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Acoustically sensitive emulsion droplets composed of a liquid per-
fluorocarbon have the potential to be a highly efficient system for
local drug delivery, embolotherapy, or for tumor imaging. The
physical mechanisms underlying the acoustic activation of these
phase-change emulsions into a bubbly dispersion, termed acoustic
droplet vaporization, have not been well understood. The droplets
have a very high activation threshold; its frequency dependence
does not comply with homogeneous nucleation theory and localized
nucleation spots have been observed. Here we show that acoustic
droplet vaporization is initiated by a combination of two phenom-
ena: highly nonlinear distortion of the acoustic wave before it hits
the droplet and focusing of the distorted wave by the droplet itself.
At high excitation pressures, nonlinear distortion causes significant
superharmonics with wavelengths of the order of the droplet size.
These superharmonics strongly contribute to the focusing effect;
therefore, the proposed mechanism also explains the observed
pressure thresholding effect. Our interpretation is validated with
experimental data captured with an ultrahigh-speed camera on
the positions of the nucleation spots, where we find excellent agree-
ment with the theoretical prediction. Moreover, the presented
mechanism explains the hitherto counterintuitive dependence of
the nucleation threshold on the ultrasound frequency. The physical
insight allows for the optimization of acoustic droplet vaporization
for therapeutic applications, in particular with respect to the acoustic
pressures required for activation, thereby minimizing the negative
bioeffects associated with the use of high-intensity ultrasound.

Over the last 15 y, nanomedicine has emerged as a promising
field to address current problems of chemotherapy (1–4).

Several drug-carrying constructs have been suggested to decrease
the severe side effects of systemic injection on healthy tissue. The
common strategy for such a local drug delivery application is the
encapsulation of the drugs in polymeric micelles, hollow particles,
liposomes, or emulsion droplets. The encapsulation allows for tar-
geted and triggered release of the content and the administration of
bioactive compounds that have low aqueous solubility (5).
One approach is the use of injectable phase-change emulsion

microdroplets composed of a low-boiling-point perfluorocarbon
(PFC), such as perfluoropentane (PFP, 29 °C boiling point). PFC
emulsions have been studied in a wide variety of diagnostic and
therapeutic applications such as drug delivery, tumor imaging, and
embolotherapy (6). Ultrasound can be used to induce a phase
transition of such droplets to gas bubbles, a process known as
acoustic droplet vaporization (ADV) (7). Because ultrasound can
be applied locally and noninvasively, ADV has been investigated
as a means of localized drug delivery, especially for therapeutic
agents with a narrow therapeutic index, such as chemotherapeutic
drugs (5, 8–10). The droplets are stabilized by a surfactant shell to
prevent their coalescence. The PFP emulsion does not spontane-
ously vaporize when injected in vivo at 37 °C (11, 12) until the
droplets are exposed to ultrasound at sufficiently high pressure
amplitude (7). Recent studies have also demonstrated that PFC
nanodroplets (size ∼200 nm) may extravasate through leaky tumor
vasculature, thus passively accumulating in the interstitial space,
with the potential to enhance the therapeutic outcome (13, 14).

Even though the ADV approach for localized drug delivery
shows great promise (13, 15), the physical mechanisms underlying
the nature of the ADV process have not been well explained. The
pressure amplitudes required to induce the phase transition of the
acoustically sensitive droplets seem to be substantial, with me-
chanical indices (16) reported to be as high as four (7), well above
the FDA-approved limit for diagnostic ultrasound. A pronounced
thresholding behavior has been observed for the activation,
meaning that there is negligible probability for detection up to
some peak negative pressure amplitude, after which the probability
increases linearly with the applied acoustic pressure (7, 17). Sev-
eral groups have reported a dependence of the pressure threshold
on the driving frequency (7, 17–19). The required threshold has
been found to decrease with increasing frequency, whereas the
cavitation threshold in liquids is expected to increase with in-
creasing frequency (16). There is also an unexplained decrease of
the threshold pressure with increasing size of the droplets (20, 21).
Finally, ultrahigh-speed imaging has allowed for the construction
of spatial and temporal nucleation maps (22). This showed that the
nucleation spots inside the droplets were highly localized for some
bubbles, whereas other bubbles had nucleation spots at random
positions throughout the droplet. The authors suggested that the
location of such spots may be a function of the droplet size (22).
The authors also pointed out that temporally the initiation of the
nucleation is shifted toward the end of the rarefactional half cycle
of the ultrasound pulse.
Here we elucidate the physical mechanism that is responsible

for all of the above phenomena. We show that acoustic droplet
vaporization is initiated by the focusing of a nonlinear acoustic
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wave on a specific spot inside the droplet. The focusing results
from the spherical shape of the droplet and the acoustic impedance
mismatch between the PFC droplet and its exterior. The phe-
nomenon is facilitated by the nonlinear propagation of ultrasound,
which builds up superharmonics that are necessary to induce the
focusing effect by having a wavelength of the order of the droplet
size. Below we will present the theory for this problem. We will
explain the approach for analyzing the distortion of the focused
ultrasound wave and generation of superharmonics owing to
nonlinear propagation and subsequently derive the expression for
the diffracted ultrasound inside the droplet. We will then combine
theory and numerical computations to quantify the effect of
superharmonic focusing within the droplet, which allows for the
exploration of the full parameter space of acoustic pressure, fre-
quency, transducer geometry, and droplet size. Finally, our theo-
retical treatment is supported with precise ultrahigh-speed imaging
experiments near the vaporization threshold of single microdroplets,
which show the phenomena to be droplet size-dependent.

II. Theory
A. Nonlinear Propagation. The acoustic pressure amplitudes re-
quired to nucleate the droplet have been observed to be very high.
In a typical ADV experiment, before impinging on the droplet the
ultrasound wave from a focused transducer travels a distance on
the order of a few centimeters (7, 17–19, 22–24). Under these
conditions the wave that arrives at the focus of the transducer can
be highly distorted owing to nonlinear propagation (25, 26). The
use of a focused transducer permits the nonlinearly distorted wave
to be calculated using the Khokhlov–Zabolotskaya–Kuznetsov
(KZK) equation (27, 28):

∂2p
∂z∂τ

=
c0
2
∇2

⊥ p+
δ

2c30

∂3p
∂τ3

+
β

2ρ0c30

∂2p2

∂τ2
; [1]

with p the pressure, β the coefficient of nonlinearity of the medium,
and δ its sound diffusivity. The variable τ denotes that the retarded
time τ= t− ðz− z0Þ=c0, with z0 being the distance between the
transducer and the droplet. The derivation of the KZK equation
involves a parabolic approximation that is valid for forward propa-
gating waves in a cone with a half-opening angle of up to 16° around
the transducer axis (29–31). This requirement is often met for the
waves emitted from a regular piston transducer.
All of the subsequent derivations are given in the complex

representation. The pressure field at the acoustic focus of the
transducer obtained from the solution of the KZK equation can
be expanded in a Fourier series:

pKZKðtÞ=
X∞
n=0

aneiðnωt+ϕnÞ; [2]

where an and ϕn are the amplitudes and the phases of the n-th
harmonic component of the ultrasound wave. Because nonlinear
waveform deformation builds up over distance and the droplet is
four orders of magnitude smaller in size than the distance to the
transducer, we disregard the additional nonlinear distortion in-
side the droplet. This implies that wave propagation inside the
droplet is considered linear, so the superposition theorem holds
and each harmonic component may be analyzed individually, as
we will do in the following.

B. Diffraction Within a Spherical Droplet. Let us consider an incident
plane acoustic pressure wave composed of a single Fourier
component p= aeiðωt−kz+ϕÞ with pressure amplitude a propagating
in the z direction in a medium with speed of sound c0, density of
mass ρ0, and wavenumber (or spatial frequency) k0 =ω=c0. It
interacts with a spherical droplet with radius R, speed of sound c1,
density of mass ρ1, and wavenumber k1 =ω=c1. The angular
frequency of the ultrasound wave is ω= 2πf , with f the frequency
of the ultrasound wave.

Let us now find the pressure wave inside the droplet. The time
dependence of the refracted pressure waves (the one inside the
droplet) and the scattered pressure wave (the one outside the
droplet) is determined by the eiωt+ϕ multiplier. As a consequence,
the acoustic wave equation ∇2p− 1

c2s
∂2p
∂t2 = 0 reduces to the Helm-

holtz equation (32)

∇2vs + k2s vs = 0; [3]

where ks =ω=cs is again the wavenumber and vs is the spatial
pressure wave (without the eiωt+ϕ time dependency). s= 0; 1
represents the notation of the different media: 0 for the exte-
rior and 1 for the interior. The wave outside the droplet can then
be expressed as v0 = u0 +w0, where u0 represents the incident
plane wave (a known function) and w0 the scattered wave, and
the wave inside the droplet is indicated by v1 (Fig. 1).
At the droplet interface the pressure field must satisfy two

boundary conditions:

v1 = u0 +w0; [4]

1
ρ1

∂v1
∂n

=
1
ρ0

∂u0
∂n

+
1
ρ0

∂w0

∂n
; [5]

where ∂=∂n indicates the normal derivative to the droplet inter-
face. The first boundary condition follows from the condition
of continuous pressure at the droplet surface, because no
force can be exerted on an infinitesimally small boundary.
The second has the physical meaning of continuity of a fluid
particle displacement normal to the surface. The incident
plane wave can be expanded in spherical coordinates as fol-
lows (32):

u0 = e−ik0r cos θ =
X∞
m=0

ð−iÞmð2m+ 1Þjmðk0rÞPmðcos θÞ; [6]

where jmðk0rÞ=
ffiffiffiffiffiffiffi
π

2k0r

q
Jm+1

2
ðk0rÞ, with Jm+1

2
ðk0rÞ a Bessel function of

the first kind of order
�
m+ 1

2

�
and Pmðcos θÞ the Legendre poly-

nomial of orderm. The symbols r and θ denote spherical coordinates
with the θ= 0 direction being aligned along the propagation di-
rection of the incident ultrasound wave u0. Based on symmetry
considerations both refracted v1 and scattered w0 waves are axi-
symmetric functions and must both satisfy the Helmholtz wave
equation Eq. 3. Let us find such solutions of the unknown func-
tions v1 and w0 in the form of Eq. 6:

Fig. 1. Schematic of the diffraction of an acoustic plane wave within
a spherical droplet. Incoming plane wave u0 propagating from left to
right, scattered wave w0 outside the droplet and refracted wave v1 inside
the droplet.
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v1 =
X∞
m=0

αm jmðk1rÞPmðcos θÞ; [7]

w0 =
X∞

m=0

βmh
ð2Þ
m ðk0rÞPmðcos θÞ; [8]

where αm, βm are unknown coefficients, jmðk1rÞ as before, and
hð2Þm ðk0rÞ=

ffiffiffiffiffiffiffi
π

2k0r

q
Hð2Þ

m+1
2
ðk0rÞ with Hð2Þ

m+1
2
ðk0rÞ the Hankel function of

the second kind of order
�
m+ 1

2

�
. Hankel functions of the second

kind are chosen as a linearly independent basis for the expansion
of the scattered wave w0, because they automatically satisfy the
Sommerfeld radiation conditions at infinity. One can find the αm
and βm coefficients by substituting Eqs. 7 and 8 at the droplet
interface ðr=RÞ into the two boundary conditions, Eqs. 4 and 5,
and using the known function u0 from Eq. 6. Equalizing the
prefactors of Pmðcos θÞ [they must be equal, because all
Pmðcos θÞ are linearly independent functions of cos θ] gives

αm = γm
jmðk0RÞh′ð2Þm ðk0RÞ− hð2Þm ðk0RÞj′mðk0RÞ

jmðk1RÞh′ð2Þm ðk0RÞ− k1
k0
ρo
ρ1
hð2Þm ðk0RÞj′mðk1RÞ

; [9]

where γm = ð−iÞmð2m+ 1Þ and j′m and h′ð2Þm denote the derivatives
of the respective functions. The coefficients αm are now known
and expressed in terms of the dimensionless parameters k0R and
k1R. Thus, by reintroducing the exponential time factor that was
dropped earlier, the pressure wave inside the droplet at any given
spatial point ðr; θÞ and any instant of time t can be written as

pinsideðr; θ; tÞ= aeiðωt+ϕÞ
X∞
m=0

αmjmðk1rÞPmðcos θÞ; [10]

where ϕ is related to the phase of the incident field and a is the
amplitude of the incident pressure wave.
Eq. 10 was obtained for an incident sinusoidal wave. It can

now be extended to the case of a nonlinear pressure waveform.
For the incident wave, we superimpose the Fourier components
as in Eq. 2. With an and ϕn known, the corresponding Fourier
component inside the droplet is found when substituted into Eq.
10. Superposition of these internal Fourier components is then
used to calculate how the nonlinear pressure wave is diffracted
within the small spherical droplet:

pinsideðr; θ; tÞ=
X∞

n=0

X∞

m=0

aneiðnωt+ϕnÞαmn jmðnk1rÞPmðcos θÞ; [11]

where αmn is computed by means of Eq. 9 with k0 and k1 being
replaced by nk0 and nk1, respectively.

III. Results and Discussion
The distorted wave is calculated from the real part of Eq. 2 and
plotted in Fig. 2 in spatial coordinates in the propagation di-
rection z, along the axis of symmetry, where the wave propagates
from left to right. The black line represents one wavelength of
the wave, λ0 = 438 μm, in the absence of a droplet. The red line
represents the same wave in the presence of an R = 10-μm
droplet, calculated using the real part of Eq. 11. The position of
the droplet is indicated by the gray shaded region in Fig. 2. In
contrast to the nondiffracted (distorted) wave, the diffracted
wave changes its shape depending on how far it has propagated
relative to the droplet position. The red curve shows the pressure
right at that particular time instant when the maximal negative
pressure is reached over the full period 2π=ω. It can be observed
that a focused pressure of P−

drop = − 26 MPa is achieved within
the droplet for an incoming wave with a peak negative pressure
P−
inc = − 4:5 MPa. A nearly sixfold increase in peak negative

pressure amplitude is observed in a concentrated region on
the proximal side around z= −0:4R. We will call this position
the focusing spot. For any given set of input parameter values the
solution of Eq. 11 has an absolute minimum in (r, θ, t) space.
Nucleation within the droplet is assumed to be most probable at
such a minimum, where (and when) the focused pressure am-
plitude is maximal.
The pressure amplification factor in the focusing spot as well as

its location depend on the input parameter values (i.e., frequency,
pressure amplitude, transducer geometry and size), which pre-
scribe the propagation distance to the focal point. Owing to the
nonlinear propagation of the ultrasound wave its shape, expressed
in the coefficients an and ϕn, depends on the pressure amplitude.
The higher the pressure, the more nonlinear the wave becomes, as
the amplitudes of the superharmonics build up roughly as ðPsurÞn,
where Psur is the pressure amplitude at the transducer surface and
n is the number of that particular harmonic. Fig. 3A shows the
dependence of the pressure amplification factor on the incident
peak negative pressure P−

inc at the focusing spot for droplet sizes
R = 4, 7, and 10 μm. For instance, in the case of an R = 10-μm
droplet, the pressure signal is not amplified until a pressure near
P−
inc = − 2:5 MPa.
The focusing effect strongly depends on the frequency of the

driving pressure field. Here two effects come into play. First, the
nonlinear propagation depends on frequency and, second, there
is a strong coupling between the frequency and the droplet size
owing to diffraction. Both frequency and size appear in a com-
bined way in the dimensionless parameters k1R and k0R (Eqs. 9
and 11). In Fig. 3B we plot the pressure amplification factor at
the focusing spot as a function of frequency for the droplet
sizes R = 4, 7, and 10 μm driven at a peak negative pressure
P−
inc = − 4:5 MPa. It shows that the pressure is amplified with

increasing frequency, and this tendency is in agreement with
the work of Kripfgans et al. (7).
Fig. 4A shows the superharmonic focusing effect as a function

of the droplet size. It shows resemblance to Fig. 3B through the
coupling through kR. By comparing with Fig. 3B one can now
discriminate between the effect of diffraction and nonlinear
propagation. Both Figs. 3B and 4A display the same super-
harmonic focusing effect; however, only the first is governed
by the nonlinear distortion as a function of frequency. The
amount of focusing depends both on the degree of constructive

Fig. 2. Snapshot of the superharmonic focusing effect within a spherical
droplet. The black line represents the acoustic pressure waveform on the
axis of symmetry (θ = 0) as a function of the z coordinate in the absence of
a droplet. The red solid line is the focused pressure in the presence of the
droplet. The snapshot is taken right at the moment of minimum focused
pressure. The horizontal axis displays one full wavelength in the medium
outside the droplet. The gray shaded region depicts the position of the
droplet, R = 10 μm. The focusing spot lies around z= − 0:4R and the pres-
sure is amplified 5.8 times compared with the incident acoustic pressure
P−
inc = − 4:5 MPa.
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interference of the various harmonics within the droplet and
whether or not these harmonics are near the internal acoustic
resonance of the droplet, which occurs once k ·R is close to 1.
Because of this intricate interplay, the focusing effect will show
rapid changes and significant peaks as a function of frequency
and size, as shown in Figs. 3B and 4A.
The position of the absolute minimum pressure in Eq. 11 was

calculated numerically by an iterative method of successive dis-
placement along the variables ðr; θ; tÞ. The absolute minimum
was found to be always on the axis of symmetry ðθ= 0Þ. Fig. 4B
shows how the measured position of the focusing spot depends
on the droplet size for a fundamental frequency of 3.5 MHz (red
curve). For example, for droplets with radii between 1 and 5 μm,
nucleation is expected to occur homogeneously distributed through
the droplet (24), whereas for bubble radii between 8 and 12 μm the
focusing spot is located near z= − 0:4R and positioned at the
proximal side (i.e., on the side where the nonlinear ultrasound
wave hits the droplet). Note that Fig. 4B shows the result of
the constructive interference of all superharmonics. Taking
only the fundamental frequency, or any single harmonic, as in
Eq. 10 will lead to a completely different diffraction pattern, and
as a result into different focusing position and strength or to no
focusing effect at all.
A total of 142 nucleation events were imaged experimentally

using ultrahigh-speed imaging at up to 20 million frames per
second (33, 34). A typical example of such a droplet vaporization
event is shown in Fig. 5A. Nucleation is initiated between frames
3 and 4 at the position of minimum pressure, where the focused
pressure increases the chance of nucleation. Once the nucleus is
formed, rapid bubble growth follows with a typical expansion
velocity on the order of _R= 10 m=s depending on the ambient
temperature (22). The position of each focusing spot was mea-
sured from the geometrical center of the growing nucleus with
a

ffiffiffi
2

p
correction to account for the 45° inclination of the op-

tical imaging plane with the direction of ultrasound propagation

(Materials and Methods). Spatial nucleation maps were then con-
structed as displayed in Fig. 5B.
The position of the focusing spot as a function of the droplet

size is summarized in Fig. 4B. They are in good agreement with
the theoretical prediction, being more scattered for smaller
droplets and highly localized for the larger ones. This is to be
expected because the pressure amplification factor (from Fig.
4A) is only slightly above unity for the smaller droplets, leading
to a stochastic random nucleation behavior, whereas for the
larger droplets a much higher amplification factor is achieved,
leading to sharp focusing of the acoustic wave and instant nu-
cleation in a well-defined spot. Fig. 4B was calculated for those
positions with absolute minimum of pressure in the (r,θ,t) pa-
rameter space. However, one can calculate that for the larger
bubbles in the parameter set considered here, Eq. 11 has a sec-
ond local minimum on the axis of symmetry around z= + 0:4R,
that is, on the distal side, occurring at a different time than the
first one. Owing to the stochastic nature of ADV, and provided
that enough acoustic power is applied (i.e., above the vapor-
ization threshold), acoustic vaporization can also be initiated at
this second local minimum (22).
The nucleation maps of Fig. 5B show that for a driving fre-

quency of 3.5 MHz (red) the smaller droplets are indeed nu-
cleated in random position, with a tendency to focus for the
sizes 6 μm to 10 μm, whereas for the larger droplet sizes (10–14
μm) the nucleation spots are highly localized. The data show
that for a fundamental driving frequency of 5.0 MHz nucleation
occurs in a focal spot already for smaller droplet sizes (6–10 μm).
The histogram shows the positions z/R for 3.5 MHz for the 10- to
14-μm droplet sizes and 5.0 MHz for the 6- to 10-μm droplet

A

B

Fig. 3. Dependence of the pressure amplification factor at the focusing spot
for three microdroplet radii (A) as a function of the incident acoustic peak
negative pressure P−

inc at a driving frequency of 3.5 MHz and (B) as a function of
the driving frequency f for a peak negative pressure of −4.5 MPa. A

B

Fig. 4. (A) The dependence of the pressure amplification factor at the fo-
cusing spot as a function of the droplet radius R for three incident acoustic
peak negative pressures P−

inc . (B) The position of the nucleation site as a
function of the droplet size. The position is taken along the axis of ultra-
sound propagation on the axis of symmetry of the system. The solid lines
represent the calculated positions of maximal peak negative pressure for a
frequency of 3.5 MHz (red) and 5.0 MHz (blue), respectively. The circles
represent measured nucleation spots for a range of droplet sizes for the two
frequencies.
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sizes. For the 3.5-MHz frequency experiment the mean position
is −0.37 (SD of 0.10; n = 28 events), whereas the corresponding
theoretical prediction is −0.45. For the 5.0-MHz experiment
the mean position is −0.54 (SD of 0.10; n = 58 events) with
a corresponding theoretical prediction of −0.59. Thus, the
focusing spot moves more proximal to the transducer for a
higher frequency and its position is in quantitative agreement
with the theory.
Although the presented model explains the tendency of the

nucleation threshold with the driving pressure, frequency of the
ultrasound wave, and size of the droplets, a detailed calculation
of the probability of nucleation must also incorporate parame-
ters such as the purity of the PFP liquid, the dissolved gas con-
centration, liquid temperature, vapor pressure associated with it,
number of ultrasound cycles, droplet concentration, droplet size
distribution, and so on. By using Eq. 11 one could match the peak
negative pressure at the focusing spot (e.g., −26 MPa at R = 10 μm
in Fig. 3A) with the incident peak negative pressure threshold
measured in experiments as a function of these parameters. The
numerical results presented here are calculated and compared with
experiments performed in water. The shape of the nonlinearly
distorted wave is strongly dependent on the parameters of the
propagating media. For human tissue the Goldberg ratio is lower
than for water (35). This indicates that nonlinear distortion is easier
to achieve in water, compared with tissue. Therefore, the experi-
ments performed in vivo are expected to have different nucleation
patterns, notably with a higher nucleation threshold compared with
the in vitro experiments.
The present theory shows that the larger the droplet size, the

stronger the focusing. The smaller nanodroplets will require
a higher frequency for activation. For the higher frequencies the
harmonic content will be higher through nonlinear propagation
and a higher number of superharmonics will be formed. Atten-
uation, however, will be stronger for higher frequencies. Thus, it
is reasonable to assume that the combined effect will still be
there, but probably less pronounced. A precise answer, however,
cannot be provided given the computational effort of calculating

nonlinear propagation effects for these high frequencies and
given the lack of experimental tools for validation of pressures
and amplitudes for these high frequencies and for optical im-
aging that would then be required at nanometer precision.
The physical insight allows for the optimization of acoustic

droplet vaporization for therapeutic applications, in particular
with respect to the acoustic pressures required for activation,
thereby minimizing the negative bioeffects associated with the
use of high-intensity ultrasound. This includes the design of
droplets by mixing different liquids of different physical prop-
erties which allows to vary the acoustic impedance by a change of
the density and speed of sound. Using dual or multiple frequency
transducers, the amplitudes and phases of the transmit waves can
be optimized to have maximal constructive interference within
the droplets to maximize the focusing strength at any given acoustic
input pressure.

IV. Materials and Methods
A. Numerics. Several numerical codes (31, 36) based on the KZK equation, Eq.
1, are available to calculate the nonlinear pressure in the absence of
a droplet. We use a numerical axisymmetric implementation written in C
programming language developed in-house (37). It has been validated with
calibrated hydrophone measurements and was found to be able to repre-
sent the experimental pressure waveform with a precision of 10% (37). The
result of the simulation is the pressure field at the acoustic focus as a func-
tion of the position, time, and frequency for any given transducer geometry
(i.e., diameter and focal distance). The following parameter values were
used in the simulations: exterior medium water with speed of sound c0=
1,520 m/s (at 37 °C), density ρ0 = 1,000 kg=m3, a nonlinear coefficient β = 3.5
and a sound diffusivity δ= 4:3× 106 s−1, interior medium PFP with speed of
sound c1 = 406 m=s (at 37 °C), and density ρ1 =1,660 kg=m3. In the numer-
ical simulations the transducer dimensions were set to that used in experi-
ment; the diameter was 19.05 mm (3/4 inch) and the focal distance was 38.1
mm (1.5 inches). The numerical code was initially run to calculate the pres-
sure field at the focus of the transducer for a center frequency f = 3.5 MHz
and f = 5.0 MHz for pressures ranging from 1 to 5 MPa peak negative
pressure. The code was also run at frequencies ranging from 1 to 7 MHz with
the incoming peak negative pressure at the focus kept constant at a value

A

B

Fig. 5. (A) A set of consecutive images showing
acoustic droplet vaporization of a 7.4-μm-radius PFP
droplet taken at a frame rate of 12.6 million frames
per second. The droplet is triggered by an eight-
cycle, 5-MHz frequency ultrasound pulse. The nu-
cleation is initiated between frames 3 and 4. Frames
4 and 5 show the subsequent vapor bubble growth
(24). (B) Nucleation maps for the two frequencies
and for a range of droplet sizes. The histogram
shows the focused positions z/R for a frequency of
3.5 MHz for the 10- to 14-μm droplet sizes and for
a frequency of 5.0 MHz for the 6- to 10-μm droplet
sizes. US, ultrasound.
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P−
inc = − 4:5 MPa. Fig. S1 shows how the series expansion approach represents

the original signal depending on how many expansion terms are taken into
account. We used the first 10 harmonics to represent the nonlinear ultrasound
pressure wave, Eq. 2. Eq. 11 allows one to calculate the pressure inside the
droplet at any given spatial point ðr,θÞ at any instant of time t. To calculate
the pressure inside the droplet, Eq. 11, for the parameters considered here
(1 < R < 15 μm, 1 < f < 7 MHz) the first 45 terms of the series in Eq. 10
were used.

B. Experiments. A PFP droplet emulsion was prepared using the methods
adopted from refs. 22, 23, and 38. A highly diluted suspension of droplets
was injected into an OptiCell (Thermo Fisher Scientific) to observe single
microdroplets. The OptiCell was submerged in a 1-L temperature-controlled
water tank kept at a temperature of 37 °C. Microdroplets were phase-
transitioned with a focused 19-mm- (3/4-inch)-diameter single-element trans-
ducers (Olympus Panametrics) [3.5-MHz and 5.0-MHz center frequencies, focal
length 38 mm (1 inch)]. The acoustic driving pulse was delivered from an
arbitrary waveform generator (Tabor 8026; Tabor Electronics) amplified by
an rf amplifier (ENI 350L; Electronic Navigation Industries, Inc.). Droplet
samples were vaporized with a single ultrasound pulse, consisting of a burst
between 6 and 10 cycles and a driving pressure with a peak negative
pressure P−

inc = − 4:5 MPa at 45° angle to the horizontal OptiCell plane (22,
24). The pressure value was calibrated in the same setup at the position of
the droplets using a 0.2-mm PVDF probe hydrophone (DC27/000658; Pre-

cision Acoustics Ltd.). The region of interest in the Opticell was imaged with
an Olympus microscope equipped with a 40× water-immersed microscope
objective (LUMPlanFl/IR, N.A. = 0.8) providing a resolution of 0.269 μm per pixel.
The sample was illuminated from below with a 65-mJ xenon flash pulse (30-μs
duration) through an optical light guide (Schott AG). The timing and positions of
the focusing spots within the insonified droplets were captured with the ultra-
high-speed framing camera Brandaris 128 (33, 34). The camera was set to record
128 frames in a single run at a frame rate of up to 20 million frames per second,
thus providing an interframe time as low as 50 ns. This allowed sampling of
each cycle of the ultrasound wave with a ratio of 5–6. The uncertainty of
the determination of the nucleation site from the optical images is one
pixel size, which corresponds to a physical size of ∼250 nm. Our method
assumes that nucleation occurs in the plane at a 45° angle with the im-
aging plane and parallel with the ultrasound propagation direction.
However, nucleation may occur off this plane within the depth of field of
the microscope, which may well be a source of error. A more precise de-
termination of the position of the nucleation site will require orthogonal
or 3D ultrahigh-speed imaging, which is not available at present.
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