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Combinatorial drug screening identifies synergistic co-targeting
of Bruton’s tyrosine kinase and the proteasome in mantle cell
lymphoma

Leukemia (2014) 28, 407–410; doi:10.1038/leu.2013.249

We have performed a focused combinatorial screen of targeted
drugs combined with ibrutinib in mantle cell lymphoma (MCL)
cells, and identified the proteasome inhibitor carfilzomib as a
targeted agent that could be used with ibrutinib to provide
improved clinical responses. Other targeted agents that displayed
cytotoxic benefit in our screen also were independent of the B-cell
receptor (BCR) pathway, whereas agents within the BCR pathway
did not provide benefit.

MCL is an incurable B-cell malignancy with poor prognosis.1,2

As with many other malignancies and lymphoproliferative disorders
of B-cell lineage, growth and survival of MCL depends on signaling
via the BCR.3,4 Potential therapeutic targets of the BCR pathway for
MCL include downstream kinases LYN, SYK, PI3K and Bruton’s
tyrosine kinase (BTK). Ibrutinib (PCI-32765) is an orally bioavailable
BTK inhibitor, which has clinical efficacy against numerous B-cell
malignancies. In phase I/II clinical trials, ibrutinib elicited an overall
response rate of 68% in patients with relapsed/refractory MCL,

including patients previously exposed to bortezomib3 and 83% in
patients with relapsed/refractory chronic lymphocytic leukemia
(CLL).4 This is the highest response rate demonstrated by any
single agent in MCL and CLL.

However, in spite of these encouraging results, responses are
generally incomplete, de novo resistance is common and
recurrence is anticipated, as is the case with most single-agent
targeted therapies.5 Treatment with a single-agent targeted drug
rapidly activates a variety of redundant and compensatory
signaling pathways that blunt cytotoxicity and rapidly lead to
adaptive resistance.5,6 Consequently, disease progression or
recurrence can occur within months and is often more clinically
aggressive and resistant to treatment than at initial presentation.
Although the mechanisms of primary and acquired resistance to
ibrutinib have yet to be elucidated, anecdotal reports suggest that
MCL disease progression on ibrutinib can be aggressive and often
refractory to other treatments, indicating that compensatory
signaling changes and adaptive resistance have occurred.
In addition, acquisition of mutations of BTK that impact ibrutinib
binding was recently observed in CLL cells.7 We hypothesize that
drug combinations that block adaptive signaling responses can
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elicit deeper and broader initial remissions and may enable
prolongation of both progression-free and overall survival in
MCL.8–10 Therefore, we have aimed to identify drugs to combine
with ibrutinib that target these adaptive responses, and that may
also provide benefit in cases of acquired BTK mutations.

We constructed a focused drug panel that contained agents
with targets ‘inside’ and ‘outside’ the canonical BCR pathway, as
defined by the KEGG database (Kyoto Encyclopedia of Genes and
Genomes).11 Co-targeting inside the BCR pathway can provide
insight into the potential for pathway reactivation as a mechanism
of resistance; co-targeting outside the BCR pathway could reveal
novel or unexpected functional relationships and synergies.

Our results surprisingly showed no benefit from combining
ibrutinib with drugs that targeted within the BCR pathway, but
robust synergism between ibrutinib and several agents targeting
outside the BCR pathway. In particular, we identified proteasome
inhibitors, notably carfilzomib, that could provide an enhanced
benefit to MCL patients and should be tested in a clinical setting.

We initially performed combinatorial screening of a pair of
MCL cell lines using ibrutinib in pairwise combinations with a
library of 14 other drugs and looked for synergistic cytotoxicity
(see Supplementary Table 1 and Figure 1b). Using three doses of
ibrutinib and secondary agents, we treated cells with a 3� 3
combination matrix for 72 h (Figure 1a) and used the Bliss model
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Figure 1. Screening with targeted secondary agents identifies drug combinations that synergize with ibrutinib. (a) Fourteen secondary drugs
were combined with ibrutinib in two MCL cell lines (Z138 and JVM2). Cell lines were exposed to 6, 12 and 21 mM ibrutinib and three doses of
secondary agents in a 3� 3 format for 72 h (Supplementary Table 1). Percent cytotoxicity was measured with an alamarBlue assay, and percent
synergy assessed by the Bliss independence method.12 Cytotoxicity was normalized to the vehicle-treated control samples for each cell line.
Each data point on the curve represents the difference between the observed cytotoxicity and the predicted additive cytotoxicity based on
the Bliss model (termed ‘percent synergy’). A cutoff was drawn at the 90th percentile, which corresponded to 18% synergy. (b) Unsupervised
hierarchical clustering of the percent synergy values for all drug combinations at all concentration combinations in the 3� 3 dosing matrix in
Z138 and JVM2 cells. (c) Best synergistic response with associated percent cytotoxicity for all drug combinations in Z138 and JVM2 cells.
Bendamustine was used as a positive control.
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of independence to score for synergy.12 Bendamustine, which
targets outside the BCR pathway and is clinically effective in
combination with ibrutinib,13 was used as a positive control. In
agreement with prior reports, the combination of bendamustine
and ibrutinib produced a robust synergistic cytotoxic response in
both MCL cell lines tested (Figure 1b). This served as a validation
for our screening and analytical methodologies.

Unsupervised hierarchical cluster analysis revealed that syner-
gistic cytotoxicities occurred only with inhibitors that target

outside the BCR pathway (Figure 1b). These results suggest that
intrinsic and adaptive resistance to BTK inhibition by ibrutinib is
not mediated by feedback reactivation of the BCR signaling
pathway. By contrast, several agents inhibiting targets outside the
BCR pathway conferred synergistic cytotoxicity in combination
with ibrutinib. Specifically, high degrees of synergy and cytotoxi-
city were demonstrated with ibrutinib in combination with the
proteasome inhibitors bortezomib or carfilzomib, or the BCL2
inhibitor ABT-199 (Figure 1c).

A recent report suggests that the combination of ibrutinib and
bortezomib may be a viable therapeutic approach for MCL.14

Therefore, we further examined the synergistic cytotoxicities
observed when combining ibrutinib with proteasome inhibitors.
Carfilzomib, in combination with ibrutinib, resulted in robust
synergy and cytotoxicity in a variety of cell lines and in primary
samples from patients (Figure 2a). This effect was observed over a
range of dose combinations in the cell lines used in the screen
(Supplementary Figures 1A and B). A similar, but less robust, effect
was observed with the combination of ibrutinib and bortezomib
across the range of doses tested (Supplementary Figures 1C and D).
Analysis of apoptosis revealed that the synergistic cytotoxicity
could be accounted for by enhanced apoptosis (Figure 2b and
Supplementary Figure 2). The combination of ibrutinib and
carfilzomib regularly produced a greater apoptotic response than
ibrutinib and bortezomib (data not shown).

To better assess the translational potential of this drug
combination, we used a model in which ex vivo human MCL
tumor samples are introduced into SCID-hu mice.15 We injected
5� 106 freshly isolated primary MCL cells into human fetal bone
implanted in the SCID-hu mice. The level of circulating human
b2M in mouse serum was used to monitor tumor burden in the
SCID-hu mice. When human b2M was detected in mouse serum
(data not shown), the mice received treatments with ibrutinib
25 mg/kg/day, oral gavage, daily and/or carfilzomib (CFZ)
5 mg/kg/day, IV, twice a week for 5 weeks. Overall, these data
clearly demonstrate that both ibrutinib and CFZ as single agents,
had anti-tumor effects in vivo (Po0.01, compared with vehicle
control, Figure 2c). However, we found that ibrutinib in combina-
tion with carfilzomib increased survival by threefold in the primary
MCL-bearing SCID-hu mice at 125 days compared with ibrutinib or
CFZ alone (Po0.01, Figure 2c).

In summary, we screened pairwise drug combinations of
ibrutinib with 14 other inhibitors that either targeted the BCR
signaling pathway or are being actively tested/used in MCL and
other B-cell malignancies. Our goal was to identify clinically
actionable drug combinations in a relatively unbiased manner.
We found that all of the drug combinations that produced robust
synergy involved ibrutinib in combination with inhibitors of
non-BCR pathway targets. Drugs inhibiting proximal targets directly,
for example, dasatinib, enzastaurin, temsirolimus, R-788, SC-514 and
idelalisib, did not confer synergistic cytotoxicity in combination
with ibrutinib. Rather, these drugs sometimes antagonized the
cytotoxic effect of ibrutinib alone. Although further investigation is
needed, these data suggest that incomplete BCR pathway
inhibition or pathway reactivation is not a common mechanism
of adaptive ibrutinib resistance in MCL. Rather, a compensatory
bypass of the BCR pathway by alternative signaling pathways
could at least in some cases be responsible for resistance and
progression of MCL. This strikingly contrasts with the mechanisms
of adaptive resistance that appear in BRAF V600E melanomas,
where adaptive resistance to vemurafenib occurs almost always
via mechanisms that reactivate mitogen activated protein kinase
signaling.5 The ability to uncover novel functional interactions
between signaling pathways that appear unconnected is a major
benefit of the drug screening approach.

In our studies, the amount of apoptosis detected upon
treatment with the carfilzomib combination was significantly
higher than that of the bortezomib combination. Carfilzomib,
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Figure 2. The combination of ibrutinib (Ibr) and carfilzomib results in
synergistic cytotoxicity, apoptosis and enhances survival in MCL
models. The cytotoxic and apoptotic effects of Ibr and carfilzomib as
single agents and in combination were assessed in MCL cell lines and
primary patient samples. Cells were treated for 48h (Rec-1, Jeko and
patient samples) or 72h (JVM-2 and Z138) with the indicated drugs.
Ibr concentrations ranged between 1.5 and 21mM. Carfilzomib
concentrations ranged between 2.6 and 20nM. (a) Cytotoxicity was
assayed using tetrazolium (MTS) (Rec-1, Jeko and patient samples) or
alamarBlue (JVM-2 and Z138). (b) Apoptosis was assayed using
Annexin V/propidium iodide staining (Rec-1, Jeko and patient
samples) or cleaved Poly ADP Ribose Polymerase (PARP) staining
(JVM-2 and Z138). (c) Primary patient MCL cells injected into human
fetal bone chips, which had been subcutaneously implanted in SCID-
hu mice. When human b2m was detectable in mouse serum, mice
(five per group) were given Ibr 25mg/kg, daily oral gavage and/or
CFZ 5mg/kg, intravenously twice a week for 5 weeks. Mice were killed
once tumor burden reached 1.5 cm diameter (tumor burden equals
mass diameter minus bone chip diameter in the long dimension).
Kaplan–Meier survival curves of primary MCL-bearing SCID-hu mice
were analyzed (Ibr plus CFZ versus Ibr/CFZ alone: Po0.01).
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while highly active in relapsed multiple myeloma, is less well
studied in MCL. However, carfilzomib’s safety profile is superior to
bortezomib’s, with less reported neuropathy, making it a more
attractive potential clinical agent for combination with ibrutinib.16

Therefore, we chose to focus on the combination of carfilzomib
and ibrutinib, despite the current use of bortezomib in relapsed MCL.
Carfilzomib targets the chymotrypsin-like protease more
specifically than bortezomib does, and its higher degree of
synergy when combined with ibrutinib compared with the
bortezomib plus ibrutinib combination may be due to a
variation in the specific mechanism of proteasome inhibition.17

All four cell lines responded to the combination of proteasome
and BTK inhibition, including Jeko-1, a leukemic, classically
indolent form of MCL, and Z138, a blastic, characteristically
aggressive form of MCL, suggesting that the carfilzomib and
ibrutinib combination may prove efficacious regardless of
variations in specific patient MCL tumor biology. Interestingly,
the carfilzomib and ibrutinib combination synergized even in the
carfilzomib-resistant Rec-1 MCL cells, and in a patient sample that
displayed carfilzomib resistance, implying that the combination
restores efficacy of carfilzomib. The synergistic effect was seen in
all in vitro MCL cell lines, as well as with ex vivo patient samples.
This finding translated to a MCL-SCID-hu mouse model, where the
combination improved survival at 125 days by threefold
compared with either drug individually. Given the robust
synergy demonstrated independently at our two institutions as
well as the dramatic increase in overall survival in our mouse
model, we have designed a phase I/II clinical trial with ibrutinib in
combination with carfilzomib in relapsed/refractory MCL.
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