRD), also called Frizzled domain, a Kringle (Kr) domain, an
intracellular tyrosine kinase domain and a proline-rich domain (PRD) straddled by two Ser/
The-rich domains, Ser/Thr1 and Ser/Thr2(119). However, in humans, normal functions of
the Ror protein are known to be related primarily for skeletal development(121–124).

Gene expression profiling studies showed a 43.8-fold increase of the ROR1 in CLL B-
cells(125). Ror receptors participate in signal transduction, cell-cell interaction, regulation of
cell proliferation, differentiation, cell metabolism and survival(119, 126). The ROR1 gene is
located on human chromosome 1p31.3, a region where chromosomal aberrations are not
frequently detected in hematological malignancies(127). The human ROR1 is expressed in
heart, lung and kidney but less in placenta, pancreas and skeletal muscles(128). Truncated
ROR1 (t-ROR1) has also been reported in fetal and adult human central nervous system,
human leukemias, lymphoma cell lines and in a variety of human cancers derived from
neuroectoderm(128). CLL cells have been reported to express ROR1 at the mRNA and
protein levels uniformly, but not in normal B-lymphocytes(4, 127). Expression of ROR1 on
CLL B-cells has been found to independent of disease stages, IGVH mutational status, and
B-cell activation status(4, 127). Of note, expression of ROR2 was not detected on CLL B-
cells(4). In total, unique expression pattern of Ror1 on CLL B-cells, not in normal B-
lymphocytes, makes it an attractive target in CLL. However, whether ROR1 is critical for
CLL progression or enhanced survival remains to be investigated.

Signaling in CLL B cells via Non-Receptor Tyrosine Kinases that are
independent of BCR-Stimulation

This section discusses the relevant relationships of non-RTKs and their signal events to
leukemic B-cell biology.

Lyn kinase
The members of Src-family kinases (SFKs) consist of Src, Fyn, Yes, Lck, Hck, Fgr, Lyn,
Blk and Yrk. Each of these proteins are about 60 kD in molecular weight and have a
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common structure consisting of an N-terminal unique domain, followed by Src homology
(SH) domain 3, SH2 and tyrosine kinase domains(129). SFKs can act as an upstream or
downstream modulator of several receptors, as well as non-RTKs, which are responsible for
robustness and persistence of RTK-signaling(130). SFKs participate in the activation of
various downstream signaling pathways through molecular interactions with growth factor
receptors such as the epidermal growth factor receptor (EGFR) family, MET, integrin cell
adhesion receptors, steroid hormone receptors, G protein-coupled receptors, focal adhesion
kinase (FAK) and cytoskeleton components(130, 131). SFKs can activate PI3K/AKT,
growth factor receptor-bound protein 2 (Grb2)-Ras-Raf-mitogen activated protein kinase
(MAPK), Jak-signal transducers and activation of transcription (STAT) and FAK-paxillin-
p130-Crk-associated substrate (Cas) cascades that are most crucial for cell cycle
progression, survival and proliferation(132–137).

Lyn, a member of the SFKs, is reported to be robustly overexpressed at the protein level in
leukemic B-cells from CLL patients as compared to normal B-lymphocytes, with a
substantial aliquot of the kinase anomalously present in the cytosol(138). While in normal
B-lymphocytes Lyn activation is dependent on B-cell receptor stimulation, in resting
malignant cells, the constitutive activity of the kinase accounts for high basal level protein
tyrosine phosphorylation and low responsiveness to IgM ligation suggesting that it is
independent of BCR-stimulation(138). Interestingly, the evidence that Lyn mRNA level was
comparable in normal and neoplastic B-cells demonstrates the anomalous protein expression
was not related to differences in gene transcription and/or mRNA stability. A possible
explanation for this might be deregulated protein turnover in leukemic B-cells(138).
However, treatment of CLL B-cells with the Lyn kinase inhibitors PP2 and SU6656 induces
apoptosis, suggesting a direct correlation between high basal Lyn activity and defects in the
induction of apoptosis in leukemic B-cells(138). In total, these findings support a critical
role for Lyn in CLL pathogenesis and identify this non-RTK as a potential therapeutic
target.

Syk Kinase
The protein tyrosine kinase spleen tyrosine kinase (Syk) represents a key mediator of
proximal BCR signaling, providing proliferation and survival signals in a variety of
hematopoietic cells(139). After BCR-stimulation, Syk is recruited to BCR and becomes
activated by sequential phosphorylation at conserved tyrosine residues. Once activated, Syk
propagates signals by associating with the critical signaling intermediates such as, VAV,
PLCγ2, Bruton’s tyrosine kinase (Btk) and B-cell linker protein. The signaling cascade then
proceeds with the activation of further downstream signaling molecules including
extracellular signal regulated kinase ½ (Erk1/2) and p38(140). Translocations involving Syk
have been identified in myelodysplastic syndromes and T-cell lymphoma, indicating that
Syk may also function as a proto-oncogene(141, 142).

Gene expression profiling identified increased expression of Syk and downstream pathways
in CLL compared with normal B-cells from healthy individuals. Western blot analysis
showed increased expression and constitutive phosphorylation of Syk, and its downstream
PLCγ2, signal transducers and activators of transcription 3 (STAT3), and Erk1/2 in CLL B-
cells as compared to normal B-cells(143, 144). Indeed, Syk has been reported to be
overexpressed in CLL B-cells at both mRNA and protein levels versus normal B-cells and
pharmacological inhibition of Syk activity induced massive apoptotic leukemic B-cell death,
regardless of clinical and biological status of the CLL patients(143, 144), emphasizing the
potential clinical utility of Syk inhibition in hematological malignancies like CLL.
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Potential of tyrosine kinase inhibitors in future CLL therapy
Multiple tyrosine kinases in the form of receptors and non-receptors have been detected in
CLL as constitutively active and for the most part related to CLL B-cell survival. We
believe that constitutively active RTKs in CLL B-cells constitute a network where one RTK
acts as the predominant one, while others work as secondary RTKs, and that a functional
interplay between multiple RTKs where a common converging signaling point is, for
example, AKT. In this scenario then it is likely that inhibition of the primary RTK in
leukemic B-cells may promote activation of a secondary RTK that maintains the survival
signaling in the cells as most RTKs share the same downstream signal intermediates, like
Src, PI3K/AKT (Fig. 3). Thus, effectively targeting multiple RTKs should have a better
impact in CLL therapy. Nevertheless we wish to describe here prior clinical trials in CLL
that have used a strategy of single RTK inhibition in the trial design. Because these were
usually phase 2 trials all patients treated with RTK inhibition were relapsed/refractory CLL.

Targeting VEGF/VEGFR axis
To test the efficacy of anti-VEGF therapy in CLL, we initiated and completed separate
phase II clinical testing of three different anti-VEGF therapies for patients with relapsed/
refractory CLL: AZD2171 (a potent, oral, pan VEGF receptor inhibitor), bevacizumab (a
recombinant humanized monoclonal antibody to VEGF), and sunitinib malate (a multi-
targeted, small molecule inhibitor of RTKs involved in tumor proliferation and angiogenesis
including VEGFR-1, VEGFR-2, VEGFR-3, and platelet-derived growth factor receptor
[PDGFR])(54). Overall, 10 (71%) patients in the AZD2171 trial, 4 (33%) in the
bevacizumab trial, and 16 (89%) in the sunitinib malate trial experienced a grade 3 or higher
adverse event attributed to study medication. In the AZD2171 trial, the most frequent grade
≥3 adverse events were thrombocytopenia (5/14 patients), fatigue (5/14 patients), diarrhea
(3/14 patients), muscle weakness (3/14 patients), and hypertension (3/14 patients). In the
bevacizumab trial, the most frequent grade ≥3 adverse events were proteinuria (2/12
patients) and fatigue (2/12 patients). In the sunitinib malate trial, the most frequent grade ≥3
adverse events were thrombocytopenia (10/18 patients), fatigue (6/18 patients), neutropenia
(5/18 patients), and anorexia (4/18 patients).

All three trials were closed early due to lack of efficacy. Although no complete or partial
responses were obtained, 5/14 patients on AZD2171, 10/12 patients on bevacizumab, and
10/18 patients on sunitinib had stabilization of disease for a median duration of 2.7, 2.9, and
4.4 months, respectively. Thus, the absolute lymphocyte count (ALC) values declined by, at
least, 10% during treatment for 5/14 patients on AZD2171, 3/12 patients on bevacizumab,
and 6/18 patients on sunitinib malate.

Despite the lack of clinical activity observed in these trials, our and others work on the
biology of VEGF and other related angiogenic events play a role in CLL(34). These include
recent studies indicating that marrow vascular density is significantly higher in patients with
CLL with high-risk FISH and CD38 positivity(145), a pro-angiogenic profile favors disease
progression(146), circulating endothelial cells correlate with more advanced disease
stage(147), proangiogenic molecules such as angiopoietin-2 and matrix metalloproteinase 9
are associated with progressive CLL(148, 149), and use of combination
chemoimmunotherapy may work in part via antiangiogenic effects(150). Newer VEGF
receptor RTK inhibitors have also recently demonstrated activity against CLL B-cells in
vitro as well as in a xenograft model, and appear to increase the efficacy of purine
nucleoside analogs against CLL on in vitro testing(151). These observations suggest that
VEGF inhibition remains a potential therapeutic target in CLL and suggest that combining
anti-VEGF therapy with more traditional therapeutic agents may be a useful strategy for
patients with this disease. Indeed, we and others have already initiated clinical trials
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exploring the benefits of this approach as part of efforts to improve outcomes for patients
with CLL.

Targeting Syk
The first clinical trial targeting Syk non-RTK used fostamatinib disodium (an oral Syk
inhibitor) in a phase I/II studies in patients with relapsed/refractory non-hodgkin lymphoma
(NHL) and CLL(152). Dose-limiting toxicity in the phase I portion was neutropenia,
diarrhea, and thrombocytopenia, and 200 mg twice daily was chosen for the phase 2 study.
In this phase of the trial the most common toxicities were reversible cytopenias, fatigue,
diarrhea, and hypertension. Interestingly, 6 of 11 CLL patients (55%) achieved a partial
response and the response rate in CLL was the highest amongst the patients with other NHL.
However, to date no follow-up studies of fostamatinib in B-cell malignancies have been
initiated in spite of a recently completed randomized phase III study in rheumatoid arthritis
that showed significant activity and good tolerability of the drug(153).

Targeting Lyn-kinase
Dasatinib is an oral multikinase inhibitor targeting Src and Abl kinases which was approved
for use in imatinib resistant chronic myelogenous leukemia (CML). It has been reported
recently that dasatinib not only inhibits Lyn-kinase but also Btk at low nanomolar
concentrations(154). However, in vitro data demonstrates that dasatinib induces variable
degrees of apoptosis in leukemic B-cells with no correlation between response and
inhibition of Lyn phosphorylation(155).

A phase II study of 140mg dasatinib once daily in a small cohort of relapsed/refractory CLL
patients (n=15) reported an overall response rate of 20% with a progression-free survival of
7.5 months(156). However, 5 patients exhibited >50% reduction in lymphadenopathy.
Myelosuppression was the primary toxicity with grade 4 neutropenia and thrombocytopenia
occurring in 40% and 13% of the CLL patients, respectively(155).

Impact of Axl inhibitor in vitro
Axl RTK plays a critical role likely by regulating activity of multiple cellular kinases
including non-RTKs like Lyn, Syk and lipid kinases like PI3K, PLCγ2 in CLL B-cells to
modulate survival of the leukemic B-cells(3). We believe that Axl is acting as the
predominant RTK in CLL B-cells (Fig. 3). This hypothesis is based on the fact that Axl
inhibition induces robust apoptotic cell death in CLL B-cells from CLL patients with various
disease stages, prognostic profiles and risk factors at very low LD50 doses (0.25 – 2.0 μM)
of the high-affinity Axl inhibitors (ref and unpublished observations: Kay and Ghosh)(3).
Indeed, a high-affinity, oral Axl-inhibitor BGB328 (BergenBio), formerly known as
R428(157), reduced breast tumors in a mouse xenograft model with favorable toxicity
profiles. A single administration of the agent in female BALB/c mice by oral gavage
resulted in high plasma exposures (Cmax of approximately 2.6 and 6.8 μM/L with doses of
25 and 75 mg/kg, respectively) with linear dose proportionality up to 100 mg/kg body
weight(157). Importantly, the Axl inhibitor exhibited a long plasma half-life (4 hours at 25
mg/kg; 13 hours at 75 mg/kg) and distributed effectively to tissues(157). Information from
this pre-clinical study emphasized the potential use of the Axl-inhibitor in CLL patients in
future phase I/II studies.
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Fig. 1. VEGF ligand and receptor-binding properties and signaling complexes
Mammalian VEGF ligands bind to the three VEGF receptor tyrosine kinases, leading to the
formation of VEGFR homodimers or heterodimers. Proteolytic processing of VEGFC and
VEGFD allows for binding to VEGFR2. Upon ligation with the ligand, VEGFRs transmit
signals to transcribe the target cells via various intermediate components which also depend
on the cellular context. Thus, activation of the specific VEGFR (via ligand binding or
activating mutation) results in cell migration, permeability, proliferation and survival
leading to angiogenesis.
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Fig. 2. CLL plasma contain both VEGF-C and VEGF-D
Plasma levels of VEGF-C and VEGF-D were measured in previously untreated CLL
patients of various disease stages as indicated or age-matched healthy subjects using specific
ELISA kits. Individual values are presented. Horizontal lines indicate the mean values.
Although a trend of decrease VEGF-C levels were discernible with the disease progression,
a sharp increase in VEGF-D levels were detected in advanced stages of CLL.
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Fig. 3. Tyrosine kinase network in CLL
Leukemic B-cells from CLL patients express multiple RTKs which may directly or
indirectly participate in the “Cell Survival” signaling network. As most of the RTK
signaling pathways share common intermediate signaling components, for example, Src,
PI3K/AKT, we believe that in this “RTK-Network”, one RTK plays the role of the
“Predominant RTK” while others play a secondary role likely depending on the risk-factors
of the cells. In CLL, upon binding specific ligands, these RTKs may activate multiple
signaling intermediates including Src, Syk, Grb2/PI3K, Ras/Raf, PLC-γ leading to activation
of the downstream effector signaling components, for example, AKT, MAPK, PKC or
STATs, which ultimately activates various specific target genes resulting into cell survival,
proliferation and apoptosis resistance. However, expression of constitutively active RTKs in
CLL B-cells results into uncontrolled activation of the downstream signaling molecules
leading to increased cell survival and apoptotic resistance to therapeutic agents. One such
constitutively RTK in CLL we detected was Axl.
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