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Rapid advances in molecular microbial ecology have yielded an
unprecedented amount of data about the evolutionary relationships
and functional traits of microbial communities that regulate global
geochemical cycles. Biogeochemical models, however, are trailing in
the wake of the environmental genomics revolution, and such
models rarely incorporate explicit representations of bacteria and
archaea, nor are they compatible with nucleic acid or protein se-
quence data. Here, we present a functional gene-based framework
for describing microbial communities in biogeochemical models by
incorporating genomics data to provide predictions that are readily
testable. To demonstrate the approach in practice, nitrogen cycling in
the Arabian Sea oxygen minimum zone (OMZ) was modeled to
examine key questions about cryptic sulfur cycling and dinitrogen
production pathways in OMZs. Simulations support previous asser-
tions that denitrification dominates over anammox in the central
Arabian Sea, which has important implications for the loss of fixed
nitrogen from the oceans. Furthermore, cryptic sulfur cycling was
shown to attenuate the secondary nitrite maximum often observed
in OMZs owing to changes in the composition of the chemolithoau-
totrophic community and dominant metabolic pathways. Results
underscore the need to explicitly integrate microbes into biogeo-
chemical models rather than just the metabolisms they mediate.
By directly linking geochemical dynamics to the genetic composition
of microbial communities, the method provides a framework for
achieving mechanistic insights into patterns and biogeochemical
consequences of marine microbes. Such an approach is critical for
informing our understanding of the key role microbes play in
modulating Earth’s biogeochemistry.

Environmental policies are increasingly founded on the results
of computer simulations. For example, large-scale biogeo-

chemical models, like those used by the Intergovernmental Panel
on Climate Change, are often used to examine the impacts of cli-
mate change and to make projections about the future of the Earth.
These models rely on observations to constrain and parameterize
processes, as well as to validate results, and thus benefit from
drawing on all available datasets. An underexploited yet rapidly
growing source of data is the field of environmental “-omics” (e.g.,
genomics, transcriptomics, proteomics, and their “meta-” counter-
parts), which employs molecular biological tools to determine the
identity and activity of microbial communities. These approaches
were key in establishing the existence of important but difficult-to-
elucidate biogeochemical pathways that are mediated by microbes,
such as anaerobic oxidation of ammonia (anammox; ref. 1), aerobic
nitrification by archaea (2), and cryptic sulfur cycling (3, 4).
A major impediment to using these experimental techniques

in concert with biogeochemical models is that they differ in terms
of currency. Data refer to genomes, proteins, and metabolites,
whereas biogeochemical models typically simulate chemical con-
centrations and biomass, grouping organisms according to their
function as opposed to genetic identity. At present, a clear divide
exists between modeling efforts and genomics studies, yet there
is much to be gained by integrating these fields (e.g., mechanistic
insight into biogeochemical processes, model-based hypothesis
development for guiding meta’omic studies, and improved pre-
dictive power). With this in mind, a unique modeling approach

was developed that adopts a gene-centric view, incorporates
genomics data, provides output that can be compared directly to
experimental observations, and can be combined with traditional
biogeochemical modeling methods. The proposed approach was
used to explore nitrogen dynamics and cryptic sulfur cycling in
oxygen minimum zones (OMZs), regions that account for 30–50%
of marine nitrogen loss and play an important role in the pro-
duction of greenhouse gases (5–7). These simulations address the
relative contributions of anammox and denitrification to N2 pro-
duction and examine how cryptic sulfur cycling alters biogeochemical
dynamics.

Integrated Modeling Framework
To date, numerous strategies have been advanced for modeling
individual microbes, microbial communities, and encompassing
ecosystems (ref. 8 and references therein and refs. 9 and 10).
Within a reactive-transport framework, microbial ecology and
geochemistry are usually coupled either by modeling metabolic
networks associated with specific organisms (e.g., Geobacter sul-
furreducens 11, 12) or by modeling functional groups of organisms,
whereby each group corresponds to a particular metabolism (e.g.,
refs. 13 and 14). The former approach, although insightful for
laboratory studies, is infeasible for use in conjunction with envi-
ronmental genomics data because the majority of microbes are
uncultured and their metabolic networks are thus unknown. The
latter approach is better suited for modeling these data, although
biomass of functional groups is not a metric that is typically
measured in environmental genomic studies. With this in mind, we
propose a functional gene approach where microbes are grouped
according to their functional genes and, therefore, their metabo-
lisms. Functional gene abundance is an appropriate state variable
when modeling microbial communities because it allows for the
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integration of environmental genomics data and biogeochemical
models via a common currency. It also provides direct mechanistic
links to biogeochemical function.
In the model, the dependence of microbial growth on sub-

strate and nutrient availability is described using Michaelis–
Menten kinetics with inhibition (e.g., ref. 14), whereas the
thermodynamic potential factor (FT; ref. 15) accounts for the
chemical energy available to drive the metabolism. Accordingly,
we define the rate of gene production as

Rj =Γj ·FT · μj ·∏s

�
Cs

Ks +Cs

�
·∏x

�
Kx

Kx +Cx

�
; [1]

where Γj is gene abundance (genes per liter), μj is the specific
growth rate (seconds−1), Cs is the concentration of reactant or
nutrient s (molar), Ks is the half-saturation constant of reactant
or nutrient s (molar), Cx is the concentration of inhibitor x (mo-
lar), and Kx is the half-saturation constant of inhibitor x (molar).
(Here, s belongs to the set of all potentially limiting nutrients or
substrates for the pathway associated with gene j, whereas x
belongs to the set off all potential inhibitors.) This equation
describes the rate at which j genes [e.g., nitrite reductase (nirK),
nitrate reductase (narG), dissimilatory sulfite reductase (dsr)] are
produced as a result of the metabolism associated with the gene.
In addition, metabolic plasticity, whereby growth via one metab-
olism can lead to the propagation of functional genes associated
with other metabolisms, is accounted for in the model. For ex-
ample, the Gammaproteobacteria SUP05 possesses genes for
both hydrogen and sulfur oxidation (16) and growth from hydro-
gen oxidation thus leads to an increase in sulfur oxidizing genes.
Metabolic plasticity of this sort is incorporated into the model as
shown below:

dΓi

dt
=

X
j

�
ni
nj
· σi;j ·Rj

�
− λ ·Γi; [2]

where ni is the number of i genes per g of cells that contains this
gene (genes per gram), σi;j is a probabilistic measure of co-
occurrence of genes i and j within a genome (unitless), and λ is
the “mortality rate” constant of a gene (seconds−1). Nonzero val-
ues for σi;j account for metabolic versatility: Its magnitude—which
can be estimated via complete genome sequence data—reflects
the likelihood that a microbe is capable of the metabolisms as-
sociated with both genes i and j. Finally, the equations describing
the microbial community are coupled to chemical dynamics:
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�
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B@
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where γj;s is the stoichiometric coefficient for chemical species s
in the reaction associated with gene j (negative for reactant and
positive for product), γj;e− is the stoichiometric coefficient of the
electron donor in the metabolism, and Y is biomass production
per mole of electron donor and is a function of free energy yield
[grams of biomass (moles e− donor)−1; ref. 17]. The expressions
above are given in a zero-dimensional context but are easily
expanded into higher dimensions to include transport terms or
for incorporation into existing biogeochemical models.
There are several noteworthy aspects of this model formula-

tion. First, its parameters are experimentally tractable, drawing
on both traditional microbiology and state-of-the-art molecular
tools: μ and Ks are commonly measured parameters, FT and ΔG
are easily calculated from chemical concentrations, and mortality
(i.e., λ) is a standard parameter in biogeochemical models.
Metagenomic assembly or genomes from pure cultures or single-

cell amplified genomes can be used to estimate the co-occur-
rence and number of genes per genome (i.e., nj and σi;j). That is,
the proportion of genomes that bear gene i that also contain
gene j can be readily calculated. Second, measured gene abun-
dances represent additional data with which to validate and
constrain biogeochemical dynamics in a model. By reproducing
observed spatial and temporal variation in functional genes, this
approach also provides insight into the mechanisms that de-
termine the distribution of organisms within the environment.
Next, model solutions give gene abundances and chemical con-
centrations, thus allowing direct comparisons between model
output and experimental data. Quantitative real-time PCR (qPCR)
analysis, for example, can be used to estimate gene abundances.
Finally, the model explicitly includes metabolic plasticity, which is
a potentially important—albeit poorly understood—trait in the
context of microbial community dynamics. By incorporating
a quantitative measure of metabolic plasticity, the causes and
impacts of functional versatility on microbial ecology and geo-
chemical cycles can be readily explored.

Example Application: Nitrogen Cycling in the Arabian Sea
To demonstrate the proposed strategy in practice, a 1D steady-
state model of nitrogen cycling across the Arabian Sea OMZ was
developed. This OMZ is a well-studied marine region that is an
important sink for fixed nitrogen and is characterized by sharp
microbial and geochemical gradients (18). Key chemical species
(i.e., O2, NH+

4 , NO−
2 , and NO−

3 ) and known functional genes
associated with nitrogen cycling (i.e., amoA and hzo) were the
focus of the modeling effort, although the model includes the full
nitrogen cycle (Supporting Information). Data from Pitcher et al.
(18) are used for comparisons and to prescribe model parame-
ters (e.g., temperature and density), whereas additional param-
eters for the model are determined from empirical relationships
and other literature sources. Where possible, boundary conditions
were derived from observations (18), specifically gene abundances
and chemical concentrations. In the absence of data, we prescribe
zero gradient boundary conditions with the exception of sulfate,
which has a concentration of 28 mM throughout most of the ocean.
Fig. 1 compares model predictions with measured profiles of

oxygen, nitrogen species, and gene abundances. Also plotted is
measured gene expression (mRNA) and modeled gene pro-
duction rate. Despite the complexities of nitrogen cycling across
redox gradients and the dynamic nature of the Arabian Sea (e.g.,
monsoons), this relatively simple model is able to reproduce the
general trends observed in chemistry, gene expression, and gene
abundances.
Sulfur cycling is coupled to nitrogen dynamics in the model, as

observed recently in the OMZ off the Chilean coast (3), where
hydrogen sulfide produced by heterotrophic sulfate reduction is
rapidly oxidized to sulfate with nitrate. These processes are neg-
ligible in the simulation shown in Fig. 1, which is to be expected
given that there have been no reports of cryptic sulfur cycling in
the Arabian Sea. Nevertheless, cryptic sulfur cycling can be in-
duced in the model by increasing the half-saturation constant for
nitrate in dissimilatory nitrate reduction within a published range
(19). This parameter defines the point at which dissimilatory ni-
trate reduction slows owing to nitrate limitation, thus attenuating
the rate of organic matter degradation via this pathway. As a re-
sult, there is more organic matter available for less energetically
favorable metabolisms (i.e., sulfate reduction) and crytpic sulfur
cycling is initiated.
Comparing scenarios with and without prominent sulfur cycling

reveals only subtle differences in most chemical profiles, with the
exception of nitrite (Fig. 2, discussed below). These differences
may be masked by spatial and temporal variability (e.g., stochastic
mixing, seasonal export from surface waters) or attributed to other
processes, and traditional models cannot distinguish between the
two scenarios, because they do not consider biomarkers (e.g.,
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genes) that are indicative of cryptic biogeochemical processes.
Comparing the overall reaction for sulfate reduction coupled to
nitrate reduction by hydrogen sulfide with organotrophic dissimi-
latory nitrate reduction reveals that these two competing pathways
are effectively equivalent in terms of stoichiometry, explaining the
absence of a clear chemical signal (Table 1). Nevertheless, these
pathways differ in two important ways. First, the total energy yield

of the metabolisms differs, resulting in different growth rates and
nutrient demands. Specifically, cryptic sulfur cycling generates a
lower microbial biomass and therefore requires less ammonia as
a nutrient. Second, cryptic sulfur cycling is a two-step process: Hy-
drogen sulfide generated by sulfate reduction is then used to drive
nitrate reduction (Table 1). Some of this hydrogen sulfide is lost to
aerobic oxidation, however, meaning less is available for nitrate
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reduction. As a result, there is less nitrite produced per mole of
organic matter during cryptic sulfur cycling and the second nitrite
peak is lower (Fig. 2). When cryptic sulfur cycling is active there is
no apparent accumulation of hydrogen sulfide (<5 nM), nor is there
an evident decrease in sulfate concentration; there is, however, an
abundance of associated genes (Fig. 2). Processes that lack obvious
geochemical signatures yet are clearly active from genetic data, such
as cryptic sulfur cycling, underscore the importance of integrating
environmental genomics data into biogeochemical models if geo-
chemical dynamics are to be characterized correctly.
An additional key question regarding OMZ biogeochemistry is

the relative contribution of denitrification and anammox to N2
production, because OMZs account for 30–50% of marine ni-
trogen loss (5). Anammox dominates in many OMZs (e.g., refs.
20 and 21), but recent studies suggest that denitrification is the
dominant nitrogen loss pathway in the central Arabian Sea OMZ
(22, 23). To address this point, the rates of N2 production within
the model were calculated for both heterotrophic denitrification
and anammox. These calculations support the latter argument,
demonstrating that rates of N2 production via heterotrophic
denitrification in the central Arabian Sea may surpass 1 nM
N2·d

−1 in places, whereas the maximal anammox rate is an order
of magnitude lower. Furthermore, depth-integrated heterotro-
phic denitrification is a factor of 3 greater than anammox.
Simulations not only shed light on which metabolisms are

active, but also on the organisms that mediate these metabo-
lisms. When adopting Michaelis–Menten kinetics, the half-sat-
uration constant for ammonia during aerobic ammonia oxidation
ðKamoA

NH+
4
Þ must be on the order of 107 μM for the model to ac-

curately reproduce observations. This value is consistent with
ammonia-oxidizing bacteria (AOB) yet is several orders of magni-
tude higher than estimated values for ammonia-oxidizing archaea
(AOA) (24). Although AOA are much more abundant than AOB
in the region (25), mRNA analysis reveals that AOB are signifi-
cantly more transcriptionally active, indicating an important role
in ammonia oxidation (26). These observations support model
results suggesting that coupled microbial–geochemical models can
also furnish insight into the most active members of community.

Sensitivity Analysis
An extensive sensitivity analysis was undertaken (44 parameters
and 17 state variables) to identify the most influential parameters
in the model and to assess their impact. Results revealed 16
parameters that are important in modulating the biogeochemistry
of the system and that there is a tight coupling between numerous
state variables (Supporting Information). That is to say, perturbing
a parameter does not simply affect a single state variable, but
rather causes broad shifts in biogeochemical dynamics. These
interdependencies greatly limit possible parameter space, as do
published parameter values or ranges, imposing stringent con-
straints on parameter selection. Therefore, although state varia-
bles may exhibit marked sensitivity to some parameters, multiple
constraints bolster confidence in parameter choices (19). These
most influential parameters and their effects are discussed below.

Analysis results demonstrate that state variables are most sen-
sitive to the mortality constant (λ), because this parameter directly
affects all microbial communities, which in turn affect reaction
rates and thus chemical distributions. Mortality is notoriously
difficult to determine a priori and is therefore often estimated
through model application. Providing mortality affects all sub-
populations in the same way, the mortality constant can be tightly
constrained in this manner.
As one would expect, parameters pertaining to organic matter

dynamics play an important role in OMZ biogeochemistry. Half-
saturation constants that define microbial affinity for dissolved
organic matter ðKC6H12O2Þ and oxygen during aerobic respiration
ðKcox

O2
Þ show marked influence over the system, as does the export

flux of organic matter from surface waters ðF0Þ and the rate
constant for aerobic respiration ðμcoxÞ. These parameters shift
the location of the chemocline, altering where in the water col-
umn different processes dominate nitrogen cycling. Simulation
results agree with experimental studies that N2 production is a
function of organic matter supply (27). Furthermore, rate con-
stants and half-saturation constants for other catabolic pathways,
specifically dissimilatory reduction of nitrate and nitrite, also
affect microbial and chemical distributions.
More than half the parameters identified as important by the

sensitivity analysis are half-saturation or inhibition constants. These
results illustrate that half-saturation constants are key parameters
because they define when pathways shutdown, effectively delineating
chemical and biological boundaries. In environments character-
ized by chemical gradients, such as OMZs and coastal sediments,
these parameters are understandably important.
Finally, physical transport parameters (Kz and ν) also influence

model simulations because they prescribe exchange between regions
with different chemical attributes and microbial communities. As
a result, they introduce reactants to one another, export metabolites,
and attenuate local populations by dispersing organisms throughout
the environment, all of which affect biogeochemical dynamics.
In short, the sensitivity analysis demonstrates that although

parameters pertaining to mortality, organic matter dynamics, trans-
port, and geochemical boundaries (i.e., half-saturation constants)
play an important role in defining the biogeochemistry of the sys-
tem, multiple constraints on these parameters promote confidence
in their values.

Limitations of the Functional Gene Approach
Like any modeling approach, the method proposed here has in-
herent assumptions, strengths, and limitations. The functional gene
approach requires that the reactions mediated by modeled mi-
crobial communities and associated marker genes are defined a
priori. This allows the model to track the reactants, products, and
genes involved in the metabolism, in addition to calculating the
energetics of the reaction. Therefore, the functional gene approach
readily lends itself to modeling chemolithoautotrophs with well-
defined metabolisms, such as ammonia oxidation, because there is
a known marker gene (i.e., amoA) and the reaction can be stated
with confidence (i.e., NH+

4 +
3
2O2 →NO−

2 +H2O+ 2 H+). This is
not necessarily the case, however. Even for cultured organisms that
have been studied in the laboratory for decades, such asEscherichia
coli, a large proportion of genes are of unknown function (28). The
incidence of novel genes in uncultured microbial communities is
even higher (29), and the continuing discovery of new metabolisms
underscores the large gaps remaining in understanding the energy
metabolism of uncultured organisms and its genetic basis. Hence, it
may not currently be possible to identify an appropriate marker
gene for a particular metabolic pathway. Furthermore, the reac-
tants, products, and stoichiometry of metabolisms may be unclear,
especially for novel pathways observed in situ beyond the rigorous
controls of the laboratory. Nevertheless, applying the approach
in the absence of these data may potentially highlight gaps in
knowledge and offer insight into bridging these gaps.

Table 1. A comparison of stoichiometry between dissimilatory
nitrate reduction and dissimilatory sulfate reduction coupled to
nitrate reduction by hydrogen sulfide

Pathway Reaction

Cryptic sulfur cycling 1
6 C6H12O6 + 1

2SO
=
4 →HCO−

3 + 1
2 H2S

1
2H2S+2 NO−

3 →2 NO−
2 +

1
2SO

=
4 +H+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1
6 C6H12O6 +2 NO−

3 →HCO−
3 +2 NO−

2 +H+

Organotrophic dissimilatory
nitrate reduction

1
6 C6H12O6 +2 NO−

3 →CO2 +2 NO−
2 +H2O
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Environmental genomics provides great insight intomany aspects
of uncultured microbes yet sheds little light on growth parameters.
These parameters must then be estimated either through analogy
with similar cultured organisms or by fitting model solutions to
observations. In the latter case, parameters are tuned within rea-
sonable ranges to reproduce measured gene abundances and
chemical concentrations. This is a powerful method for quantita-
tively constraining the dynamics of poorly understood sub-
populations that do not yield to traditional laboratory techniques,
providing there are robust estimates for other model parameters.
Confidence in such estimates diminishes, however, as the number
of unconstrained parameters in the system increases. Ultimately,
the power of our modeling approach is limited by biochemical and
physiological data derived from laboratory experiments on cul-
tured organisms and environmental data from observations.
Organotrophs are somewhat more challenging to model by

means of the functional gene approach. Identifying the organic
molecules used by different organotrophs in complex communities
is not straightforward, creating difficulties with regards to ther-
modynamic calculations and chemical measurements. Moreover,
characterizing dissolved organic matter that is relevant to microbial
growth and determining in situ concentrations remains difficult
(30). These issues likely preclude the use of functional genes for
tracking microbial populations in the detailed fashion described
above (i.e., for specific electron donors). Modeling generic orga-
notrophic groups based on terminal electron acceptors (e.g., ref.
13) with average organic matter composition as a proxy for avail-
ability of specific organic molecules is perhaps more appropriate
given the current available data. Thus, although the functional gene
approach is well-suited to chemolithoautotrophs, which constitute
a significant proportion of microbial biomass in the ocean, it does
not represent a substantial improvement over the functional group
approach when modeling organotrophs (13).
In contrast to chemoautotrophs, which rely on many diverse

metabolisms to generate energy, photoautotrophs cannot be dif-
ferentiated from one another based on their energy source. In-
stead, these organisms establish ecological niches through different
functional traits, such as their source of inorganic nutrients (e.g., N2
or NH+

4 ), physiological structures (e.g., calcareous exoskeletons or
siliceous frustules), light-harvesting pigments, motility, and size
(31). Thus, genetic markers for these traits are more suitable for
tracking these communities as opposed to functional genes for
photosynthesis. In addition to the presented model formulation,
factors would also need to be added to Eq. 1 to account for light
limitation and photoinhibition when modeling photoautotrophs.
Although these factors complicate applying the technique to phy-
toplankton communities, the approach does offer one distinct ad-
vantage. Traditionally, phytoplankton taxonomy is determined by
microscopy, although HPLC offers an alternative approach by
characterizing phytoplankton according to pigment. The former
technique is labor intensive and requires substantial expertise but
provides good resolution, whereas the latter method is less time-
consuming but offers a coarser view as some pigments are common
to a number of organisms. Metagenomics offers an appealing
alternative in that it affords a high-resolution perspective via
high-throughput methods and produces data that may be readily
incorporated into biogeochemical models as outlined above.
Finally, it should be noted that in adopting an ecosystem-level

perspective the proposed approach relies on bulk concentrations,
which may be radically different from those experienced by
individual microbes (32). Nevertheless, there is presently no
consistent overarching framework for casting cell-scale dy-
namics, which occur in heterogenous microenvironments, in
an ecosystem context.

Model–Data Comparisons
Whereas qPCR only provides data for a limited number of
specific genes, metagenomic data provide a broad view of genes

present in the environment and metagenomic assemblies (or
single-cell genomics) can provide estimates of gene co-occurrences.
Unlike qPCR, however, metagenomic data do not furnish absolute
measures of gene abundances (e.g., number of genes per milliliter),
but are typically expressed in a relative sense. Reconciling meta-
genomic data and model output therefore requires that modeled
gene abundances are expressed in a relative form (i.e., as pro-
portions of the total gene abundance) and that the dataset used for
comparison should only consider the functional genes that are
explicitly modeled. For example, Fig. 3 shows how modeled genes
can be expressed as relative abundances at discrete locations, as is
common in metagenomics. Adopting this approach allows meta-
genomic data to be easily incorporated into the modeling frame-
work. Of particular importance is the ability to provide mechanistic
explanations for observed relative gene abundances. As an exam-
ple, Fig. 3 demonstrates the shift in the metagenome owing to the
onset of cryptic sulfur cycling. These changes in the genetic com-
position of the microbial community can be directly linked to
biogeochemical processes in the model.
Proteomic and transcriptomic data are more challenging to

integrate into biogeochemical models owing to complex, poorly
characterized relationships between mRNA, proteins, and met-
abolic rates (33). Although this may preclude accurate pre-
dictions of transcript or protein abundances at present, coupled
microbial–geochemical modeling may prove a useful tool for
establishing and exploring these relationships. For instance, in
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parisons can be made between model output and metagenomic data,
which are typically expressed in relative terms at discrete points in space.
cox, cytochrome-c oxidase.
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the model application above, trends in mRNA abundances seem
to be accurately approximated by metabolic (or gene production)
rates within the model, suggesting a direct link in this scenario.
Nevertheless, this is not always the case (33), and discrepancies
between model output and observations may offer insight into
the processes responsible for these disagreements.
Well-constrained model applications are dependent on suitable

datasets. Ideally, datasets should have a high spatial resolution
that covers environmental gradients to ensure that processes are
accurately described for a broad range of conditions. These data
should include abundances—either relative or absolute—of sev-
eral functional genes that are coupled through interacting reac-
tants and products, because interwoven metabolisms provide
tighter constraints on system dynamics. These genetic data should
be complemented by comprehensive chemical measurements of all
species involved in the modeled metabolisms, because these data
ensure that the microbial–geochemical interactions are accurately
represented. Rate measurements (e.g., from isotopic labeling) are
also incredibly useful in constraining models. Finally, environ-
mental parameters, such as mixing rates, advective velocities, and
fluxes of particulate matter are essential because they provide a
physical context to the biogeochemical processes. Together, these
data provide an integrated perspective of marine biogeochemistry
when aggregated by means of the proposed modeling approach.

Conclusions
In summary, adopting an integrated modeling approach to bio-
geochemistry and environmental genomics data is a powerful
means of exploring the nexus between microbial ecology and
geochemistry. In particular, these tools serve to (i) extricate and
quantify elusive chemical processes, where genetic data repre-
sents a pertinent and more sensitive tracer of biogeochemistry,
and (ii) synthesize large, complex environmental genomic data-
sets in the context of biogeochemistry. Although in its infancy,
results suggest that the functional gene approach holds great
promise in describing the biogeochemical dynamics of complex
ecosystems and their resident microbial communities with the
potential to increase the predictive power of biogeochemical models
on local to global scales. Simulations are consistent with exper-
imental studies in the central Arabian Sea in showing that de-
nitrification dominates over anammox and that cryptic sulfur cycling
is absent. When cryptic sulfur cycling is induced by altering the
concentration at which nitrate reducers become nitrate-limited, the
secondary nitrite maximum often observed in OMZs is attenuated
owing to a shift in the chemolithoautotrophic community and
dominant metabolic pathways. Our results further emphasize the
need to explicitly incorporate microbes into biogeochemical models.
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