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A challenge in molecular biology is to distinguish the key subset of
residues that allow two-component signaling (TCS) proteins to recog-
nize their correct signaling partner such that they can transiently bind
and transfer signal, i.e., phosphoryl group. Detailed knowledgeof this
informationwould allow one to search sequence space for mutations
that can be used to systematically tune the signal transmission be-
tween TCS partners as well as potentially encode a TCS protein to
preferentially transfer signals to a nonpartner. Motivated by the no-
tion that this detailed information is found in sequence data, we
explore the sequence coevolution between signaling partners to bet-
ter understand howmutations can positively or negatively alter their
ability to transfer signal. Using direct coupling analysis for determin-
ing evolutionarily conserved protein–protein interactions, we apply
a metric called the direct information score to quantify mutational
changes in the interaction between TCS proteins and demonstrate
that it accurately correlates with experimental mutagenesis studies
probing themutational change inmeasured in vitro phosphotransfer.
Furthermore, by subtracting from our metric an appropriate null
model corresponding to generic, conserved features in TCS signaling
pairs, we can isolate the determinants that give rise to interaction
specificity and recognition, which are variable among different TCS
partners. Our methodology forms a potential framework for the
rational design of TCS systems by allowing one to quickly search
sequence space for mutations or even entirely new sequences that
can increase or decrease our metric, as a proxy for increasing or de-
creasing phosphotransfer ability between TCS proteins.
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Cellular signal transduction in which an extracellular or in-
tracellular stimulus elicits a physiological response is critical

for cells to adapt and survive in a changing environment. To
respond to a diverse range of stimuli, bacteria have adopted a
robust two-component signaling (TCS) mechanism involving a his-
tidine kinase (HK) protein and a response regulator (RR) protein
(1–3). Conventional TCS begins with the detection of a stimulus
resulting in the autophosphorylation of a conserved histidine resi-
due on the HK protein. This phosphoryl group (i.e., signal) is then
transferred from the HK to a conserved aspartic acid residue on its
RR signaling partner following the formation of a transient HK/
RR complex. In many cases, phosphorylation of the RR thereby
activates its function as a transcription factor that generates a phys-
iological response through the repression or activation of genes. A
number of closely related evolutionary extensions to the TCS motif
can also be found in bacteria such as the phosphorelay (3). Due to
the robust and effective nature of TCS proteins in transducing sig-
nals, bacteria have evolved to use as many as tens to hundreds of
TCS pairs that regulate a wide variety of biological processes ranging
from environmental response to the regulation of the cell cycle.
Because both TCS and its related extensions require signaling

proteins to faithfully bind and transfer a phosphoryl group to and
from their signaling partner(s), an important question arises: How
are the various signaling proteins able to interact with their sig-
naling partners with high specificity while keeping interactions

with signaling proteins from other signaling pathways (i.e., “cross-
talk”) at a minimum? Decoding the determinants of specificity has
been the subject of many studies (reviews in refs. 4 and 5). Al-
though bacteria may use a number of mechanisms to maintain
specificity such as spatial localization of the signaling proteins, it is
clear that much of the code for maintaining specificity is contained
in the specific interprotein residue–residue interactions that give
rise to mutual recognition of the signaling partners as well as their
unique binding interface. Extracting this molecular code is of great
importance for understanding the network of signaling systems in
bacteria as well as the rational redesign of TCS signaling systems.
In principle, the molecular determinants of recognition among

the signaling proteins are contained within the structural data of
the interacting proteins. Although significant amounts of structural
data exist for individual signaling proteins, shedding light on their
functional domains, limited structural data exist for the functional
complexes (6–9) of the signaling proteins due to the transient na-
ture of their interactions. Furthermore, structural data do not
distinguish the subset of molecular interactions that are critical for
ensuring specificity nor do they easily differentiate between resi-
dues that are critical for protein–protein recognition and residues
directly involved in the catalytic activity. Complementing these
structural studies, alanine-scanning mutagenesis (10, 11) and
cysteine-scanning mutagenesis (12) have been performed on
signaling proteins to help identify residues that are key to
maintaining the interaction and phosphotransfer functionality
between the signaling proteins. Although these studies are
informative, a systematic exploration of the mutational se-
quence space cannot be performed in this manner.
A great deal of sequence data exist for TCS proteins, reflecting

a sequence space that has been well sampled by evolution. Because
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TCS signaling partners are often adjacent to one another on the
genome, e.g., cognate pairs from the same operon, a number of
studies (11, 13–20) have applied statistical methods to collections
of cognate pairs to identify the evolutionarily conserved inter-
actions between HK and RR signaling partners from their multiple-
sequence alignments (MSA). These studies extend upon early work
using statistical methods to infer protein–protein interactions (21,
22) from coevolutionary data. The recent development of a global
statistical inference method called direct coupling analysis (DCA)
(17, 18, 23) has advanced the study of sequence coevolution by
pruning out the contributions from indirect couplings (i.e., statistical
couplings through third party residues or phylogenetic effects) and
thus quantifying the direct couplings between coevolving residues
with greater accuracy. DCA has successfully been used to identify
intradomain (23–27) and interdomain (16, 17, 23, 28) contacts in
proteins, including the prediction of a transient HK/RR com-
plex that is within crystallographic accuracy of the experimentally
determined structure (6). Other recent statistical methods have
also been applied to sequence coevolution to explore a diverse
range of topics ranging from protein structure and function (29–
35) to the evolutionary fitness of HIV (36). Extending the pre-
dictive power of DCA beyond structure prediction, a recent study
by Procaccini et al. (37) demonstrated that the direct couplings
inferred from DCA can be used to quantify interaction specificity
among HK and RR proteins. The mutually coevolved interface
between HK/RR signaling partners is evolutionarily conserved to
maintain the interaction between them and is, thus, captured by
the statistical model of DCA. Using a DCA-derived metric, they
were able to correctly predict known signaling partners and “cross-
talkers” in two model bacterial systems as well as correctly predict
the interaction partner of a number of orphan signaling proteins,
which are not adjacent to a signaling partner on the genome.
Motivated by the notion that the molecular determinants of

interaction specificity can be found within the sequence data
of signaling partners, we characterize the predictive power of
DCA in quantifying changes in the interaction between signaling
proteins through site-directed mutations. We adopt the recently
developed mean field formulation of DCA (23), which allows us
to explore significantly larger sets of sequence data than previous
implementations of DCA. Because signaling partners are con-
strained by evolutionary forces to maintain their ability to bind
and transfer a phosphoryl group, we use DCA to probe the
mutual sequence coevolution between partners to infer the effect
of sequence mutations on their functional interaction. To accom-
plish this, we introduce a DCA-derived metric closely related to
direct information (DI) (17, 23) and compare its predictions di-
rectly to those of a number of experimental mutagenesis studies
that examine the effect of mutation on phosphotransfer between
HK/RR partners. We demonstrate that our metric correlates
accurately with these experimental studies, suggesting that there
is a direct relation between the predictions of our metric and the
ability of the mutant HK/RR pair to bind and transfer phos-
phoryl groups. Furthermore, by subtracting from our metric an
appropriate null model corresponding to conserved features that
are common among HK/RR pairs, we can focus on mutations
associated with variable residues among TCS signaling proteins
such as interprotein residues responsible for binding and rec-
ognition. These findings open the door for the potential rational
redesign of TCS systems from abundant sequence data as well as
a system-level approach to study the interaction of TCS signaling
proteins. Our methodology can easily be extrapolated to other
sequence-rich systems for which the protein–protein interaction
and recognition are still uncharacterized.

Results
Quantifying Mutational Changes in HK/RR Interactions, Using Genomic
Data.We characterize the mutational changes in the functional
interaction between HK/RR proteins through evolutionarily con-

served interactions between the HK dimerization and histidine
phosphotransfer (DHp) domain and the RR receiver (REC) do-
main of its cognate partner (Fig. 1A) because the primary inter-
actions between HK and RR proteins occur between these two
domains. Taking advantage of the abundant sequence data, we
construct a multiple-sequence alignment (MSA) with M ¼ 30;623
cognate pairs as our input set (Materials and Methods).
Using our cognate pair MSAs, we compute direct couplings

(for a detailed derivation, refer to ref. 23) between HK/RR
interprotein residue pairs that arise from the mutual coevolution
of interprotein residues that allows for signaling partners to
maintain their ability to transfer signal. As previously discussed
(37), the magnitude and sign of the position-averaged direct
couplings between amino acids correlate well with their physical
interaction type (e.g., electrostatic, hydrophobic, etc.) with high
statistical significance. Furthermore, mutational changes in the
direct couplings have been shown to correlate well with the ex-
perimental mutational changes in the free energy for individual
proteins (38). We formulate a metric called the direct in-
formation score (DIS) from the direct couplings (Eqs. 1 and 2) in
a manner closely related to that of the DI (17, 23). A value of this
metric can be computed for a given concatenated MSA sequence
of an HK and RR protein, s ¼ ðs1; :::; sNHK ; sNHKþ1; :::; sNHKþNRRÞ,
where the HK positions span from 1 to NHK ¼ 68 whereas the
RR positions span from NHK þ 1 ¼ 69 to NHK þ NRR ¼ 180.
Furthermore, mutational changes in DIS for a particular mutant
sequence can be computed with respect to a wild-type sequence
as ΔDIS ¼ DISðmutantÞ−DISðwild typeÞ. Positive ΔDIS is inter-
preted as mutational changes associated with a net increase in the
direct couplings between an HK and an RR protein and thus re-
flects enhancements in their interaction (e.g., enhanced phospho-
transfer). Likewise, negative ΔDIS is interpreted as a net decrease
in the direct couplings that reflects deleterious effects to the
HK/RR interaction (e.g., reduced phosphotransfer).

DIS Qualitatively Captures in Vivo Phenotypes of Experimental Muta-
genesis. A closely related extension of TCS called the phosphor-
elay (3) has evolved to contain an additional intermediate RR,
which lacks a DNA-binding domain, and an intermediate phos-
photransferase protein (Fig. 1A). One of the most well-known
examples of such a signaling motif is the sporulation phosphor-
elay of Bacillus subtilis (39), which controls the process in which
the detection of environmental stress results in sporulation, i.e.,
the formation of spores and the death of the mother cell.
In a study by Tzeng and Hoch (10), single-residue alanine-

scanning mutagenesis was performed on the loop and helical
regions of the intermediate RR protein, sporulation initiation
phosphotransferase F (Spo0F), of the sporulation phosphorelay.
By expressing the mutant Spo0F in B. subtilis, they were able to
observe 22 notable sporulation phenotypes (see Fig. S1A and
Table S1 for mutational positions with basic information about
conservation). The resultant mutants had altered protein–pro-
tein interactions that either improved or impaired phospho-
transfer through the phosphorelay, resulting in “hypersporulation”
or sporulation-deficient phenotypes, respectively. The mutations
could affect the interactions between Spo0F and the five spor-
ulation kinases (i.e., sporulation kinase A–E abbreviated as
KinA–KinE), the intermediate phosphotransferase after Spo0F
in the relay (i.e., Spo0B), and the Rap phosphatases (40–42) as
well as proteins whose interaction with Spo0F has yet to be
identified. In total, they observed 5 hypersporulation mutants, 10
sporulation-deficient mutants, and 7 mutants with decreased
sporulation frequency on the order of one.
Considering only the KinA/Spo0F HK/RR interaction, we use

the DIS metric (Eq. 1) to compute a score for the 22 Spo0F
mutants with distinct phenotypes as well as a score for the wild-
type KinA/Spo0F interaction. A plot of the mutational change in
DIS with respect to the wild type, i.e., ΔDIS ¼ DISðmutantÞ−
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DISðwild typeÞ, is shown in Fig. 2. We find that mutational changes
in DIS reflecting the altered interaction between KinA and
Spo0F appear to reproduce the global phenotypic details ob-
served in the in vivo experiment. For instance, 3 of 5 of the
hypersporulation mutants had a positive ΔDIS whereas the
sporulation-deficient mutants tended to have the most negative
ΔDIS. The metric also roughly captured the magnitude differences
for the sporulation-deficient mutants (red labels in Fig. 2). Cap-
turing these coarse details by considering the KinA/Spo0F inter-
action is supported by the suggestion that KinA serves as the
primary source of phosphoryl groups for Spo0F under stress
conditions (43).
To better understand how the mutations could affect the

KinA/Spo0F interaction, we computationally predict the struc-
ture of the wild-type KinA/Spo0F complex (Fig. 1C) (Materials
and Methods and ref. 16). Consistent with an experimentally
determined HK/RR complex (6), the majority of the contacts
between Spo0F and the KinA DHp domain are formed by the α1
helix, β4  −   α4 loop, and β5  −   α5 loop regions of Spo0F (Fig.
1B). Most of the alanine mutations that resulted in notable
phenotypes are in regions that form interfacial contacts with the
KinA DHp domain in the wild-type complex. There are, how-
ever, some exceptions such as the positions L40, L66, H101, I90,
and L87. The L66, H101, and I90 positions are, respectively,
buried on the α3 helix, the β5 sheet, and the α4 helix, which do
not appear to be in contact with KinA in the predicted complex,
although it has been suggested that the hypersporulation phe-
notypes associated with these mutants arise through the con-
formational stabilization of an active Spo0F structure (44, 45)
rather than directly forming stabilizing contacts with KinA.
Likewise, the L87 position located on the C-terminal end of the

β4  −   α4 loop may influence the orientation the β4  −   α4 loop,
which forms key contacts with the DHp domain.
The agreement between our predictions for the in vivo phe-

notypes served as a first step to assess the capabilities of our
metric to characterize pairwise HK/RR recognition and phos-
photransfer. Although it is feasible to improve the genomic pre-
dictions of the sporulation phenotypes by incorporating additional
HK/RR interactions (e.g., KinB–KinE) or interactions with non-
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Fig. 1. (A) A schematic of two-component signaling (TCS) and phosphorelay signaling. In TCS, a phosphoryl group is transferred from a conserved His residue
on the HK DHp domain to a conserved Asp residue on the RR REC domain. Phosphorelay signaling involves an additional intermediate RR REC domain and
intermediate phosphotransferase. In our study, we focus only on the interactions between the DHp domain and the REC domain, which are highlighted in
red. (B) Sequence of the KinA DHp domain and its signaling partner Spo0F, where the top 10 interprotein DI pairs computed for our input set of M ¼ 30,623
cognate pairs are shown in red (excluding DI pairs involving gaps in the MSA). These top pairs reflect evolutionarily covarying interprotein residue pairs that
tend to be physical contacts. (C) The predicted structure of the KinA/Spo0F (HK/RR) complex, using the top 20 DI pairs as physical contacts for docking
(Materials and Methods). The top 10 DI pairs shown in B form physical contacts (<8 Å separation) in our predicted complex with the exception of R408/A83.
Two KinA monomers (red and blue, respectively) form the KinA homodimer whereas Spo0F (dark gray) is shown bound to the DHp domain of one of the KinA
proteins. The residues involved in the top 10 DI pairs are shown in stick representation.

Fig. 2. The ΔDIS was computed for the interaction of KinA with each of the
22 Spo0F mutants explored by Tzeng and Hoch (10) that resulted in notable
sporulation phenotypes. By definition, ΔDIS for the wild-type KinA/Spo0F
interaction is 0. We observe that ΔDIS appeared to capture qualitative
details associated with the sporulation phenotypes despite considering only
the KinA/Spo0F interaction.
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HK protein families (e.g., Spo0B, Rap phosphatases) in an addi-
tive manner, an analysis of protein interaction systems is outside
the scope of this paper. To further test the predictive power
of DIS, we turn to a series of in vitro studies where pairwise
HK/RR phosphotransfer is evaluated.

DIS Quantitatively Agrees with in Vitro Phosphotransfer Measurements
of Response Regulator Mutagenesis. Extending upon their pheno-
typic study of Spo0F mutants, Tzeng and Hoch (10) selected a
set of sporulation-deficient mutants for in vitro phosphotransfer
experiments. The rate of phosphotransfer from phosphorylated
KinA to Spo0F was measured as a function of KinA substrate
concentration, ½KinA∼P�, and the data were fitted to a Michaelis–
Menten saturation curve of the form d

dt ½Spo0F∼P� ¼ Vmax ½KinA∼P�
Kmþ½KinA∼P�,

where Vmax is the maximum velocity at substrate saturation and
Km is the dissociation constant of Spo0F from KinA. To this end,
Tzeng and Hoch measured the mutational change in Km, Vmax,
and Vmax=Km with respect to the kinetic parameters correspond-
ing to the wild-type Michaelis–Menten curve.
For comparison of our DIS predictions with the experimental

changes in Km and Vmax=Km, we restrict the computation of DIS
(Eq. 2) to include only residue pairs within a cutoff distance from
one another in our predicted KinA/Spo0F complex (e.g., in-
terfacial residues). Considering only interfacial residues in DIS
to predict properties governed by the transient binding and un-
binding makes intuitive sense. When comparing the predictions
of Eq. 2 using a 12-Å cutoff with the experimentally reported
changes in Km and Vmax=Km (Fig. 3 A and B), we find significant
agreement (Pearson correlation of −0.66) and quantitative
agreement (Pearson correlation of –0.83), respectively. Here,
a correlation coefficient of −1 represents perfect correlation.
The remarkable agreement with Vmax=Km is of particular interest
because the rate of phosphorylated Spo0F formation predicted
by Michaelis–Menten is proportional to Vmax=Km under physio-
logical conditions where the concentration of KinA is small
compared with Km (10). We have chosen a fairly relaxed cutoff
definition of 12 Å in Fig. 3 A and B such that it can be applied to
other HK/RR systems, accommodating subtle structural/con-
formational differences in those systems. By removing distal
interprotein pairs from the computation, the overall quality of
the predictions for Km and Vmax=Km is improved and we find that

these predictions are fairly insensitive to the particular value of
the cutoff distance used to define a contact (Fig. S2).
We observe a remarkable agreement between our DIS metric

and the experimentally reported change in Vmax (Fig. 3C) when
we include all possible interprotein pairs regardless of separation
in the predicted complex, using Eq. 1. Our prediction in Fig. 3C
exhibits a Pearson correlation of −0.84 with the experimental
data, where −1 represents perfect correlation. We find a steady
improvement in our prediction of Vmax as the cutoff distance is
increased such that more and more interprotein pairs are in-
cluded (Fig. S2). A possible explanation is that mutations in
residues that are catalytically important, hence affecting Vmax,
could require compensatory mutations in both the interfacial and
the noninterfacial residues of their signaling partner to maintain
their interaction. In such a case, the coevolution between distal
interprotein residues would be meaningful. Further validation of
this notion with biochemical data would certainly be necessary to
elucidate the role of noninterfacial residues in relation to the
catalytic activity of signal transfer. However, following this po-
tential reasoning, the inclusion of the direct couplings between all
interprotein pairs would thus be needed to reflect the large del-
eterious change in the DIS resulting from mutating a catalytically
important residue. An example of such a case is the interfacial T82
residue located on the β4  −   α4 loop that is found to be present in
73% of RR receiver domains in our cognate pair alignment and
has been implicated as being one of the catalytically important
residues in RR proteins (1, 46). The DIS metric quantifies the
T82A mutation as having the largest decrease with respect to the
wild type among the mutants. Fig. 3C (Lower) shows how this
change coincides with the largest fold decrease in Vmax that was
observed experimentally (Fig. 3C, Upper). Significant decreases in
DIS are also observed when other catalytically important residues
in Spo0F (e.g., D10, D11, D54, K104) are mutated to alanine.

DIS Quantitatively Agrees with in Vitro Phosphotransfer Measurements
of Histidine Kinase Mutagenesis. In a recent experimental study,
Capra et al. (11) performed single-residue alanine-scanning
mutagenesis of the HK protein EnvZ of Escherichia coli that is
the signaling partner of the RR protein OmpR. Of the 30 total
mutations distributed over the α1 and α2 helices of the EnvZ
DHp domain, 29 corresponded to alanine mutations whereas
1 mutation corresponded to a threonine mutation on α1 (i.e.,

A B C

Fig. 3. Direct comparison of our DIS metric with in vitro phosphotransfer measurements between KinA and the Spo0F mutant by Tzeng and Hoch (10).
Comparison of ΔDIScutoff¼12 Å (Eq. 2) with (A) the experimentally measured fold increase in the dissociation constant, Km, and (B) the experimental fold
decrease in Vmax=Km yields Pearson correlation coefficients of −0.66 and −0.83, respectively. (C) Comparison of ΔDIS (Eq. 1) with the experimental fold
decrease in Vmax yields a Pearson correlation of −0.84.
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A255T). See Fig. S1B and Table S2 for mutational positions
with basic information about conservation. Their study explored
the effect of the EnvZ mutations on the in vitro phosphatase ac-
tivity from OmpR∼P to EnvZ as well as the phosphotransfer from
EnvZ∼P to OmpR.
To better understand the mutations explored by Capra et al.,

we first computationally predict the structure of the wild-type
EnvZ/OmpR complex (Materials and Methods), which we find to
be consistent with that of an experimentally determined HK/RR
complex (6), similar to our predicted KinA/Spo0F complex. We
find strong quantitative agreement between the mutational change
in phosphatase activity of the mutant EnvZ and our DIS metric
(Eq. 2) with a Pearson correlation of 0.80 when only interfacial
residues are considered (Fig. 4A). Using the same set of predictions,
we also find agreement with experimental phosphotransfer from
EnvZ∼P to OmpR (Fig. 4B) with a Pearson correlation of 0.66.
For the experimental comparisons in Fig. 4 A and B, a relaxed
cutoff definition of 12 Å was used in Eq. 2, similar to the ex-
perimental comparison in the previous section. Consistent with
the findings of Capra et al., our metric predicts that the most
deleterious mutations to the EnvZ/OmpR interaction are lo-
cated on the α1 helix of EnvZ in a region that forms contacts
with OmpR in our predicted wild-type complex. The agreement
of our genomic predictions with two different measurements can
be explained by the similarities in the two processes—e.g., many of

the same residues on EnvZ are involved in both phosphotransfer
and phosphatase activity.
Similarly, we find for a closely related experiment by Qin et al.

(12) involving cysteine-scanning mutagenesis of EnvZ that our
predictions (Fig. S3) are able to capture the deleterious effects of
mutations to a region of α1 that forms contacts with OmpR in
our predicted complex. However, our predictions are unable to
capture the strong experimentally observed effects of cysteine
mutations to the N-terminal end of the α1 helix or to the α2
helix. A possible explanation is that cysteine mutations may in-
fluence the stability of the DHp domain through intradomain
effects, which are not considered in our study, as well as potentially
form disulfide bonds with OmpR.

Construction of a DIS Null Model. To distinguish between muta-
tional changes in our DIS metric associated with binding and
recognition and generic properties that are common among HK/
RR, we first compute a null model by eliminating the cognate
pair assumption (Materials and Methods). The resulting null model
reflects the direct couplings between conserved features in both
HK and RR, respectively. In accordance with this interpretation,
we find that the top 10 ranked DI pairs for the scrambled HK/RR
alignment are generally between highly conserved catalytic res-
idues (Fig. 5A). Projecting the top DI pairs on the KinA/Spo0F
sequences, we find that the DI pair with the highest rank for
our null model corresponds to the His phosphorylation site on
the DHp domain (H405) and the Asp phosphorylation site on
the REC domain (D54). Another DHp residue involved in the
top 10 pairings is the conserved P410 that is responsible for
a structural kink in the α1 helix (47), possibly involved in a
phosphorylation-induced conformational change. On the REC
domain, D11, T82, and K104 have been implicated as catalyti-
cally conserved residues (1, 46) whereas G62 has been suggested
to play an important role in the flexibility of the β3  −   α3 loop
(48) that contains the Asp phosphorylation site. Although dis-
tant from the Spo0F active site, G97 is also highly conserved
among RR proteins.
Computing DCA using the scrambled HK/RR MSAs instead

of the cognate pair sequences, Eqs. 1 and 2 can be used to obtain
a “null” score—i.e., DISðnullÞ (Materials and Methods). A metric
dealing with nonconserved interprotein residue pairs can then be
obtained by subtracting DISðnullÞ from the original DIS to obtain
DISðspecificÞ (Eq. 3). Using this idea, we are able to separate our
DIS metric into DISðspecificÞ, which we interpret as containing the
determinants of specificity and recognition for HK/RR proteins,
and DISðnullÞ, which we interpret as being associated to very ge-
neric, conserved features of HK/RR signaling. Hence, HK/RR
signaling partners tend to have higher values of DISðspecificÞ than
nonpartners due to their mutually coevolved interface. We are
able to validate this interpretation by computing DISðspecificÞ for
the collection of HK and RR proteins in B. subtilis and E. coli
and correctly identifying cognate pairs that have the highest
DISðspecificÞ, in accordance with the methodology of Procaccini
et al. (37), with the exception of RstB/RstA from E. coli. We are
able to further validate our interpretation of DISðspecificÞ by sub-
dividing the input set into a new input set of 15,623 cognate pairs
from which we compute a corresponding DISðspecificÞ. When we
apply DISðspecificÞ of our new input set to the remaining 15,000
cognate HK/RRs not present in the input as well as to 15,000
scrambled HK/RRs not present in the input (Fig. S4), we see a
clear distinction between the distributions of the cognate and
scrambled sets. The origin of the long tail corresponding to
cognate pairs with low specificity can potentially be attributed to
a relaxed requirement of molecular specificity for signaling
partners that obtain specificity through other means (e.g., cellular
localization).

A

B

Fig. 4. Direct comparison of our DIS metric with in vitro phosphotransfer
measurements between the EnvZ mutant and OmpR by Capra et al. (11). The
ΔDIScutoff¼12 Å (Eq. 2) is directly compared with (A) the experimentally mea-
sured phosphatase activity of OmpR∼P by EnvZ and (B) the experimentally
measured phosphotransfer from EnvZ∼P to OmpR. Our prediction exhibited
Pearson correlations of 0.80 and 0.66 with the experimental data shown in A
and B, respectively. The dark purple color is due to the overlap between the
bars representing the experimental data (dark blue) and the bars repre-
senting the predictions of our metric (light red).
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When we revisit the experimental results in Fig. 3A and apply

our separation procedure, we find that ΔDIS
ðspecificÞ
cutoff¼12 Å (Fig. 5B)

better predicts the fold increase in Km with an improved Pearson
correlation of −0.81 from the previous correlation of −0.66. This
supports the notion that a metric associated with the mutually
coevolved interface of HK/RR cognate pairs is a better predictor
of mutational changes in the experimental dissociation constant.
This improvement occurs as a result of subtracting the null back-

ground, ΔDIS
ðnullÞ
cutoff¼12 Å, which captures the mutation of the cata-

lytic residue T82 (Fig. 5B). Likewise, ΔDIS
ðnullÞ
cutoff¼12 Å (Fig. 5B)

exhibits a correlation of −0.78 with the experimental fold decrease
in Vmax shown in Fig. 3C, which is comparable to the prediction
in Fig. 3C using DIS with all interprotein pairs (Eq. 1). Although

it should be noted that the agreement of ΔDIS
ðnullÞ
cutoff¼12 Å is almost

entirely due to the decrease associated with the T82A mutation.
When we revisit our predictions for the DHp mutational study

in Fig. 4A and apply the separation procedure (Fig. 5C), we find

that ΔDIS
ðnullÞ
cutoff¼12 Å is better at quantifying the deleterious mu-

tational change associated with mutating the conserved R246,

T247, and P248 residues. These three residues located on the α1
helix of the DHp domain are common among many histidine
kinase proteins and play an important role in phosphatase ac-
tivity as well as phosphotransfer to its RR partner (11). Fur-
thermore, the conserved P248 residue has been implicated with
the structural kink in the α1 helix (47), which has been suggested
to play a role in the functional state of HK proteins.
Although we are able to show that ΔDISðnullÞ < 0 captures the

deleterious effects associated with mutating important conserved
residues, a number of important questions remain regarding the
interpretation of DISðnullÞ and its relation to catalytic activity. Is
DISðnullÞ a sufficient proxy for catalytic activity or does the DIS
metric (Eqs. 1 and 2) contain additional coevolutionary in-
formation necessary to describe catalytic activity? Future work in
this area is necessary to fully explore these concepts and to un-
derstand the differences between Eqs. 1 and 2 and the null
model metric in predicting quantities such as Vmax.

Addressing Specificity and Recognition in Cognate Pairs and Hybrid
TCS Proteins. A recent study by Townsend et al. (49) demon-
strated that hybrid TCS proteins, which are single proteins that

A

B C

Fig. 5. (A) Top 10 interprotein DI pairs of the scrambled HK/RR input set (Materials and Methods) are plotted on the KinA/Spo0F sequences in red. The top DI
pairs of the null model are generally between conserved catalytic residues. (B) Applying Eq. 3b to ΔDIScutoff¼12 Å in Fig. 3A to obtain ΔDIS

ðspecificÞ
cutoff¼12 Å (red) from

ΔDIS
ðnullÞ
cutoff¼12 Å (green). The agreement of ΔDIS

ðspecificÞ
cutoff¼12 Å with the experimental fold increase in Km (10) has an improved Pearson correlation of −0.81. (C)

Applying Eq. 3b to ΔDIScutoff¼12 Å in Fig. 4A, we find that the ΔDIS
ðnullÞ
cutoff¼12 Å (green) metric is able to distinguish the deleterious effect of mutating the

conserved EnvZ residues R246, T247, and P248 to alanine observed experimentally (11). A direct comparison of ΔDIS
ðspecificÞ
cutoff¼12 Å or ΔDIS

ðnullÞ
cutoff¼12 Å with the ex-

perimental data in Fig. 4A was not performed because the experimental measurement does not distinguish between mutational changes that affect the
molecular determinants of binding and recognition and mutations that affect conserved residues. In both B and C, the overlap between the red and green
bars has a light brown color.
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contain both an HK and an RR joined by a linker, exhibit a re-
laxed molecular specificity in contrast to their nonhybrid coun-
terparts. In other words, the HK and RR domains of a hybrid
protein do not need to maintain their interaction specificity by
having a highly coevolved interface because their mutual teth-
ering significantly increases their encounter rate. When we plot
DISðnullÞ vs. DIS for hybrid TCS proteins and nonhybrid cognate
pairs (Fig. 6A), we find that hybrid proteins tend to fall along the
line DIS ¼ DISðnullÞ whereas cognate pairs tend toward higher
values of DIS (i.e., DIS>DISðnullÞ). Recalling that DISðnullÞ reflects
generic properties of scrambled HK/RR proteins, our findings are
consistent with those of Townsend et al. that hybrid pairs tend to
have lower specificity. This can be further demonstrated by plot-
ting the distributions of cognate and hybrid pairs as a function of
DISðspecificÞ (Fig. 6B), which shows that the cognate pair distribu-
tion is shifted toward higher values of DISðspecificÞ. These results
cannot be attributed to sampling bias due to the hybrid proteins
being absent from our input set while cognate pairs are present.
We demonstrate this by obtaining direct couplings from an input
set of 15,623 cognate pairs and applying them to 15,000 cognate
pairs and 15,000 hybrid proteins, neither of which are in the input
set (Fig. S5). Also plotted in Fig. 6B are the cognate and hybrid
distributions as a function of DIS for direct comparison with
DISðspecificÞ. It is interesting to note that if DISðnullÞ does in fact
reflect catalytic activity, a possible evolutionary explanation for
why DIS tends toward even higher values for increasing DISðnullÞ
would be to reduce the deleterious effects of a cross-talk by
a catalytically effective phosphotransferer/receiver.

Discussion
Although DCA has previously been associated with protein
structure prediction, recent work by Procaccini et al. (37) applied
the message-passing formulation of DCA to study TCS signaling
partners, suggesting that the determinants of their interaction
are conserved by evolution in their sequence data. Here, we have
applied the interprotein direct couplings inferred by mean field
DCA from abundant sequence data (30,623 cognate pair se-
quences) for cognate pairs to characterize the effects of muta-
tional changes on the functional interaction between HK and
RR signaling proteins. TCS signaling partners undergo sequence
coevolution because they are under selective pressure to main-
tain their ability to bind and transfer phosphoryl groups (i.e.,
signal). Hence, mutations to the binding interface of one TCS

protein require compensatory mutations in the binding interface
of its partner. We take advantage of this coevolution with DCA
to infer the effect of mutations on the phosphotransfer ability.
We have provided strong evidence that we can predict muta-
tional changes in phosphotransfer ability between HK/RR pro-
teins by using our DIS, suggesting that ΔDIS can be used to
predict mutations that desirably tune the strength of signal transfer
between TCS proteins. Our DIS metric can further be used to
focus on nonconserved features of HK/RR signaling, such as the
variable residues responsible for binding and recognition, by
subtracting an appropriate null model corresponding to pairwise
conservative features of HK/RR signaling partners. Although
recent stimulating work (11, 15) has demonstrated the rewiring of
HK/RR signaling in vitro, our methodology could potentially afford
us additional flexibility in exploring sequence space for mutations
that can be used to preferentially switch the interaction of a TCS
protein toward a nonpartner by using DISðspecificÞ. One strategy
wouldbe to simply look formutations that increaseDISbetween, for
example, an RR and a nonpartner HK.
Our methodology also potentially forms a starting foundation

for the system-level study of protein–protein interactions in TCS
systems as well as other signaling systems and regulatory pro-
teins, such as the toxin–antitoxin (TA) proteins (50), provided
that there are enough sequences of interacting proteins (>1,000).
We provide further evidence that hybrid TCS proteins exhibit a
reduced molecular specificity (considering 17,413 hybrid sequences),
in agreement with recent experimental work by Townsend et al.
(49). Furthermore, we have demonstrated that DISðspecificÞ can
be used as a proxy for interaction specificity among signaling
proteins because higher values tend toward a more mutually
coevolved interface. Although we have considered only pairwise
interactions between the REC domain of an RR and the DHp
domain of an HK, future work could extend our methodology
to systems of multiple interacting domains such as networks of
potentially interacting TCS systems in model bacterial organisms.
In particular, we could explore the role of cellular localization and
negative selection (51) in limiting cross-talk in TCS networks.
Understanding these concepts would likely be necessary to make
phenotype-level predictions in model bacteria based on site-
directed amino acid mutations in protein sequences.

Fig. 6. (A) Plot of DIS vs. DISðnullÞ for 30,623 cognate pairs (red) and 17,413 hybrid proteins (blue) that we could identify from available sequence data. Noting
that DISðnullÞ captures generic features that are common among HK/RR proteins, we find that hybrid proteins generally fall along DIS ¼ DISðnullÞ (dashed line)
whereas cognate proteins tend toward DIS>DISðnullÞ especially as DISðnullÞ increases. Histograms of the cognate pairs and hybrid proteins are projected along
the axis representing DIS and DISðnullÞ, respectively. (B) Plot of DISðspecificÞ vs. DIS for all cognate pairs and hybrids demonstrates that DISðspecificÞ is able to discern
between the cognate pairs, which generally feature a highly coevolved interface, and hybrid proteins, for which the requirement for high specificity
is relaxed.
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Materials and Methods
Construction of Cognate Pair Input Set.We obtained MSAs from Pfam (52) for
HisKA (PF00512), the dimerization domain of the HK, and Response_reg
(PF00072), the receiver domain of the RR. All residue inserts were removed
from the respective Pfam databases such that each MSA entry for the HK
and the RR has lengths of NHK ¼ 68 and NRR ¼ 112, respectively. Using the
Uniprot (53) protein database, we extracted the genomic locations (i.e., loci
index) for HK and RR proteins obtained from Pfam. Similar to a number of
studies (11, 13–18), we assume that HK and RR that are adjacent to one
another on the genome tend to be cognate pairs that interact with high
specificity with one another as signaling partners. Furthermore, we excluded
hybrid proteins because they feature a relaxed specificity (49). We con-
catenated the MSAs of each nonhybrid cognate pair to have a combined
sequence, s ¼ ðs1,:::,sNHK ,sNHKþ1,:::,sNHKþNRR Þ, where the HK positions span
from 1 to NHK ¼ 68 whereas the RR positions span from NHK þ 1 ¼ 69 to
NHK þ NRR ¼ 180. We were able to construct an input set of M ¼ 30,623
nonhybrid cognate pairs in this manner.

DIS. We introduce a metric for quantifying the interaction (e.g., specificity
and phosphotransfer activity) between the dimerization domain of an HK
and the receiver domain of an RR. This metric is defined as a summation of
the direct information values between all interprotein residue pairs for a
particular sequence s ¼ ðs1,:::,sNHK ,sNHKþ1,:::,sNHKþNRR Þ,

DIS ¼ ∑
i∈HK,j∈RR

PðdirÞ
ij

�
si ,sj

�
ln

 
PðdirÞ
ij

�
si ,sj

�
PiðsiÞPj

�
sj
�
!
, [1]

where PðdirÞ
ij is the amino acid pair distribution associated with the direct

couplings inferred from DCA and Pi is the amino acid marginal distribu-
tion of a position i in the concatenated MSA. This metric is closely related
to the definition of DI (17, 23), which focused on the mutual informa-
tion associated with the direct couplings between particular positions i
and j for all possible combinations of amino acids at those positions. It
should be noted that computation of Eq. 1 from a given MSA sequence
s ¼ ðs1,:::,sNHK ,sNHKþ1,:::,sNHKþNRR Þ would include the contribution of gaps lo-
cated in the MSA. We generally find that the contribution of gaps is negli-
gible for sequences consisting of only a small fraction of gaps.

The number of terms in the summation of Eq. 1 can be further reduced
by considering only interprotein residue pairs that are within a cutoff dis-
tance in an available 3D structure of an HK/RR complex. Eq. 1 can thus be
reduced to

DIScutoff¼X ¼ ∑
i∈HK,j∈RR

PðdirÞ
ij

�
si ,sj

�
ln

 
PðdirÞ
ij

�
si ,sj

�
PiðsiÞPj

�
sj
�
!
×Θ
�
X − xij

�
, [2]

where Θ denotes the Heaviside step function, xij denotes the minimum
distance between the interprotein residues given by positions i and j, and X
is the cutoff distance. For a given HK/RR MSA sequence, the positions cor-
responding to gaps are excluded from Eq. 2 because MSA gaps are not de-
fined in the structure.

Null DIS and Specific DIS. We performed random permutations on the HK/RR
pairings from the cognate pair MSA discussed earlier to generate an align-
ment of randomized HK/RR pairings. This procedure was performed 25 times

to obtain 25 randomized HK/RR databases each with M ¼ 30,623 entries.
Using these null model MSAs, we computed pairwise interprotein direct
couplings using DCA and averaged these couplings for all 25 databases. We
also obtained the associated direct pair distribution of DCA, Pðdir,nullÞ

ij , cor-
responding to our null model. Substituting Pðdir,nullÞ

ij directly into Eqs. 1 and 2,
we were similarly able to compute a DIS corresponding to our null model,
which we denote as DISðnullÞ. This null model score captures very generic
properties of HK/RR proteins and the highly correlated interprotein resi-
due pairs tend to be highly conserved residues related to function/
catalytic activity.

One can obtain a DIS-related metric that focuses on interprotein residue
pairs that are highly variable (i.e., not conserved) among HK/RR signaling
partners, such as the residues that give rise to specificity and recognition.
This specific score can be obtained by subtracting DISðnullÞ from Eq. 1:

DISðspecificÞ ¼ DIS−DISðnullÞ: [3a]

Similarly, if a complex structure is used to reduce the number of interprotein
pairs using Eq. 2,

DISðspecificÞcutoff¼X ¼ DIScutoff¼X −DISðnullÞcutoff¼X : [3b]

The same cutoff distance is applied to both DISðnullÞ and DISðspecificÞ in Eq. 3b
such that their sum always recovers Eq. 2.

Prediction of Unknown HK/RR Complex: KinA/Spo0F and EnvZ/OmpR. Because
no structural data exist for the KinA/Spo0F complex or the EnvZ/OmpR
complex, we predict their 3D structures using genomics-aided complex
prediction (16) that combines DCA-derived (23) contacts in structure-based
models (SBM) (54, 55) for docking. Although other relevant methods for
docking proteins exist (56–58), genomics-aided complex prediction has suc-
cessfully been used to predict the HK/RR complex of TM0853/TM0468 within
crystallographic accuracy of its experimentally determined structure (6) as
well as to predict the active conformation of an HK in the act of auto-
phosphorylation (28). SBMs of the uncomplexed wild-type proteins were
constructed using homology modeling with I-TASSER (59, 60). The N-termi-
nal sensor domains of KinA and EnvZ as well as the C-terminal DNA-binding
domain of OmpR were excluded from their respective SBMs. Using the input
MSAs of HK/RR cognate pairs described earlier inMaterials and Methods, the
ranked DI was computed for all interprotein pairs. The top 20 DI pairs ex-
cluding pairs corresponding to gaps in the MSA were treated as physical
contacts in SBM docking. The docked complexes were then relaxed using the
CHARMM27 (61, 62) force field with TIP3P water/counter ions (63) on the
GROMACS software package (64) to remove artifacts, resulting in reliable
complex structures. The predicted complexes for KinA/Spo0F and EnvZ/
OmpR are included in PDB format as Dataset S1 and Dataset S2, respectively.
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