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An empirical approach is presented for predicting the genomic
susceptibility of an individual to the most likely one among nine
traits, consisting of eight major cancer classes plus a healthy trait.
We use four prediction methods by applying two supervised
learning algorithms to two different descriptors of common
genomic variations (the profiles of genotypes of SNPs and SNP
syntaxes with low P values or low frequencies) of each individual
genome from normal cells. All four methods made correct predic-
tions substantially better than random predictions for most cancer
classes, but not for some others. A combination of the four results
using Bayesian inference better predicted overall than any individ-
ual method. The multiclass accuracy of the combined prediction
ranges from 33% to 56% depending on cancer classes of testing
sets, compared with 11% for a random prediction among nine
traits. Despite limited SNP data available and the absence of rare
SNPs in public databases, at present, the results suggest that the
framework of this approach or its improvement can predict cancer
susceptibility with probability estimates useful for making health
decisions for individuals or for a population.

genetic risk prediction | genomic risk prediction | cancer risk |
multiclass prediction | cancer probability

Whole genome (WG) sequence information of individuals is
revolutionizing our understanding of the content and or-

ganization of genomic variations in human genomes (1). Most
regions of untransformed human genomes have been found to
have the same sequences, but a small fraction, spread throughout
the genome, have variations among a population, such as SNPs,
insertion-deletions of various lengths, copy number variations,
and repeats or inversions of various lengths (2). Of these, SNPs
account for the largest number of variations and have been
identified at more than 3 million genomic tag positions at a
minor allele frequency (MAF) greater than 5% (3, 4) of the
population, and many more have been identified at a lower
minor allele frequency (5).
It has been widely assumed that these genomic variations of

normal (untransformed) cells contain one or more sets of var-
iations that render an individual susceptible to a given disease or
phenotype, usually in combination with nongenomic factors. One
of the hopes from genome-wide association studies (GWASs) (6)
has been to predict the genomic component of the susceptibility
of individuals to complex diseases such as cancers, autoimmune
diseases, neurological diseases, infectious diseases, and others.
Intensive and extensive studies to find the association between
SNP genotypes and the susceptibility for various cancer classes
have resulted in discovery of more than 100 genomic association
loci for the susceptibility of more than 16 cancer classes thus far
(7), but no more than a fraction of the specific prediction loci has
been found (8). Moreover, some criticized that GWAS-identified
loci do not explain, in most cases, the high familial risk of most
cancers (9). Thus, the results from the current analysis methods
and interpretation of them for predicting the genomic suscepti-
bility for cancer based on GWAS-confirmed SNPs from normal
cells are thought to have had limited predictive value of practical
utility for making health-related decisions at an individual or
population level without information of family histories.

GWASs revealed that the odds ratios of most SNPs between
cases and controls for a given complex disease such as cancer are
usually close to 1.0. Even for most of the GWAS-identified and
disease-associated SNPs, their odds ratios are rarely very far
from 1.0, and their predictive value has been low. These obser-
vations, combined with recent experimental observations of
heterogeneity in cancer cells with different somatic mutations
not only among different cancer subtypes in a given cancer class
but also even in a single tumor (10, 11), suggest the following
possibilities for cancer susceptibility: (i) there are many more
undiscovered susceptibility alleles for a given cancer than those
confirmed by GWASs thus far; (ii) there may be many known
and unknown interactions among the alleles; (iii) a specific
combination of many of the susceptibility alleles may render an
individual susceptible to the cancer of a specific class (the pol-
yallelic model); and (iv) there may be multiple sets of such allele
combinations in a population, and each set (with mostly different
alleles assorted from a large pool of the susceptibility alleles)
renders an individual susceptible to the same class cancer (the
model of multiple assortment of genomic alleles).
These complex possibilities prompted us to take an empirical

approach of predicting cancer susceptibility using multiple su-
pervised learning methods applied to multiple descriptors of
genomic variations. We also recognize that the susceptibility
alleles and causal alleles of cancer may or may not be the same
or easily correlated.

Approach
The objective of this work is not to test any existing models for
cancer causation or cancer susceptibility but to find a framework
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of methods that can produce cancer susceptibility information
with predictive value of practical utility. Thus, we take the ap-
proach of classification by supervised learning, where we first
empirically optimize various parameters in selecting the groups
of SNP variations as descriptor variables and use supervised
learning algorithms suitable for these descriptor variables to
obtain the best outcome on susceptibility prediction without
being encumbered by any existing specific assumptions. We then
let the results suggest any possible model or models, if any, for
cancer susceptibility prediction.
It has been widely acknowledged that no single classifier

performs better than all others consistently in all applications.
Thus, we recognize that a complex system such as genomic
variations can be described in more than one way and that there
is more than one analysis algorithm to extract a complex prop-
erty, such as susceptibility for cancer, from genomic variations
of individuals. We also recognize that one descriptor/analysis
combination suitable for one cancer may not be suitable for
other cancers. Thus, to test whether more predictive information
can be derived from WG tag SNPs (for simplicity, SNPs from
here on) of nontransformed cells, we explore four different
methods: two supervised learning analysis algorithms applied to
two different descriptors of individual genomic variations. We
also test combining the results of the four methods. Also, be-
cause all cancer cells have a common property of unregulated
proliferation, we estimate multiclass cancer susceptibility, i.e.,
susceptibility for one cancer in the context of other cancers. Such
multiclass prediction has more practical value for individuals
or a given population rather than the susceptibility prediction
for a single cancer class in the absence of other competing
cancer classes.
We chose two types of descriptors of an individual genomic

variations: (i) the profile of ordered SNP genotypes, where each
SNP genotype is assumed to be independent of those of its
neighbors, and (ii) the profile of SNP syntaxes (SNP-Ss), where
an SNP-S is defined as a string of connected, ordered SNP
genotypes of a given length. All of the SNP-Ss are generated by
sliding a window of a given length along the entire length of the
WG SNPs. The use of SNP-S as the descriptor element is to
accommodate the observations that each SNP haplotype is not
independent, but is linked to its neighbors to varying extents and
degrees (linkage disequilibrium of SNPs) (3, 4), and the use of
coded genotypes (Table S1), rather than haplotypes, is due to the
observed unreliability of computationally inferred haplotypes
(12), especially for low-frequency SNPs or SNP-Ss of unrelated
individuals (13), on which two of our methods are primarily built
(see below). In addition, we select all descriptor elements at loci
with P values or the occurrence frequency among study pop-
ulation below respective optimal cutoff values depending on the
analysis algorithm used, where the optimal cutoff values are
obtained by the supervised learning from the samples of known
phenotypes. This selection is to include as many susceptibility
allele candidates as possible beyond the small number of GWAS-
confirmed SNPs for each cancer class and to accommodate
broad models including the polyallelic and the multiple assort-
ment of genomic alleles models for cancer susceptibility.
Two very different analysis algorithms suitable for the two

descriptors mentioned above are used: (i) the k-nearest neighbor
(kNN) algorithm (14) and (ii) the support vector machine
(SVM) algorithm (15). These two algorithms do not depend on
good clustering of the samples of each cancer class in a multi-
dimensional space. The kNN algorithm is to search for the kNNs
of a test individual (in terms of genome variations) among the
study population and assign the most common trait among the
neighbors as the predicted trait for the test individual (In case of
more than one most common trait, see the kNN/SNP-S method
in Materials and Methods). Here, we calculate all pairwise dis-
tances between the descriptor of a test individual and that of
each of all individuals in the study population, and then we select
the top kNNs. The SVM algorithm is a discriminatory classifi-
cation method to identify the most likely class (group) to which

the test individual is likely to belong. Here, we train SVM to
recognize the correct trait group for an individual in each of all
binary trait group pairs. We then predict that the individual is
likely to be susceptible to the trait with the maximum vote of all
pairwise classifications by SVM (Materials and Methods). A
combined prediction of the susceptibility for each test individ-
ual is estimated based on Bayesian inference (SI Text) from
the four predictions.
For female individuals, the multiclass susceptibilities are pre-

dicted for nine classes (eight common cancer classes plus one
healthy trait), and for male individuals, the predictions are made
for six classes, excluding the three female-specific or female-
dominant cancer classes.

Results
Data Source, Selection, and Sampling. All of the data used in this
study are obtained from public databases, The Cancer Genome
Atlas (TCGA) with permissions, and HapMap. The details of
data selection, sampling method, quality control processes ap-
plied, and other details are described in Materials and Methods
and Table S2. Fig. 1 shows the workflow of this study.

Optimization of Parameters Using a Training Set. The training set
consists of 594 samples: 66 randomly selected individuals from
each of nine trait groups (the cohort of 66 individuals is the
smallest sample size among the nine trait groups in the two
databases). Fig. 2 shows the results of the optimization of the
parameters in the kNN/SNP-S method (kNN analysis algorithm
applied to the SNP-S descriptor): the optimized parameters for
the method are l (the length of SNP-S), k (the number of nearest
neighbors having similar descriptor profiles to that of testing
individuals), and f (the percentage cutoff value for selecting low
frequency SNP-Ss), and they are 8%, 20%, and 1%, respectively,
for the method. The optimizations of the parameters for the
remaining three methods are shown in Fig. S1 A–C.

Accuracies of Multiclass Prediction for a Training Set. To estimate
the statistical accuracies of susceptibility prediction for each
trait, each test individual is taken out from the 594 training
population. Table 1 shows the results from the kNN/SNP-S
method as a contingency table. The tables for the remaining
three methods are in Tables S3–S5. The summary of the four
tables for the correct susceptibility predictions is shown in Table 2.
It is clear from the tables that (i) in each of the four methods, the
correct trait was predicted for the largest number of individuals
as manifested by the large diagonal elements of Table 1 and
Tables S3–S5; (ii) in all four methods, the correct predictions
are made with significantly higher accuracies than random pre-
dictions. (e.g., with the kNN/SNP-S method shown in Table 1,
the true-positive rate is 66% and the false-positive rate is 33%);
(iii) no single method out of the four methods is the best in
predicting the susceptibility for all traits; and (iv) no false pos-
itives were found for the healthy trait group: there were a few
cancer individuals who were identified to belong to the healthy
group, but no individual in the healthy group was found in any
cancer group (see Discussion for this possible artefact).

Multiclass Prediction Accuracies and Confidence Levels for Multiple
Testing Sets. The construction of a testing set for all nine traits
was not achievable due to the small sample size of some cancers
in our data set from TCGA. Thus, we used 100 randomly se-
lected new samples (not used in the training set) from only three
groups [breast invasive carcinoma (BRCA), ovarian serous cys-
tadenocarcinoma (OV), and uterine corpus endometrioid car-
cinoma (UCEC)], for which more public data are available for
multiple sampling. We calculated the multiclass accuracy for the
test individuals using the same set of parameters as optimized in
the training set for each method. Resampling of 50 individuals
(randomly selected within the 100 test samples) was repeated
10 times for each of the three cancer classes. Fig. 3 shows the
results of the four methods with statistical spreads from multiple
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sampling. The results of the testing set can be summarized as
follows: (i) for each cancer class, three of four methods make
correct predictions for the testing set with accuracies significantly
better than random prediction; (ii) the individual genomic var-
iations (strictly speaking, the descriptors of SNPs or SNP-Ss) of
BRCA and OV are more closely related to each other than to
any other remaining cancer classes by three of the four methods;
and (iii) there is also a similar relationship between the
descriptors of OV and UCEC, but to a lesser extent.
Because none of the four methods performed poorly in a con-

sistent way, we calculated the combined predictions using Bayesian
inference (see SI Text for details) of the results of the four
methods applied to the three testing groups as also shown in
Fig. 3. The combined results show that, similar to the summary
of the testing performances of individual methods listed in the
previous paragraph, (i) the accuracies of the combined pre-
dictions for the three classes are significantly higher than the
11% for random prediction; (ii) the testing accuracies of the
combined method are better than or comparable to any of
the individual methods; (iii) the individual genomic variations
(specifically, SNPs and SN-Ss) of BRCA and those of OV are
more related or similar to each other than to any other cancer
classes; and (iv) there is also a similar relationship between the
descriptors of OV and UCEC, but to a lesser extent.
It is interesting to note that the observation iii is consistent

with a recent experimental study that showed a GWAS in
BRCA1 mutation carriers revealed novel loci associated with
breast and ovarian cancer risk (16). Perhaps, more interesting is
that observations iii and iv, revealing the relationships between
variations of untransformed cell genomes of BRCA and OV
individuals and also between those of OV and UCEC individu-
als, suggest that the related variations may be correlated with the
shared somatic mutational profiles of tumor cell genomes across
three cancer classes of BRCA, OV, and UCEC, as observed in
another recent experiment (17).
For each test individual, the confidence of the prediction by

the combined method can be estimated by the posterior proba-
bility of Bayes inference. The results for the three test classes
(Fig. S2) indicate that all predictions are made with posterior
probabilities higher than 0.3 compared with the 0.11 (i.e., 1/9)
expected for random probability. Furthermore, for example,
30% of BRCA test individuals had high confidence calls, defined
as test individuals having the highest posterior probability ≥0.9,

and these calls had an accuracy of 83.3% (Fig. S2), which is
a 25.3% increase from the overall accuracy of BRCA of 58%
(Fig. 3A).

Multiple Assortments of Susceptibility Alleles. With kNN/SNP-S,
one of the three better performing methods, all pairwise Jensen–
Shannon distances among all individual descriptor profiles were
calculated, and the distance matrix was assembled for the study
population. Using the matrix, we applied multidimensional scal-
ing (18) to inquire how well the members of a given cancer class
form an exclusive cluster, which is separated from the clusters of
other cancer classes. We found that, for each cancer group, no
clear exclusive clustering was evident (data not shown), sug-
gesting that there is no overwhelming collection of descriptor
elements that are common to all members of the cancer class.
The fact that, despite the poor clustering, the kNN and SVM
methods make good cancer susceptibility predictions suggests
that many different assortments from a select collection of de-
scriptors (susceptibility alleles) render individuals susceptible to
the same cancer class, supporting the model of the multiple
assortment of genomic alleles for cancer susceptibility.

Overall Conclusions. The multiclass accuracy of the predictions for
cancer susceptibility based on a combination of the results of
the four methods (two supervised learning algorithms applied
to two descriptors consisting of low P value SNPs or low-
frequency SNP-Ss of common genomic variations) is several
folds better than random predictions and is better than those of
individual methods.
The number of the descriptor elements, which can be con-

sidered as cancer susceptibility alleles, is far greater (order of
magnitude or more) than the limited associations confirmed by
GWASs thus far.
Our results are supportive of the model of the multiple as-

sortment of genomic alleles for the susceptibility to a given
cancer class, where multiple different selections from the sus-
ceptibility alleles render a population susceptible to the same
cancer class.
Despite the limited SNP data available in public databases at

present, the results suggest that the framework of this or its
improvement can predict the susceptibility for the eight major
cancer classes, with probability estimates useful for making
health decisions at an individual or population level. Such pre-
dictions are achievable by the profiles of selected groups of SNPs
and SNP-Ss consisting of common SNPs with a MAF >1%.
The genomic variations of individuals with BRCA are more

similar to those with OV than to any other cancers studied. The
same is true for those with OV to UCEC to a lesser extent.

Discussion
Comparison with Other Studies. There are no prior publications to
compare with our studies that address the multiclass suscepti-
bility prediction of several cancers or any other group of related
diseases. However, there are a few published papers on risk
prediction of a single disease by various methods. Of these, the
work of Wei et al. (19) is most relevant to our study: they applied
the SVM algorithm to SNPs to predict the susceptibility of one
disease: type 1 diabetes (T1D). Their results suggest that im-
proved disease risk for T1D can be predicted by using the SVM
algorithm on a subpopulation of SNPs with low P values as de-
scriptor variables. Furthermore, they showed that SVM per-
formed far better than the logistic regression (LR) algorithm.
This preference of SVM over LR suggests that (i) SMV takes
into account many possible significant interactions among the
SNP markers, whereas LR assumes they are independent; and
(ii) unlike most regression-based methods, SVM allows more input
features, such as SNPs, than samples, so it is particularly useful in
classifying high-dimensional data in their study and ours. One
of the four methods in our study took the same approach where
we applied the SVM algorithm on SNPs with P < 10−5, not just
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Fig. 1. Schematic diagram of workflow for a process of estimating genomic
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into a series of steps from SNP data preprocessing such as quality control
screening and genotype encoding, selection of descriptor elements with low
P values or rare SNP syntaxes, applying two different algorithms, and final
prediction by combining the results from the four methods.
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for one trait but for all nine traits separately, and then took the
trait with the maximum votes.

Sample Population and Control Group. As described previously, no
false positives were found for the healthy group from Caucasians
from Utah (CEU) during the training step. However, there were
a few cancer individuals whose genomes suggest they are pre-
dicted to belong to the healthy group, but no individuals in the
healthy group showed genomic susceptibility to any cancer
group. Several factors may have contributed to this apparent
artefact. For this framework study, (i) the true control group
should consist of a combination of a healthy group plus repre-
sentative individuals with each of all cancers except the eight
major cancer classes in the study. However, we used healthy
individuals in the HapMap database as the control group of this
study, because a true control group is impractical to assemble.
(ii) The artificial segregation between cancer groups and the
healthy group may be caused by the two separate databases
typed from different laboratories (20).

Limits and False Predictions. The susceptibility (risk) prediction
will improve as the sample size and diversity increases for a given

cancer type, as the number of different cancer classes increases,
and as better descriptor/algorithm combinations are discovered.
However, the accuracies will not reach 100% even under the best
circumstances, because not all of the genomic susceptibility for
a given cancer leads to the initiation of cancer, but, in most cases,
it requires one or more initiating events that are nongenomic.
Furthermore, susceptibility alleles may or may not be directly
related to causal alleles. Also, false predictions, although rela-
tively small in numbers, may also be due to several factors such
as (i) systemic errors arising from incorrect genotype calls due to
experimental or computational biases (21); (ii) population sub-
stratification (22); (iii) errors in human reference genome
sequences (23); and (iv) batch differences (21, 24).

Practicality of Information. On a population or personal level, our
method may provide information for practical use: quantitative
estimation of the size of a population with high genomic sus-
ceptibility for cancer can be a part of the information useful for
planning cancer prevention policies and cost management
strategies for the population. Similarly, such estimates for an
individual can provide motivation for prevention and for pro-
active early diagnostic tests to initiate early intervention.

Possible Improvement of the Framework of This Approach. There are
many ways our approach can be improved by incorporating ad-
ditional information, such as the following. (i) Improved data-
bases: larger and more diverse populations and cancer classes in
future databases. (ii) Rare SNPs: the public databases we used
contain common SNPs with MAF >1%. We expect that future
public databases that include rare SNPs with MAF <1% may
improve the prediction performance of our approach. (iii) Popu-
lation stratification: the relative frequencies of cancers vary de-
pending on many factors such as ethnicity, age, diet, lifestyle,
environment, and others. Inclusion of such information may also
improve prediction accuracy. (iv) Other genomic variations: al-
though SNPs account for the largest number of genomic varia-
tions, other variations, such as insertion-deletions of various
lengths, copy number variations, and repeats or inversions of
various lengths, can be codified and included in a more com-
prehensive descriptor of genomic variations of an individual. (v)
Other descriptor/algorithm pairs: additional descriptor/algorithm
pairs can be added and their results combined after attrition of the
results from those pairs that perform worse than others consis-
tently or most of the time. (vi) Important SNPs and SNP-Ss: our
starting point is not designed to find one or a few important
features (SNPs or SNP-Ss) unique to a given cancer class. In fact,
our optimization processes result in a large number of features
as useful for multiclass prediction. However, it is theoretically
possible, although high in computational burden, to identify
a smaller set of more important features that most downgrade
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Fig. 2. Optimization of parameters for the process of applying the kNN
algorithm to the profiles of SNP-syntaxes. kNN algorithm to SNP-S profiles
has three parameters: (i) filtering percentage for selecting rare features
below specified frequency threshold. For example, for 1% filtering, the
features below 1% frequency among study population are selected for
analysis; (ii) the length of SNP-S; and (iii) k for selecting number of nearest
neighbors of a test individual. The training accuracies of the method were
measured for several different settings of the three variables and the opti-
mal setting was found for the best accuracy. The accuracy is defined as (TP +
TN)/(TP + TN + FP + FN), where TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives, respectively.

Table 1. Training performance of kNN algorithm applied to profiles of SNP-Ss

Actual trait

Predicted trait

Sample size Accuracy (%)BRCA COAD HNSC KIRC LGG OV READ UCEC CEU

BRCA 32 2 10 0 5 11 5 1 0 66 48.5%
COAD 4 30 5 2 6 7 6 1 5 66 45.5%
HNSC 2 1 55 2 1 0 1 2 2 66 83.3%
KIRC 3 3 7 30 6 4 9 2 2 66 45.5%
LGG 1 5 3 1 52 0 1 0 3 66 78.8%
OV 5 1 2 1 2 50 1 1 3 66 75.8%
READ 0 4 2 2 4 1 52 0 1 66 78.8%
UCEC 3 5 7 1 2 11 7 25 5 66 37.9%
CEU 0 0 0 0 0 0 0 0 66 66 100%

Sum 594 Overall 66.0%

BRCA, breast invasive carcinoma; CEU, Caucasians from Utah; COAD, colon adenocarcinoma; HapMap, Haplotype Map Project; HNSC,
head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LGG, brain lower grade glioma; OV, ovarian serous
cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus endometrioid carcinoma.
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the overall performance when removed from the selected fea-
tures (19). Using such important features with higher weights
may improve the prediction.

Other Potential Applications. This framework of analysis can be
applied, with appropriate modifications, for other purposes such
as (i) for multiclass prediction of genomic susceptibility to mem-
ber diseases of other common and complex disease groups such
as autoimmune diseases, neurodegenerative diseases, and others;
(ii) for pharmacogenomics application to assess susceptibility of
a patient for the most beneficial or serious adverse drug or
therapy among multiple options; and (iii) for clinical trials to
select trial candidates who are likely to respond positively in a
clinical trial for a drug or therapy.

Materials and Methods
Samples and Genotyping. We downloaded a total of 2,192 SNP array results
and related clinical information from the TCGA of the National Institute of
Health (NIH) website (cancergenome.nih.gov) from April 2, 2012 to April 4,
2012 with the approval of National Center for Biotechnology Information
database of Genotypes and Phenotypes (general research use approval). We
downloaded SNP genotype data of those patients’ blood, carefully called
and tested at the Broad Institute. The patients were mostly white American
individuals with European ancestries. A few outliers from different ances-
tries were removed in the quality control step. All markers were typed on
Affymetrix 6.0 SNP chips. For the healthy population, CEU data from the
HapMap project were used, because it is believed to be the best represen-
tation of overall healthy white individuals available at present. Only females
were included in our training and testing datasets for BRCA, OV, and UCEC.
To reduce loss of SNP information arising from merging of two datasets with
different marker sets, we downloaded 165 SNP array results of CEU, typed
on an Affymetrix 6.0 chip from the HapMap ftp website. We genotyped the
data using Affymetrix Power Tools with default parameter settings and
discarded samples that had been reported to have low quality from the
website (see Table S2 for study sample information).

Quality Control. The dataset used in this study was derived using PLINK (25)
with the following conditions: considering that the platform we used is
designed to type high polymorphic sites, SNPs having minor allele frequency
at 1% or below were assumed to be noise and thus removed, and the
Hardy–Weinberg equilibrium tests were applied to each marker in CEU
individuals only (P > 10−6). Furthermore, we applied the plate-effect test by
assessing the association test (P > 10−8) between a plate and the others for
every plate (having more than 30 samples) within each cancer trait (24). For
those SNPs who passed quality control, we extracted self-reported Caucasian
individuals in the United States for TCGA data and performed a genetic
relatedness test (PI_HAT < 0.2) (26). In addition, all related individuals in CEU
were removed using pedigree information. For example, we removed two
individuals of trios and one of duos. Finally, by merging samples and having
joint SNPs across post–quality control trait datasets, we obtained genotypes
for 714,649 nonredundant SNPs of autosomal chromosomes for 1,741 indi-
viduals (see Table 2 for more information).

Encoding of Descriptor Elements. Two types of encodings are used: (i) to
compare genotypes of two individuals at a SNP locus, it is sufficient to
compare the number of minor alleles at the locus, because the identities of
the major and minor alleles of the locus are known in the databases we
used. Thus, each SNP genotype (as a descriptor element) is converted to the
numeric value of 0, 1, or 2, depending on the count of minor alleles in the
genotype, i.e., 0 for homozygous in major allele, 1 for heterozygous, and 2
for homozygous in minor allele; (ii) to compare two SNP-Ss, we need to
compare the genotype of each SNP allele in the SNP-Ss. Thus, each SNP in
a SNP-S descriptor elements is convert to 1 of 10 alphabets representing 10
possible SNP genotypes (Table S1).

Optimal Length of SNP-Ss. Because the number of SNP-Ss of all possible
lengths is gigantic (∼1012 for an SNP string of length of 106 positions), and
because mathematical operations needed for comparing the profiles of
SNP-Ss of such size is prohibitive, we use only the SNP-Ss with an optimal
length. Practical utility for using the optimal length to drastically reduce
computational burden has been shown in our previous works (27, 28).

Four Methods. Fig. 1 shows the workflow of the four methods.
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Fig. 3. Nine-class prediction accuracy of a testing set of 50 individuals for each of three cancer classes of (A) BRCA, (B) OV, and (C) UCEC. Nine-class prediction
accuracies of four methods and the combined prediction by Bayesian inference for 50 test individuals for each of three cancer classes are depicted. Dotted
lines show random prediction accuracy and the tick mark on each bar in the figure shows SEs of the predictions measured by resampling method. kNN/SNP,
kNN algorithm on individual’s SNP profiles; kNN/SNP-S, kNN algorithm on SNP syntax profiles; SVM/SNP, SVM algorithm on individual’s SNP profiles; SVM/SNP-S,
SVM algorithm on SNP syntax profiles.

Table 2. Correct prediction ratios for training set by four methods for each of nine traits

Method

Predicted trait

Total
Selected
featuresBRCA COAD HNSC KIRC LGG OV READ UCEC CEU

kNN/SNP 3.0% 40.9% 54.5% 10.6% 13.6% 68.2% 19.7% 22.7% 100% 37.0% 236,107
kNN/SNP-S 48.5% 45.5% 83.3% 45.5% 78.8% 75.8% 78.8% 37.9% 100% 66.0% 16,333,627
SVM/SNP 53.0% 50.0% 78.8% 68.2% 86.4% 36.4% 42.4% 62.1% 100% 64.1% 9,838
SVM/SNP-S 47.0% 16.7% 59.1% 47.0% 56.1% 47.0% 34.8% 51.5% 100% 51.0% 1,597
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kNN/SNP-S method: kNN algorithm on SNP-Ss. The format of the descriptor for
this method is a large vector consisting of all SNP-S alleles that are present in
the training population. The descriptor of each member of the training set is
constructed by filling up the format with those encoded SNP-S alleles present
in the member’s genome. Then, we select low-frequency SNP-Ss by removing
all SNP-S loci where the SNP-S allele is present among more than a given
percentage of the training population and calculate the frequencies of
distinct SNP-S alleles. Finally, we construct a Jensen–Shannon (JS) divergence
matrix of the frequency profiles between all member pairs. [JS divergence
(29) for measuring distances of the descriptors was selected because it
showed better predictive capacity over other conventional methods such as
allele sharing]. For each test individual, we select k individuals of known
traits with the shortest JS divergence to the frequency profile of the test
individual. We then assign the most common trait among them as the likely
trait the test individual is susceptible to. In case of a tie, we pick the class of
having the shortest average JD distance to the test individual. The length of
SNP-S, i, the f parameter for low-frequency selection, and the parameter k
are optimized for the best accuracy of estimating cancer susceptibility on the
training data set. The optimal parameter values came out to be 8, 1%, and
40 for i, f, and k, respectively (Fig. 2 and Table 1).

In the testing step for prediction accuracy, for each test individual, we
profile features of testing individuals filtered at 1%, followed by normali-
zation. Then we measure the JS distance vector between the test individual
and the training samples. The traits of the test individuals are predicted by the
same voting scheme as in training phase with the optimal k parameter.
kNN/SNP method: kNN algorithm on SNPs. The kNN algorithm is the same as
above but applied to the descriptor profile of SNPs instead of SNP-Ss. The
format of the descriptor for this method is a large vector consisting of all
SNP loci, and the descriptor of an individual is constructed by filling up the
vector with ordered, encoded SNP alleles of the individual’s genome. In this
method, we optimize the f and k parameters (Fig. S1A and Table S3). Op-
timized values for f and k are 15% and 200, respectively.
SVM/SNP method: SVM on SNPs. SVM was originally designed for classifying
a data set into two classes. It was later extended for the multiclass prediction
problem by various approaches. Of these, we use the one-versus-one (OVO)
scheme because it is empirically known to outperform other approaches (30).
The OVO method generates n(n − 1)/2 class-pairs from n classes and takes

the trait with the highest votes from n(n − 1)/2 predictions as the most likely
trait a test individual is susceptible to [for implementation of the OVO SVM
method, we used LIBSVM by Chang et al. (31)]. Radial basis function (RBF) is
selected for the kernel function, because it is known to perform better than
other major functions in general. In building a binary class-pair of the SNP
descriptor, we select SNPs associated between the two classes by filtering
out SNPs over a predefined P value threshold. To find the optimal cutoff, we
vary its range from 10−3 to 10−6 (32). At cutoff values less than 10−6, some
classifiers had no SNPs left after filtering by association tests. During the
training phase, we evaluate the performance of the OVO SVM prediction by
leave-one-out cross-validation in a dataset of having 66 samples for each
cancer (a total of 594 individuals). For this, the prediction performance of
the method was tested on a random sample based on the parameters
trained from the rest of the dataset by leave-one-out cross-validation. This
procedure was iterated for all cases, and the test results of class (cancer type)
assignment were collected and tabulated in the contingency matrix (Table
S4). In cases of ambiguous predictions, that is, multiple highest votes, we
repeat the poll within the set of classes having the highest votes until the tie
breaks. The one exception is that when all traits have an equal number of
votes, we choose one arbitrarily. The occurrence rate of such a case is ex-
tremely low (less than 1% of total predictions). The results of definitive
predictions by OVO SVM perform best when the P value cutoff value is 1 ×
10−5 (Fig. S1B).
SVM/SNP-S: Support vector machine on SNP-Ss. This procedure is the same as
above except the SNPs are replaced by SNP-Ss. One additional parameter of
the optimal length of SNP-S needs to be optimized using the training set (Fig.
S1C and Table S5). The optimized values for the P value cutoff and optimal
length for SNP-S are 10−5 and 2, respectively.
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